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PERIODIC SOLUTIONS FOR DYNAMIC EQUATIONS

ON TIME SCALES

SHUN-TANG WU AND LONG-YI TSAI

Abstract. The second order nonlinear dynamic system on time scales is consid-

ered. Some sufficient conditions for the existence of periodic solutions are given.

Differential inequality techniques and the method of mixed monotony are used.

1. Introduction

In recent years, the initiated theory of dynamic systems on time scales T (closed sub-

sets of reals) provides a framework for handling both continuous and discrete dynamical

systems simultaneously so as to bring out better insight and understanding of subtle

differences of these two types of systems. A unified theory is developed by Aulbach and

Hilger in [3]. Some integrated results are given by [5], [7] and [10]. Herein some basic

properties of solutions of dynamic systems on time scales are introduced. Qualitative

properties including Lyapunov stability, oscillation theory and asymptotic behavior of

the solutions are also discussed.

The method of upper and lower solutions, coupled with the monotone iterative tech-

nique, show itself as an effective mechanism that offer theoretical, as well as constructive

existence result in a closed set for differential equations in [9]. The upper and lower

solutions are used to generate the closed set served as upper and lower bounds for solu-

tions which can be improved by monotone iterative procedures. Moreover, the iterative

schemes are also useful for investigating the qualitative properties of the solutions, hence

the method of upper and lower solutions is widely used to discuss the existence, unique-

ness, boundedness, stability and asymptotic behavior of the solutions. When the upper

solution is assumed to be larger than the lower solution, existence results for nonlinear

boundary value problems are given in [8]. For reversing the order of the upper and lower

solutions. Some results are given in [6].

Recently the method of upper and lower solutions has been used to discuss dynamic

equations on time scales in [2] and [5] by fixed point theorem under the assumption that
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the upper solution is larger than the lower solution. In this paper we shall consider

periodic boundary value problems and employ the method of mixed monotony to obtain

extremal solutions under the conditions that the upper solution is greater than or less

than the lower solution. The paper is organized as follows. Some preliminaries on
dynamic equations are given in Section 2. In Section 3, we first give two lemmas on the

existence and uniqueness of solutions for linear periodic problem. These results are used

later to discuss the existence of nonlinear periodic problem. The main results are given

in Theorem 3.3 and Theorem 3.4. These results will generalize some existence results on

periodic boundary value problems ([8], [6, Section 5.3]) on T = R.

2. Preliminaries

We first give some of the basics of the time scale theory and refer to [3] or [5] for

further details. Let T be a time scale which means any closed subset of R. The embedding

of T in R gives rise to the order and topological structure of the time scale in a canonical

way. Since a time scale T may not be connected, we need the concept of jump operators.

Definition 2.1. The operators σ, ρ : T → T such that

σ (t) =
{

inf {s ∈ T : s > t} , t 6= max T
}

(2.1)
ρ (t) =

{

sup {s ∈ T : s < t} , t 6= min T
}

are called forward and backward jump operator respectively. A point t ∈ T is called

right-scattered, right-dense, left-scattered, and left-dense depending on whether σ (t) > t,

σ (t) = t, ρ (t) > t, ρ (t) = t, respectively. While the mapping µ (t) = σ (t) − t is called

graininess. We denote uσ (t) ≡ u (σ (t)) for t ∈ T. and T
k be the set of points of T except

for a maximal element which is also left scattered.

Definition 2.2. The mapping f : T → R is called rd-continuous and denoted by

f ∈ Crd (T, R) if it is continuous at each right-dense or maximal point t ∈ T and if the

left-sided limit exists at each left-dense points.

Definition 2.3. Let f : T → R at each t ∈ T
k, f has a derivative f∆ (t) ∈ R if for

each ε > 0, there exists a neighborhood U of t such that ,

∣

∣f (σ (t)) − f (s) − f∆ (t) (σ (t) − s)
∣

∣ < ε |σ (t) − s| , for all s ∈ U ∩ T (2.2)

Definition 2.4. Let f : T → R, we say that f has the second derivative f∆∆ provided

that f∆ is differentiable on T
k
2

= (Tk)k with derivative f∆∆ =
(

f∆
)∆.

T
k
2

→ R. Finally,
for t ∈ T , we denote σ2(t) = σ(σ(t)), ρ2(t) = ρ(ρ(t)) and σn(t), ρn(t) for n ∈ N are

defined accordingly.
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Remark.

(i) If a function f : T → R is continuous at a right-scattered point t, then it is differ-
entiable at t with derivative

f∆ (t) =
f (σ (t)) − f (t)

σ (t) − t
. (2.3)

(ii) Let f, g : T
k → R , and t ∈ T

k. If f∆ (t) , g∆ (t) exist and (fg) (t) is defined, then
(fg)

∆
(t) exists and

(fg)
∆

(t) = f (σ (t)) g∆ (t) + f∆ (t) g(t). (2.4)

Definition 2.5. A mapping f : T → R is called an antiderivative of g on T if it is
differentiable on T and satisfies f∆ (t) = g(t) for t ∈ T

k and then for any r, s ∈ T
k, r ≤ s,

we define
∫ s

r

g (t)∆t = f (s) − f (r) , (2.5)

as the Cauchy integral of g from r to s. Note that for T = R, the Cauchy integral coincides
with the Riemann integral and and that if g : T

k → R is rd-continuous, then g possess
the antiderivative.

Lemma 2.6. (Lagrange identity) For u, v ∈ C2
rd (T, R) , we have

v∆∆uσ − u∆∆vσ = W∆ (u, v) , (2.6)

on T
k2

. Here the Wronskian W of u and v is defined by W (u, v) = uv∆ − vu∆.

Definition 2.7. Let u be a solution of

(p(t)u∆)∆ + q(t)uσ = 0, t ∈ T, (2.7)

where p, q ∈ Crd and p(t) 6= 0, for t ∈ T.

(i) We say that u has a generalized zero at t if u(t) = 0 or if t is left-scattered and
p(ρ(t))u(ρ(t))u(t) < 0.

(ii) (2.7) is said to be disconjugate on [a, b] , if there is no nontrivial solution of (2.7)
with two (or more) generalized zeros in [a, b] .

The following lemma is due to Lyapunov inequalities given in [4] or in [5, p.273].

Lemma 2.8.(Sufficient condition for disconjugacy) Let T u be a solution of the Sturm-
Liouville dynamic equation

u∆∆ + q(t)uσ = 0, t ∈ T (2.8)

where q : T −→ (0,∞) is positive and rd-continuous. If

∫ b

a

q(t)∆t <
b − a

f(d)
,
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then (2.8) is discongujate on [a, b] , where f : T −→ R is defined by f(t) = (t−a)(b− t),

and d ∈ T is such that
∣

∣

∣

∣

a + b

2
− d

∣

∣

∣

∣

= dist(
a + b

2
, T).

Definition 2.9. Let T∈ T∩ [0,∞) , we say that a time scale T is periodic with period

σ2(T ), if for any t ∈ T , we have t + σ2(T ) ∈ T.

Let

A = {u ∈ C1
prd([a, σ2(b)], R) | u(a) = u(σ2(b)) = 0}, (2.9)

where C1
prd (I, R) denotes the set of all continuous functions whose derivatives are piece-

wise continuous on I, and let

F (u) =

∫ σ2(b)

a

{[u∆(t)]2 − q(t)[u(σ(t)]2}∆t. (2.10)

Definition 2.10. We say that F is positive definite on A provided that F (u) ≥ 0

for all u ∈ A and F (u) = 0 if and only if u = 0.

Lemma 2.11.(Jacobi’s condition [1]) The equation (2.8) is disconjugate on [a, σ2(b)]

if and only if F is positive definite on A.

3. Monotone iterative technique

Hereafter we shall use the method of upper and lower solutions and monotone it-

erative technique to investigate the existence of solutions of periodic boundary value

problems(PBV P ).

Consider the boundary value problem

u∆∆ (t) + f (t, u) = 0, t ∈ T (3.1)

with

u(0) = u(σ2(T )), u∆(0) = u∆ (σ(T )) , (3.2)

where f ∈ Crd

[

T × R
N , RN

]

, T is a time scale which is periodic with period σ2 (T ) ,

T∈ T∩ [0,∞) . We shall give two lemmas on the existence and uniqueness of solutions of

linear periodic boundary value problems.

Lemma 3.1. (I) The problem

u∆∆ (t) − M2uσ (t) = 0, t ∈ I ∩ T (3.3)

u(0) = u(σ2(T )) (3.4)

u∆(0) = u∆ (σ(T )) , (3.5)

has only trivial solution for M ∈ R − {0} and I = [0, σ2(T )].
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(II) If g ∈ Crd [I ∩ T, R] is nonnegative and nontrivial, then the problem

u∆∆ (t) − M2uσ (t) = gσ(t), t ∈ I ∩ T (3.6)

u(0) = u(σ2(T )) (3.7)

u∆(0) = u∆ (σ(T )) + λ, (3.8)

has a unique non-positive solution u ∈ C2
rd [I ∩ T, R] for λ ≥ 0.

Proof. (I) (i) When u(0) = u(σ2(T )) = 0, let

F (u) =

∫ σ2(T )

0

{[u∆(t)]2 + M2[u(σ(t)]2}∆t.

We see that F is positive definite on A where A is given in (2.9). Indeed, F (u) ≥ 0, for

all u ∈ A and if F (u) = 0, then u∆(t) = 0 and u(σ(t)) = 0, for all t ∈ [0, σ2(T )], hence we

have u(t) = 0 for all t ∈ [0, σ2(T )]. By Lemma 2.11, (3.4) is disconjugate on [0, σ2(T )].

Since u(0) = u(σ2(T )) = 0, by definition of discojugacy, u(t) = 0, for all t ∈ [0, σ2(T )].

(ii) When u(0) = u(σ2(T )) > 0, from (3.3), we have u∆
(

σ2(T )
)

> u∆(σ (T )). By

(3.5), we obtain u∆
(

σ2(T )
)

> u∆(0). But by periodicity of u, we have

u∆
(

σ2(T )
)

=
u(σ(σ2(T )) − u(σ2(T ))

µ(σ2(T ))
=

u(σ(0)) − u(0)

µ(0)
= u∆(0),

it leads to a contradiction.

(iii) When u(0) = u(σ2(T )) < 0, let v(t) = −u(t), we have

v∆∆ (t) − M2vσ (t) = 0, t ∈ I ∩ T

v(0) = v(σ2(T )) > 0

v∆(0) = v∆ (σ(T )) .

By the same argument as in (ii), we get a contradiction.

(II)1 (Existence and uniqueness). Let x1 and x2 be two linear independent solutions

of the homogeneous equation (3.3). Then for any solution x of (3.3)−(3.5), we have

x(t) = c1x1(t) + c2x(t) , where c1 and c2 satisfy the following equation

A

[

c1

c2

]

=

[

0

0

]

,

here

A =

[

x1(0) − x1

(

σ2(T )
)

x2(0) − x2(σ
2(T ))

x∆
1 (0) − x∆

1 (σ(T )) x∆
2 (0) − x∆

2 (σ(T ))

]

.
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Since the only solution of (3.3), (3.4), (3.5) is trivial solution, so c1 = c2 = 0, thus

detA 6= 0. Let u0 be a particular solution of (3.6). Then any solution of (3.6)−(3.8) is

given by

u(t) = a1x1(t) + a2x2(t) + u0(t),

for some a1 and a2 and satisfies

A

[

a1

a2

]

=

[

−u0(0) + u0(σ
2(T ))

−u0(0) + u0(σ(T )) + λ

]

.

Since det A 6= 0, so (3.6)−(3.8) has only a unique solution.

(II)2 Next we claim that u ≤ 0 on I∩T. Suppose not, then u has a positive maximum

in
[

0, σ2(T )
]

, hence there exists a maximum point c in
[

0, σ2(T )
]

.

(i) If c ∈ (0, σ2(T )), then u(t) < u(c) for t ∈ (c, σ2(T )]. Consider the following cases :

Case 1 : ρ(c) = c < σ(c) (c is right-scattered and left-dense). Since

lim
t→c−

u∆(t) = u∆(c) =
u(σ(c)) − u(c)

µ(c)
< 0,

hence there exists δ > 0 such that u∆(t) < 0 on (c− δ, c]. This implies u(t) is decreasing

on (c − δ, c], which contradicts the way c was chosen.

Case 2 : ρ(c) < c < σ(c) (c is isolated). Note that

u∆(c) =
u(σ(c)) − u(c)

µ(c)
< 0,

and

u∆∆(ρ(c)) =
u∆(c) − u∆(ρ(c))

µ(ρ(c))
.

This implies u∆∆(ρ(c)) < 0.

Case 3: ρ(c) < c = σ(c) (c is right-dense and left-scattered). If u∆(c) > 0, then

lim
t→c+

u∆(t) = u∆(c) > 0, hence there exists δ > 0 such that u∆(t) > 0 on [c, c + δ). This

implies u(t) is increasing on [c, c+ δ), which contradicts the way c was chosen. Therefore

u∆(c) ≤ 0. Since ρ(c) is right-scattered,

u∆∆(ρ(c)) =
u∆(c) − u∆(ρ(c))

µ(ρ(c))
< 0.

Case 4 : ρ(c) = c = σ(c) (c is dense). As in Case 3, we have u∆(c) ≤ 0. Suppose that

u∆(c) < 0, then

lim
t→c

u∆(t) = u∆(c) < 0,
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and there exists δ > 0 such that u∆(t) < 0 on (c−δ, c]. Hence u(t) is decreasing on (c−δ, c]
that contradicts the way c was chosen. Thus u∆(c) = 0. Suppose that u∆∆(ρ(c)) > 0,
since c is right-dence, and u ∈ C2

rd ,there exists δ > 0 such that u∆(t) > 0 on [c, c + δ).
That means u∆ is strictly increasing on [c, c+δ). Since u∆(c) = 0, u∆(t) > 0 on (c, c+δ).
This implies u(t) is increasing on (c, c+δ), which contradicts the way c was chosen. Hence
u∆∆(ρ(c)) ≤ 0. From Case 2 − 4, we conclude that u∆∆(ρ(c)) ≤ 0. On the other hand,
from (3.6), we have

u∆∆(ρ(c)) = M2u(c) + g(c) > 0.

It contradicts to the fact u∆∆(ρ(c)) ≤ 0.

(ii) If c = 0 or c = σ2(T ), then u∆(0) ≤ 0 and u∆(σ(T )) ≥ 0. By (3.7) and (3.8), we
have

u∆(0) = u∆(σ(T )) = 0.

Hence u(0) = u(σ(0)) > 0. Since

u∆∆(0) = M2uσ(0) + gσ(0) ≥ M2uσ(0) > 0,

u∆(σ(0)) > u∆(0) = 0. This implies u(σ2(0)) > u(σ(0)) = u(0), it leads to a contra-
diction, since u has a maximum at 0. Another variant is the following result which
generalizes a lemma of [6] to the time scales.

Lemma 3.2.(I) The problem

u∆∆ (t) + kuσ (t) = 0, t ∈ I ∩ T (3.9)

u(0) = u(σ2(T )) (3.10)

u∆(0) = u∆ (σ(T )) , (3.11)

has only trivial solution if

0 < k <
1

d(σ2(T ) − d)
,

where d ∈ T is given by
∣

∣

∣

∣

σ2(T )

2
− d

∣

∣

∣

∣

= dist(
σ2(T )

2
, T) (3.12)

(II) If 0 < k ≤ k∗, where

k∗ = min

{

1

d(σ2(T ) − d)
,

1

Lσ2(T )

}

, (3.13)

and L is given in (3.19), and if g ∈ Crd [I ∩ T, R] is nonnegative and nontrivial, then the
solution u ∈ C2

rd [I ∩ T, R] of the problem

u∆∆ (t) + kuσ (t) = gσ(t), t ∈ I ∩ T (3.14)

u(0) = u(σ2(T )) ≥ 0 (3.15)

u∆(0) = u∆ (σ(T )) + λ, (3.16)
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is nonnegative on I ∩ T for any λ ≥ 0.

Proof. (I) (i) When u(0) = u(σ2(T )) = 0, by Lemma 2.11, (3.9) is disconjugate on

[0, σ2(T )]. Since u(0) = u(σ2(T )) = 0, by definition of disconjugacy, we have u(t) ≡ 0,

on [0, σ2(T )].

(ii) When u(0) = u(σ2(T )) > 0, from (3.9), u∆∆ (σ(T )) < 0. This implies that

u∆
(

σ2(T )
)

< u∆(σ (T )). By (3.11), we have u∆
(

σ2(T )
)

< u∆(0). On the other hand,

by periodicity of u, we have

u∆
(

σ2(T )
)

=
u(σ(σ2(T )) − u(σ2(T ))

µ(σ2(T ))
=

u(σ(0)) − u(0)

µ(0)
= u∆(0),

it leads to a contradiction.

(iii) When u(0) = u(σ2(T )) < 0, let v(t) = −u(t), we have

v∆∆ (t) + kvσ (t) = 0, t ∈ I ∩ T ,

v(0) = v(σ2(T )) > 0,

v∆(0) = v∆ (σ(T )) .

By the same argument as in (ii), we get a contradiction.

(II) Case 1: u(0) = u(σ2(T )) > 0.

(i) If there exists some t∗ ∈ T such that u (t∗) > 0 and u (σ(t∗)) < 0. Let v (t) be a

solution of the following problem

v∆∆ (t) + kvσ (t) = 0, t ∈ (σ(t∗), σ(t∗) + σ2(T )] (3.17)

v(σ(t∗)) = 0, v∆(σ(t∗)) = 1. (3.18)

Then (3.17)−(3.18) has a unique solution on [σ(t∗), σ(t∗)+σ2(T )]. By (3.12), (3.13) and

Lemma 2.11, (3.17) is disconjugate, so v(t) > 0 on (σ(t∗), σ(t∗) + σ2(T )]. Since v ∈ C2
rd

on [σ(t∗), σ(t∗) + σ2(T )], we put

L = sup
t∈[σ(t∗),σ(t∗)+σ2(T )]

| v(t) | . (3.19)

By (3.13), we have

v∆(t∗ + σ2(T )) = v∆(σ(t∗)) − k

∫ t∗+σ2(T )

σ(t∗)

vσ∆s

≥ v∆(σ(t∗)) − k∗

∫ t∗+σ2(T )

σ(t∗)

vσ∆s

≥ 1 − k∗Lσ2(T ) ≥ 0. (3.20)



PERIODIC SOLUTIONS FOR DYNAMIC EQUATIONS ON TIME SCALES 181

By Lemma 2.6 and (3.18), we have

∫ t∗+σ2(T )

σ(t∗)

(

u∆∆vσ − v∆∆uσ
)

∆s

=
(

u∆v − v∆u
) (

t∗ + σ2(T )
)

−
(

u∆v − v∆u
)

(σ(t∗))

= u∆ (t∗) v
(

t∗ + σ2(T )
)

− v∆(t∗ + σ2(T ))u(t∗) + v∆(σ(t∗))u(σ(t∗)). (3.21)

On the other hand, by (3.14) and (3.17), we have

∫ t∗+σ2(T )

σ(t∗)

(

u∆∆vσ − v∆∆uσ
)

∆s =

∫ t∗+σ2(T )

σ(t∗)

gσ(s)vσ (s)∆s > 0. (3.22)

Thus by (3.20), (3.21) and (3.22), we get

u∆ (t∗) v
(

t∗ + σ2(T )
)

> v∆(t∗ + σ2(T ))u(t∗) − v∆(σ(t∗))u(σ(t∗)) > 0.

Since v
(

t∗ + σ2(T )
)

> 0, hence u∆ (t∗) > 0. It contradicts to the assumption u (t∗) > 0

and u (σ(t∗)) < 0.

(ii) If there exists some t∗ ∈ T such that u (t∗) = 0. Let v (t) be a solution of the

following problem

v∆∆ (t) + kvσ (t) = 0, t ∈ (t∗, t∗ + σ2(T )] (3.23)

v(t∗) = 0, v∆(t∗) = 1. (3.24)

Then (3.23)−(3.24) has a unique solution on [t∗, t∗ + σ2(T )] and v(t) > 0 on (t∗, t∗ +

σ2(T )]. By Lemma 2.6, we have

∫ t∗+σ2(T )

t∗

(

u∆∆vσ − v∆∆uσ
)

∆s

=
(

u∆v − v∆u
) (

t∗ + σ2(T )
)

−
(

u∆v − v∆u
)

(t∗)

= u∆ (t∗) v
(

t∗ + σ2(T )
)

. (3.25)

On the other hand, by (3.14) and (3.23), we obtain

∫ t∗+σ2(T )

t∗

(

u∆∆vσ − v∆∆uσ
)

∆s =

∫ t∗+σ2(T )

t∗
gσ(s)vσ (s)∆s > 0 (3.26)

Hence from (3.25), (3.26), we have

u∆ (t∗) v
(

t∗ + σ2(T )
)

> 0.

Since v(t∗ + σ2(T )) > 0, hence u∆ (t∗) > 0. So u(σ(t∗)) > 0. Therefore from (i), (ii), we

have u(t) ≥ 0, t ∈ [0, σ2(T )].
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Case 2: u(0) = u(σ2(T )) = 0
(i) If u(t) < 0 for all t ∈ (0, σ2(T )), then u∆(0) < 0 and u∆ (σ(T )) > 0. It contradicts

to (3.16).
(ii) If there exists t∗ ∈ (0, σ2(T )) such that u (t∗) = 0 and u(t) < 0, t ∈ (0, t∗).

Consider

v∆∆ (t) + kvσ (t) = 0, t ∈ (t∗, t∗ + σ2(T )]

v(t∗) = 0, v∆(t∗) = −1.

By the similar arguments of Case 1 in (ii), we get u∆(t∗) > 0. So u(σ (t∗)) > 0. Next we
consider

u∆∆ (t) + kuσ (t) = gσ(t), t ∈ (σ(t∗), σ(t∗) + σ2(T )]

u(σ(t∗)) = u(σ(t∗) + σ2(T ))

u∆(σ(t∗)) = u∆(σ(t∗) + σ(T )).

If there exists t1 ∈ (σ(t∗), t∗ + σ2(T )) such that u(t1) = 0, by Case 1, u∆(t1) > 0.

Now u(σ2(T )) = 0, we have u∆(σ2(T )) > 0. This implies that u(σ(σ2(T ))) > 0. But
u(σ(σ2(T ))) = u(σ(0)) < 0. It leads to a contradiction.

(iii) If there exists some t∗ ∈ (0, σ2(T )) such that u (σ(t∗)) > 0 and u(t) < 0, t ∈
(0, t∗]. Consider

u∆∆ (t) + kuσ (t) = gσ(t), t ∈ (σ(t∗), σ(t∗) + σ2(T )]

u(σ(t∗)) = u(σ(t∗) + σ2(T ))

u∆(σ(t∗)) = u∆(σ(t∗) + σ(T )).

Since u(σ(t∗)) = u(σ(t∗) + σ2(T )) > 0. Then by Case 1, we get u∆(σ2(T )) > 0.This
implies u(σ(σ2(T ))) > 0. But u(σ(σ2(T ))) = u(σ(0)) < 0. It is a contradiction.
By Case 1 and Case 2, we see that u(t) ≥ 0, t ∈ [0, σ2(T )] ∩ T. Hereafter, we shall prove
several existence results under the assumptions that upper solution is greater or less than
lower solution. The method of mixed monotony ([9]) is used.

Theorem 3.3. Assume that there exist F ∈ C
(

I × R
N × R

N , RN
)

, a positive con-
stant ε, and two functions α, β ∈ C1

rd

(

I ∩ T, RN
)

satisfying the following conditions :

(A1) α (t) ≤ β (t) , t ∈ I ∩ T,

(A2) for all u, v ∈ C
(

I ∩ T, RN
)

with α ≤ u ≤ β and α ≤ v ≤ β, we have

α∆∆
i + Fi (t, u, v) ≥ − 1

2ε
[(vσ

i − ασ
i ) + (uσ

i − ασ
i )] ,

α (0) = α
(

σ2(T )
)

, α∆ (0) ≥ α∆(σ(T )).
(3.27)

(A3) for all u, v ∈ C
(

I ∩ T, RN
)

with α ≤ u ≤ β and α ≤ v ≤ β, we have

β∆∆
i + Fi (t, u, v) ≤ − 1

2ε
[(vσ

i − βσ
i ) + (uσ

i − βσ
i )] ,

β (0) = β
(

σ2(T )
)

, β∆ (0) ≤ β∆(σ(T )).
(3.28)
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(A4) Fi (t, u, v) is nondecreasing in u and monotone non-increasing in v.

(A5) Fi (t, u, u) = fi (t, u) , 1 ≤ i ≤ N .

(A6) If there exist two functions ρ, γ ∈ C1
rd

(

I ∩ T, RN
)

such that

ρ∆∆
i + Fi (t, ρ, γ) = − 1

2ε
(γσ

i − ρσ
i ) ,

ρ (0) = ρ
(

σ2(T )
)

, ρ∆ (0) = ρ∆ (σ(T )) ,
(3.29)

and
γ∆∆

i + Fi (t, γ, ρ) = − 1
2ε

(ρσ
i − γσ

i ) ,

γ (0) = γ
(

σ2(T )
)

, γ∆ (0) = γ∆ (σ(T )) ,
(3.30)

then ρ ≡ γ on I ∩ T. Thus the problem (3.1), (3.2) has a unique solution u(t) with

α (t) ≤ u (t) ≤ β (t) on I ∩ T.

Proof. For a pair (η, τ) ∈ [α, β] × [α, β] with η ≤ τ, consider the linear boundary

value problems :

u∆∆
i − 1

ε
uσ

i = −Fi (t, η, τ) − 1
2ε

[ησ
i + τσ

i ]

u (0) = u
(

σ2(T )
)

, u∆ (0) = u∆ (σ(T )) ,
(3.31)

and
w∆∆

i − 1
ε
wσ

i = −Fi (t, τ, η) − 1
2ε

[ησ
i + τσ

i ]

w (0) = w
(

σ2(T )
)

, w∆ (0) = w∆ (σ(T )) .
(3.32)

Let V = u − w, we have

V ∆∆
i − 1

ε
V σ

i = Fi (t, τ, η) − Fi (t, η, τ)

V (0) = V
(

σ2(T )
)

, V ∆ (0) = V ∆ (σ(T )) .
(3.33)

By the mixed monotonicity of F in (A4) , the right hand side of the equation is nonneg-

ative. Hence by Lemma 3.1, we get V ≤ 0 on I ∩ T . Hence we have u ≤ w on I ∩ T.

Also we see that w ≤ β on I ∩ T . In fact, let W = w − β on I ∩ T, we have

W∆∆
i − 1

ε
W σ

i ≥ 0

W (0) = W
(

σ2(T )
)

, W∆ (0) ≥ W∆ (σ(T )) .
(3.34)

By Lemma 3.1 again, we have w ≤ β on I∩T. Similarly we have α ≤ u on I∩T. Thus we

conclude that there exists a unique solution u of (3.31) and unique solution w of (3.32)

such that α ≤ u ≤ w ≤ β on I ∩ T. We then define a map Ψ from C
(

I ∩ T, R2N
)

into

itself by Ψ (η, τ) = (u, w) . Note that Ψ is continuous and compact. If we start from
(

α0, β0
)

= (α, β) , let
(

αn+1, βn+1
)

= Ψ (αn, βn) , for n ≥ 0. We generate two sequences

of functions, {αn} and {βn} such that

α ≤ α1 ≤ · · · ≤ αn ≤ · · · ≤ βn ≤ · · · ≤ β1 ≤ β,
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on I ∩ T. Since {αn} and {βn} are uniformly bounded, we then have two convergent
subsequences {αnk} and {βnk} with αnk → α∗ and βnk → β∗ uniformly on I ∩ T, as
nk → ∞. By monotonicity of {βn} and {αn} , we see that βn → β∗ and αn → α∗ as
n → ∞. Thus we obtain Ψ (α∗, β∗) = (α∗, β∗) . By (A6) , β∗ ≡ α∗ on I ∩ T. By (A5), we
see that α∗ is a solution of (3.1), (3.2).

Theorem 3.4. Assume that there exists F ∈ C
(

I × R
N × R

N , RN
)

, and two func-
tions α, β ∈ C1

rd

(

I, RN
)

satisfying the following conditions :

(B1) β (t) ≤ α (t) on I ∩ T,

(B2) for all u, v ∈ C
(

I ∩ T, RN
)

with β ≤ u ≤ α and β ≤ v ≤ α, we have

α∆∆
i + Fi (t, u, v) ≥ k∗

2 [(vσ
i − ασ

i ) + (uσ
i − ασ

i )]

α (0) = α
(

σ2(T )
)

, α∆ (0) ≥ α∆ (σ(T )) .
(3.35)

where k∗ is given in Lemma 3.2.

(B3) for all u, v ∈ C
(

I ∩ T, RN
)

with β ≤ u ≤ α and β ≤ v ≤ α, we have

β∆∆
i + Fi (t, u, v) ≤ k∗

2 [(vσ
i − βσ

i ) + (uσ
i − βσ

i )]

β (0) = β
(

σ2(T )
)

, β∆ (0) ≤ β∆ (σ(T )) .
(3.36)

(B4) Fi (t, u, v) is non-increasing in u and non-decreasing in v.

(B5) Fi (t, u, u) = fi (t, u) , 1 ≤ i ≤ N .

(B6) If there exist two functions ρ, γ ∈ C1
rd

(

I ∩ T, RN
)

such that

ρ∆∆
i + Fi (t, ρ, γ) = k∗

2 (γσ
i − ρσ

i )

ρ (0) = ρ
(

σ2(T )
)

, ρ∆ (0) = ρ∆ (σ(T )) ,
(3.37)

and
γ∆∆

i + Fi (t, γ, ρ) = k∗

2 (ρσ
i − γσ

i ) ,

γ (0) = γ
(

σ2(T )
)

, γ∆ (0) = γ∆ (σ(T )) ,
(3.38)

then ρ ≡ γ on I ∩ T.

Then the problem (3.1), (3.2) has a unique solution u(t) with β (t) ≤ u (t) ≤ α (t)
on I ∩ T.

Proof. For a pair (η, τ) ∈ [β, α] × [β, α] with η ≤ τ, consider the linear boundary
value problems :

u∆∆
i + k∗uσ

i = −Fi (t, η, τ) + k∗

2 [ησ
i + τσ

i ]

u (0) = u
(

σ2(T )
)

, u∆ (0) = u∆ (σ(T )) ,
(3.39)

and
w∆∆

i + k∗wσ
i = −Fi (t, τ, η) + k∗

2 [ησ
i + τσ

i ]

w (0) = w
(

σ2(T )
)

, w∆ (0) = w∆ (σ(T )) .
(3.40)
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Let V = w − u, we have

V ∆∆
i + k∗V σ

i = Fi (t, η, τ) − Fi (t, τ, η)

V (0) = V
(

σ2(T )
)

, V ∆ (0) = V ∆ (σ(T )) .
(3.41)

By the mixed monotonicity of F in (B4) , the right hand side of the equation is nonneg-
ative. Hence by Lemma 3.2, we get V ≥ 0 on I ∩ T . Hence we have w ≥ u on I ∩ T.
Also we see that u ≥ β on I ∩ T . In fact, let W = u − β on I ∩ T, we have

W∆∆
i + k∗W σ

i ≥ 0

W (0) = W
(

σ2(T )
)

, W∆ (0) ≥ W∆ (σ(T )) .
(3.42)

By Lemma 3.2 again, we have u ≥ β on I∩T. Similarly we have α ≥ w on I∩T. Thus we
conclude that there exists a unique solution u of (3.39) and unique solution w of (3.40)
such that α ≥ w ≥ u ≥ β on I ∩ T. We then define a map Ψ from C

(

I ∩ T, R2N
)

into
itself by Ψ (η, τ) = (u, w) . Note that Ψ is continuous and compact. If we start from
(

β0, α0
)

= (β, α) , let
(

βn+1, αn+1
)

= Ψ (βn, αn) , for n ≥ 0. We generate two sequences
of functions, {βn} and {αn} such that

β ≤ β1 ≤ · · · ≤ βn ≤ · · · ≤ αn ≤ · · · ≤ α1 ≤ α

on I ∩ T. Since {βn} and {αn} are uniformly bounded, we then have two convergent
subsequences {βnk} and {αnk} with βnk → β∗ and αnk → α∗ uniformly on I ∩ T, as
nk → ∞. By monotonicity of {βn} and {αn} , we see that βn → β∗ and αn → α∗ as
n → ∞. Thus we obtain Ψ (β∗, α

∗) = (β∗, α
∗) . By (B6) , β∗ ≡ α∗ on I ∩ T. By (B5), we

see that α∗ is a solution of (3.1), (3.2). We shall give some sufficient conditions for the
existence of F in Theorem 3.3 and Theorem 3.4 under some conditions. Consequently,
we obtain the following results:

Theorem 3.5. Assume that there exist a positive constant ε and two functions
α, β ∈ C1

rd

(

I ∩ T, RN
)

satisfying the following conditions :

(C1) α (t) ≤ β (t) on I ∩ T,

(C2) for all u ∈ C
(

I ∩ T, RN
)

with α ≤ u ≤ β, we have

α∆∆
i + fi (t, u) ≥ − 1

2ε
(uσ

i − ασ
i )

α (0) = α
(

σ2(T )
)

, α∆ (0) ≥ α∆ (σ(T )) .
(3.43)

(C3) for all u ∈ C
(

I ∩ T, RN
)

with α ≤ u ≤ β , we have

β∆∆
i + fi (t, u) ≤ − 1

2ε
(uσ

i − βσ
i )

β (0) = β
(

σ2(T )
)

, β∆ (0) ≤ β∆ (σ(T )) .
(3.44)

(C4) |fi(t, u) − fi(t, w)| ≤ 1
ε
(u − w), for u ≥ w.

Then the boundary value problem (3.1), (3.2) has a unique solution u(t) with α (t) ≤
u (t) ≤ β (t) on I ∩ T.
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Proof. Define

Fi (t, u, v) =
1

2

[

fi (t, u) + fi (t, v) +
1

2ε
(uσ

i − vσ
i )

]

.

It is trivial that (A5) holds. By (C2), (A2) is satisfied. And from (C3), (A3) is satisfied.
(A4) is also true by (C4). Finally it remains to claim that (A6) is satisfied. If the
assumption in (A6) holds. Let V = ρ − γ, then

V ∆∆
i − 1

2ε
V σ

i = 0

V (0) = V
(

σ2(T )
)

, V ∆ (0) = V ∆ (σ(T )) .

By Lemma 3.1, we have only the trivial solution, V ≡ 0 on I ∩ T. That is ρ = γ

on I ∩ T. By Theorem 3.3, the problem (3.1), (3.2) has a unique solution u(t) with
α (t) ≤ u (t) ≤ β (t) on I ∩ T.

Theorem 3.6. Assume that there exist two functions α, β ∈ C1
rd

(

I ∩ T, RN
)

satis-
fying the following conditions:

(D1) β (t) ≤ α (t) on I ∩ T,

(D2) for all u ∈ C
(

I ∩ T, RN
)

with β ≤ u ≤ α, we have

α∆∆
i + fi (t, u) ≥ k∗

2 (uσ
i − ασ

i )

α (0) = α
(

σ2(T )
)

, α∆ (0) ≥ α∆ (σ(T )) .
(3.45)

where k∗ is given in Lemma 3.2.

(D3) for all u ∈ C
(

I ∩ T, RN
)

with β ≤ u ≤ α , we have

β∆∆
i + fi (t, u) ≤ k

∗

2 (uσ
i − βσ

i )

β (0) = β
(

σ2(T )
)

, β∆ (0) ≤ β∆ (σ(T )) .
(3.46)

(D4) |fi(t, u) − fi(t, w)| ≤ k∗

2 (w − u), for u ≥ w.

Then the boundary value problem (3.1), (3.2) has a unique solution u(t) with β (t) ≤
u (t) ≤ α (t) on I ∩ T.

Proof. Define

Fi (t, u, v) =
1

2

[

fi (t, u) + fi (t, v) −
k∗

2
(uσ

i − vσ
i )

]

.

Note that (B2) and (B3) are satisfied by (D2) and (D3) respectively. (B4) is satisfied
by (D4), and (B5) is trival. (B6) is claimed as follows. If there exist two functions
ρ, γ ∈ C1

rd

(

I ∩ T, RN
)

such that (3.37) and (3.38) hold, let V = ρ − γ, then

V ∆∆
i + k∗

2 V σ
i = 0

V (0) = V
(

σ2(T )
)

, V ∆ (0) = V ∆ (σ(T )) .
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By Lemma 3.2, we have only the trivial solution, V ≡ 0 on I∩T. That is ρ = γ on I∩T By

Theorem 3.4, the problem (3.1), (3.2) has a unique solution u(t) with β (t) ≤ u (t) ≤ α (t)
on I ∩ T. The variants of Theorem 3.5 and Theorem 3.6 can be obtained analogously.

Theorem 3.7. Assume that there exist F ∈ C
(

I × R
N × R

N , RN
)

, ǫ > 0 and two
functions α, β ∈ C1

rd

(

I, RN
)

satisfying the following conditions :

(E1) α (t) ≤ β (t) on I ∩ T,

(E2)
α∆∆

i + Fi (t, α, β) ≥ 0

α (0) = α
(

σ2(T )
)

, α∆ (0) ≥ α∆ (σ(T )) .

(E3)
β∆∆

i + Fi (t, β, α) ≤ 0

β (0) = β
(

σ2(T )
)

, β∆ (0) ≤ β∆ (σ(T )) .

(E4) Fi (t, z, v) − Fi (t, u, v) ≥ 1
ε

(zσ
i − uσ

i ) for z ≥ u, and Fi (t, u, v) ≤ Fi (t, u, w) for

v ≥ w.

(E5) Fi (t, u, u) = fi (t, u) , 1 ≤ i ≤ N.

(E6) If there exist two functions ρ, γ ∈ C1
rd

(

I ∩ T, RN
)

such that

ρ∆∆
i + Fi (t, ρ, γ) = − 1

ε
(γσ

i − ρσ
i ) ,

ρ (0) = ρ
(

σ2(T )
)

, ρ∆ (0) = ρ∆σ(T )).

and
γ∆∆

i + Fi (t, γ, ρ) = − 1
ε

(ρσ
i − γσ

i ) ,

γ (0) = γ
(

σ2(T )
)

, γ∆ (0) = γ∆ (σ(T )) ,

then ρ ≡ γ on I ∩ T.

Then the problem (3.1), (3.2) has a unique solution u(t) with α (t) ≤ u (t) ≤ β (t)
on I ∩ T.

Proof. For a pair (η, τ) ∈ [α, β] × [α, β] with η ≤ τ, consider the linear boundary

value problems :
u∆∆

i − 1
ε
uσ

i = −Fi (t, η, τ) − 1
ε
τσ
i

u (0) = u
(

σ2(T )
)

, u∆ (0) = u∆ (σ(T )) ,
(3.47)

and
w∆∆

i − 1
ε
wσ

i = −Fi (t, τ, η) − 1
ε
ησ

i

w (0) = w
(

σ2(T )
)

, w∆ (0) = w∆ (σ(T )) .
(3.48)

Let V = u − w, by (E4) and Lemma 3.1, we get V ≤ 0 on I ∩ T. That is u ≤ w on

I ∩ T. Similarly, by (E4) and Lemma 3.1 again, we also see that w ≤ β and α ≤ u on
I ∩ T. Thus there exists a unique solution u of (3.47) and unique solution w of (3.48)

such that α ≤ u ≤ w ≤ β on I ∩ T. Define a map Ψ from C
(

I ∩ T, R2N
)

into itself by
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Ψ (η, τ) = (u, w) . Note that Ψ is continuous and compact on C
(

I ∩ T, R2N
)

. If we start
from

(

α0, β0
)

= (α, β) , let
(

αn+1, βn+1
)

= Ψ (αn, βn) , n ≥ 0. By the similar arguments
as in the proof of Theorem 3.3, we obtain a non-decreasing sequence {αn} and a non-
increasing sequence {βn} such that βn → β∗ and αn → α∗ as n → ∞ for some β∗ and
α∗, and we also have (α∗, β∗) = Ψ (α∗, β∗) . By (E6) , β∗ ≡ α∗ on I ∩ T. Thus by (E5),
we get the solution of (3.1), (3.2).

Theorem 3.8. Assume that there exist F ∈ C
(

I × R
N × R

N , RN
)

, and two func-
tions α, β ∈ C1

rd

(

I, RN
)

satisfying the following conditions :

(F1) β (t) ≤ α (t) on I ∩ T,

(F2)
α∆∆

i + Fi (t, α, β) ≥ 0

α (0) = α
(

σ2(T )
)

, α∆ (0) ≥ α∆ (σ(T )) .

(F3)
β∆∆

i + Fi (t, β, α) ≤ 0

β (0) = β
(

σ2(T )
)

, β∆ (0) ≤ β∆ (σ(T )) .

(F4) Fi (t, z, v) − Fi (t, u, v) ≤ k∗ (zσ
i − uσ

i ) for z ≥ u, where k∗ is given in Lemma 3.2
and Fi (t, u, v) ≥ Fi (t, u, w) for v ≥ w.

(F5) Fi (t, u, u) = fi (t, u) , 1 ≤ i ≤ N.

(F6) If there exist two functions ρ, γ ∈ C1
rd

(

I ∩ T, RN
)

such that

ρ∆∆
i + Fi (t, ρ, γ) = 0

ρ (0) = ρ
(

σ2(T )
)

, ρ∆ (0) = ρ∆ (σ(T )) ,

and
γ∆∆

i + Fi (t, γ, ρ) = 0

γ (0) = γ
(

σ2(T )
)

, γ∆ (0) = γ∆ (σ(T )) .

then ρ ≡ γ on I ∩ T.

Then the problem (3.1), (3.2) has a unique solution u(t) with β (t) ≤ u (t) ≤ α (t)
on I ∩ T.

Proof. For a pair (η, τ) ∈ [β, α] × [β, α] with η ≤ τ, consider the linear boundary
value problems :

u∆∆
i + k∗uσ

i = −Fi (t, η, τ) + k∗ησ
i

u (0) = u
(

σ2(T )
)

, u∆ (0) = u∆ (σ(T )) ,
(3.49)

and
w∆∆

i + k∗wσ
i = −Fi (t, τ, η) + k∗τσ

i

w (0) = w
(

σ2(T )
)

, w∆ (0) = w∆ (σ(T )) .
(3.50)

Now for V = w − u, we have

V ∆∆
i + k∗V σ

i = Fi (t, η, τ) − Fi (t, τ, η) + k∗ (τσ
i − ησ

i )

V (0) = V
(

σ2(T )
)

, V ∆ (0) = V ∆ (σ(T )) .
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By (F4) , the right hand side of the equation is nonnegative. By lemma 3.2, we get
V ≥ 0 on I ∩ T. That is w ≥ u on I ∩ T. Also we see that u ≥ β on I ∩ T . In fact, let
W = u − β on I ∩ T, we have

W∆∆
i + k∗W σ

i ≥ Fi (t, β, α) − Fi (t, η, τ) + k∗ (ησ
i − βσ

i ) .

By (F4), we then have

W∆∆
i + k∗W σ

i ≥ 0

W (0) = W
(

σ2(T )
)

, W∆ (0) ≥ W∆ (σ(T )) .

By lemma 3.2 again, we have u ≥ β on I ∩ T. Similarly we have α ≥ w on I ∩ T.

Thus there exists a unique solution u of (3.49) and unique solution w of (3.50) such
that α ≥ w ≥ u ≥ β on I ∩ T. Define a map Ψ from C

(

I ∩ T, R2N
)

into itself by
Ψ (η, τ) = (u, w) . Note that Ψ is continuous and compact on C

(

I ∩ T, R2N
)

. If we start
from

(

β0, α0
)

= (β, α) , let
(

βn+1, αn+1
)

= Ψ (βn, αn) , n ≥ 0. By the similar arguments
as in the proof of Theorem 3.3, a non-increasing sequence {βn} and a non-decreasing
sequence {αn} are obtained such that βn → β∗ and αn → α∗ as n → ∞ for some β∗ and
α∗, and we also have (β∗, α

∗) = Ψ (β∗, α
∗) . By (F6) , β∗ ≡ α∗ on I ∩ T. Thus by (F5),

we get the solution of (3.1), (3.2).

Theorem 3.9. Assume that there exist two functions α, β ∈ C1
rd

(

I ∩ T, RN
)

satis-
fying the following conditions :

(G1) α (t) ≤ β (t) on I ∩ T,

(G2)
α∆∆

i + fi (t, α) ≥ 0

α (0) = α
(

σ2(T )
)

, α∆ (0) ≥ α∆ (σ(T )) .

(G3)
β∆∆

i + fi (t, β) ≤ 0

β (0) = β
(

σ2(T )
)

, β∆ (0) ≤ β∆ (σ(T )) .

(G4) fi (t, w) − fi (t, u) ≥ 1
ε

(wσ
i − uσ

i ) for w ≥ u and for some ε > 0.

Then the boundary value problem (3.1), (3.2) has a unique solution u(t) with α (t) ≤
u (t) ≤ β (t) on I ∩ T.

Proof. Let

Fi (t, u, v) =
1

2

[

fi (t, u) + fi (t, v) +
1

ε
(uσ

i − vσ
i )

]

.

Then by (G2) and (G4), we have (E2). And by (G3) and (G4), (E4) is satisfied. (E5)
is trivial by the definition. (E6) is claimed as follows. Suppose that there exist two
functions ρ and γ such that

ρ∆∆
i + 1

2

[

fi (t, ρ) + fi (t, γ) + 1
ε

(ρσ
i − γσ

i )
]

= − 1
ε

(γσ
i − ρσ

i ) ,

ρ (0) = ρ
(

σ2(T )
)

, ρ∆ (0) = ρ∆ (σ(T )) ,
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and
γ∆∆

i + 1
2

[

fi (t, γ) + fi (t, ρ) + 1
ε
(γσ

i − ρσ
i )

]

= − 1
ε

(ρσ
i − γσ

i ) ,

γ (0) = γ
(

σ2(T )
)

, γ∆ (0) = γ∆ (σ(T )) .

Let V = ρ − γ, we get

V ∆∆
i −

1

ε
V σ

i = 0, V (0) = V
(

σ2(T )
)

, V ∆ (0) = V ∆ (σ(T )) .

By Lemma 3.1, V = 0 on I ∩ T, that is ρ ≡ γ on I ∩ T. By Theorem 3.7, problem (3.1),
(3.2) has a unique solution u on I ∩ T.

Theorem 3.10. Assume that there exist two functions α, β ∈ C1
rd

(

I ∩ T, RN
)

satis-
fying the following conditions :

(H1) β (t) ≤ α (t) on I ∩ T,

(H2)
α∆∆

i + fi (t, α) ≥ 0

α (0) = α
(

σ2(T )
)

, α∆ (0) ≥ α∆ (σ(T )) .

(H3)
β∆∆

i + fi (t, β) ≤ 0

β (0) = β
(

σ2(T )
)

, β∆ (0) ≤ β∆ (σ(T )) .

(H4) fi (t, w) − fi (t, u) ≤ k∗ (wσ
i − uσ

i ) for w ≥ u and k∗is given in Lemma 3.2.

Then the boundary value problem (3.1), (3.2) has a unique solution u(t) with β (t) ≤
u (t) ≤ α (t) on I ∩ T.

Proof. Let

Fi (t, u, v) =
1

2
[fi (t, u) + fi (t, v) + k∗ (uσ

i − vσ
i )] .

Then by (H2) and (H4), we have

α∆∆
i + Fi (t, α, β) ≥ α∆∆

i + fi (t, α) ≥ 0,

and similarly, by (H3) and (H4), (F3) is satisfied. By (H4), (F4) is also true and (F5)
is trivial by the definition of F . (F6) is shown as follows. Suppose that there exist two

functions ρ and γ such that

ρ∆∆
i + 1

2 [fi (t, ρ) + fi (t, γ) + k∗ (ρσ
i − γσ

i )] = 0

ρ (0) = ρ
(

σ2(T )
)

, ρ∆ (0) = ρ∆ (σ(T )) ,

and
γ∆∆

i + 1
2 [fi (t, γ) + fi (t, ρ) + k∗ (γσ

i − ρσ
i )] = 0

γ (0) = γ
(

σ2(T )
)

, γ∆ (0) = γ∆ (σ(T )) .
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Let V = ρ − γ, we get

V ∆∆
i + k∗V σ

i = 0, V (0) = V
(

σ2(T )
)

, V ∆ (0) = V ∆ (σ(T )) .

By Lemma 3.2, V = 0 on I ∩ T, that is ρ ≡ γ on I ∩ T. By Theorem 3.8, problem (3.1),

(3.2) has a unique solution u on I ∩ T.
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