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EFFICIENCY OF A SEQUENTIAL DENSITY ESTIMATOR 
UNDER AUTOREGRESSIVE DEPENDENCE MODEL 

A.K. HOSNI AND M.M. EI-FAHHAM 

Abstract. Using kernel estimates of Yamato type the effect of dependent ob 
servations is studied. The mean integreated square error of the Fourier integral 
estimator is considered. 

The construction of a family of estimates of a density function f(x) has been studied 
by several authors. Rosenblatt (1965) introduced the kernel estimator of the density f(x), 
that is 

~ 1 n 
f () L x-X· 
n X = - I{( J) nh h , 

n j=l n 
(1) 

and Parzen (1962) developed many of the important properties of these estimators. Here, 
of course, X1, X2, ... , Xn are independent identically distributed (i.i.d.) random vari 
ables choosen according to some density f. Recently, Prazed and Singh (1980) gave a 
good review of kernel estimates of a density function. 

A closed related estimator 

(2) 

which has a very useful property that it can be calculated recursively, i.e. 

n - 1 1 , x - Xn 
fn(x) = --fn-1(x) + -h li ( h ), n n n n 

(3) 

was introduced by Wolverton and Wagner (1969), and apparently independently by Yam 
ato (1971) Deheuvels (1974), Wegman and Davies, (1979), and Menon, Prazed and Singh 
(1983) extended techniques developed by Yamato. 

Jeffrey Hart (1984) consi.dered estimator of Parzen (1) and the problem of estimating 
the probability density function of a strictly stationary process is considered. 
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The aim of this paper is to study the effect of dependent observations on the recur 
sive estimators (2) of a probability density. The mean integreated square error of the 
Fourier integral estimator (FIE) is derived on the assumption that the observed data are 
generated by a first-order autorgressive process. 

Let Xj,j:::: l,···,n, be a sample from a process {Xj :I j j:::: 0,1,2,···}, which is 
assumed to be strictly stationary of order 2. Assume that each Xj(I j I:::: 0, 1, · · ·) has 
the probability density f(x ). In order to estimate the unknown density function f(x) 
which in L2 consider the following FIE recursive estimator 

fn(x) :::: 
l n sin( Xj - X) 
-~ hj 
mr ~ (X· , , 

J=l J 
(4) 

where { hj} is a sequence of numbers such that 

hn > 0, n :::: 1, 2, · · · , lim hn :::: 0 
n-oo 

and lim nhn = oo. 
n-+oo 

Suppose that the data are serially related as the first-order autoregressive model 

j:::::2,3, ... ,n, 

where Ip I< 1, Xi, Z2, ···,Zn are mutually independent. 
Denote by il>1n(t) as the characteristic function of fn(x). Hence we have 

(5) 

cf> In (t) 

X· X 

1 
n 

00 
sin( J - ) - ~1 hj itx ~n L- e dx 

j=l -oo (Xj-X) 
n : 

.!_ L eitXi </>(thi ), 
n . I 

. i= 
(6) 

where 

We can easy see that 

Then we get 
</J(thj) = 1 if I t I< hl: = Aj and equal to zero otherwise. 

J 

.!. teitXi if O = Ao <It I< A1 
n. 

J=l 
n 

.!_ L eitXi if Ak-l <It I< Ai; k:::: 2, 3, · · ·, n n. 
J=k 

(7) 

0 if I t I> An· 
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Let the characteristic function of each Xj be denoted log<I>,(t). Hence using Parse 
val's theorem the mean integrated square error (MISE) of fn(x) is given by 

M ISE(fn(x)) 

Since EI w, ... - w, 12 = <12'111 ... + b2{w, ... }, 
where b{w,n} = I Ew,n - w, I. 
Then the MISE given by 

Using (7) we can get 

(8) 

First we calculate the first term of (8). Since for k = 1, 2, · · ·, n 

ln. ln. 2 ln. 2 
<12 [;; L eitXi] = E [;; L e'tX1] _ [E(;; L e'tX1)] 

j=k j:k j=k 

= _!_ ~ ~ Eit(X1-Xt) - (n- k + 1)2 I W (t) 12 
n2 ~~ n 1 
j=kl=k . 

n - k 1 2 n-l n·· . · 
= . + + n2 Real [L L Eeit(X1-Xt)] 

j=k l=j 

-(n-k+1)2 lw,(t) 12. 
n 
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Since the process {Xi} is strictly stationary, we have 

2 [ 1 ~ itX ·] u - L-e J 

n. J=k 

(9) 

Since the process {Xi} satisfy condition ( 5), hence 

k-1 j 

Xj+l - xk = (rl - /-1)X1 + I:(rJ-l -pk-:-l-l)Zt+l + I:rJ-lzl+l· 
l=l l=k 

From the mutual independence of X1, Z2, ... , Zn, we have 

where Wz(t) is the characteristic function of each of the random variables Zi. Clearly 
we have 

Wz(t) = w,(t)/w1(pt), and, therefor 

= w (t( ,J - k-1 ))rrk-1 w f ( t(r)_-l - Pk-l-1)) rri w, ( tpi-l) 
, JJ P .e=1 w,(t(p3-l+1 _ pk-l)) t=k 

'111(t(pi-k+1 - 1)) 
= w,(t) '111(tpi-k+1) 

From (9) and the last expression, we have 

2 [ 1 ~ itX ·] n - k + 1 n--' k + 1 u - L- e , = - ( )2 I w (t) 12 
n i=k n2 n f 

+ {Real [I:(n - j)w 1 (t) w 1(t(pi-.k+i - l))] 
n i=k W f (tp.1-k+l) . 

Then we have 
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(10) 

The second term ·of (8) followes from (7), and, we have 
' . 

From (8), (10) and (11) we get 

J(p) 

Hence we have the following theorem: 

Theorem 1. Let f E L2. Then under model (5) we have 

where 11911 denotes the L2 norm (f~
00 

I g(x) 12 dx)112. 

For the independent observations p = 0, we get the following theorem: 

Theorem 2. Let f E L2. Then under independent observations 
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Remark: 
Results of Jeffrey Hart (1984) (Theorem 3.1) represent a special case of our results 

(Theorem 1) making in mind )..0 = 0 and Aj =).. for all j = 1, 2, ... , n. 
We shall use the ratio R(p) = J(O)/ J(p) to asses the behavior of fn under the model 

(5) and to quantify the loss in efficiency off n as p moves away from zero. Also we shall 
fix the smoothing parameter ).. to obtain a number for R(p). The value of).. that is used 
to obtain the results is the value that minimizes, for a given sample size, M !SE in the 
case of independence. Three important densities (Normal, Cauchy and exponential) are 
used as examples to know what effect do different values of p on the behaviour off n. 

A popular choice for the sequence Aj is >.j'Y and O < , < 1. Here and latter for the 
numerical results we shall take 1 = l/3. 

Example 1. 
For normal density with mean zero and variance one 

J(p) 
1 ).. n 2 n >..jl/3 

= 2 '- + -2 Li113 - - ~ l e-t
2 
dt v 7r 1rn . 1rn L- 

J =l j=l 0 

2 n-1 j >..kl/3 
+ 1rn2 :I:cn - j) I: r e-<1-pi-k+1)t2 dt 

i=l k=l 1>..(k-1)1/3 ' 

and 

J(p= 0) 
1 ).. n 2 n >..jl/3 - + _ ~ jl/3 ~ . / t2 2-fi 1rn 2 {;;-: - 1rn 2 {;;:. J Jo e- dt. 

Example 2. 
For Cauchy density with parameters (0,1) 

J(p) 
).. n n = - ~ ·1/3 1 1rn2 L.-J + - ~ e-2>..j1/3 
i=I 1rn ~ J=l 

2 - n-1 . + 1rn2 ~(n ~ j) t e>-c1.i.(k-1)1/3 e->.c1.i.k1/3 

3=1 k=1 Ci,k 

where 

Cj,k = 2(1- I ;-k+l I), 
and 
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J(p = 0) 
A n n !. + - '°' jl/3 - _l_ '°' j(l - e-2>..j1/3) 

7r 1rn2 L- 1rn2 L- 
i=l i=l 

Example 3. 
For exponential density with parameter one 

1 A n 2 n 
J(p) = _ + -I:jl/3 _ -I:tan-1(.~j1/3) 

2 1rn2 1rn 
j=l j::1 

n-1 j 
+ _3_ '°'(n _ j) '°'(2 -rJ-k+1)-1[(l -rJ-k+1)-1{tan-1[ 

1rn2 L- L- 
i=l k=l 

(1 - rJ-k+1)Ak113] - tan-1[(1 - rJ-k+1)A(k - 1)113]} 
+ (1- rJ-k+1){tan-1(Ak113)- tan-1(A(k - 1)113]}], 

and 

J(p = 0) = ! + ~ ~ jl/3 - _2_ ~ j tan-l(Ajl/3). 
2 1rn2 L- 1rn2 L- 

i=l j=l 

It is not so easy to get the smoothing parameter A, that minimizes J(p = 0), for the above 
examples, hence we calculated J(p = 0) numerically and table 1 gives the smoothing 
parameter A under independence for four different sample sizes. 

n 
25 50 100 1000 

Density 

Normal .7579 .6771 .5988 .3882 
Cauchy .6787 .6557 .6163 .4465 

Exponential 2.1309 2.4091 2.7143 3.9983 

Table 1: MIS E Optimal A under independence. 
Table 2 and 3 contain values of R(p), where A is MIS E optimal under independence, 

at different value of p. 
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Cauchy · Exponential 
p 

n=25 n=50 n=104 n=lOOO n=25 n=50 n=lOO n=lOOO . 

-0.9 0.6588 0.7164 0.7969 0.9839 0.5583 0.5579 0.5922 0.9893 
-0.8 0.7860 0.8438 0.8993 0.9932 0.7880 0.8041 0.8339 0.9971 
-0.7 0.8593 0.9040 0.9411 0.9964 0.9087 0.9186 0.9336 0.9990 
-0.6 0.9055 0.9383 0.9632 0.9977 0.9694 0.9721 0.9772 0.9997 
-0.5 0.9365 0.9597 0.9766 0.9986 0.9934 0.9974 0.9972 0.9999 
-0.4 0.9582 0.9441 0.9852 0.9991 1.0130 1.0089 1.0081 1.00007 
-0.3 0.9738 0.9841 0.9910. 0.9995 1.0177 1.0129 1.0093 1.0001 
-0.2 0.9853 0.9912 0.9951 0.9997 1.0166 1.0124 1.0090 1.0001 . 
-0.1 0.9938 0.9963 0.9980 0.9998 1.0107 1.0081 1.0059 1.00007 
-0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0.1 0.9938 0.9963 0.9980 0.9999 0.9835 0.9873 . 0.9905 0.9998 
0.2 0.9853 0.9912 0.9951 0.9997 0.9595 0.9683 .: . 0.9761 0.9997 
0.3 0.9738 0.9841 0.9910 0.99-95 0.9256 0.9408 ', 0.9548 0.9994 
0.4 0.9583 0.9741 0.9852 0.9991 0.8786 0.9011 0.9232 0.9989 

0.9766 0.9986 
.. 0.5 0.9365 0.9597 0.8142 0.8445 0.8763 0.9981 

0.6 0.9055 0.9382 0.9632 0.9977 0.7274 0.7637 0.8061 0.9967 
0.7 0.8593 0.9040 0.9411 0.9962 0.6133 0.6502 ·0.7007 0.9940 
0.8 0.7860 0.8438 0.8993 0.9932 0.4688 0.4948 0.5437 0.9877 
0.9 0.6588 0.7164 . 0.7969 0.9839 0.2945 0.2957 0.3192 0.9662 

Table 2. Values of R(p) for 
Cauchy density. 

Table 3. Values of R(p) for 
Exponential density 

From the above results we can see that: 
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1) i) For p > 0, for each density and for all sample size n, fn(x) is bss efficient than it is 
in the case of independence. 

ii) The loss of efficiency increases as p - l. 
2) i) For Cauchy density 

R(p) diminishes monotonically asp__. -l and R(p) = R(-p). 
ii) For exponential density 
f n(x) is actually more efficient than it is in the i.i.d.case for values -0.1 < p < -0.4. 
Comparing our results with that of HART, we note that for each density, some 

sample, size and p, R(p) is greater than it is in HART's result which indicates that MISE 
using recurrsive estimators is more accurave. 
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