THE SEQUENCE SPACE C(p) AND RELATED MATRIX TRANSFORMATIONS:

S. PEHLIVAN AND Ö. ÇAKAR

Abstract. In this paper we define the sequence space $\mathcal{C}(p)$ defined in an incomplete seminormed space (X, g), namely

$$\mathcal{C}(p) = \{(x_k) \subset X : \sup_{r \ge 1} g(x_k - x_{k+r})^{p_k} \to 0, \ k \to \infty\}$$

where $p = (p_k)$ is a sequence of positive numbers. Then we investigated some of its fundamental properties and some of related matrix transformations.

1. Introduction and definitions

Let $A = (a_{nk})$ be an infinite matrix of complex numbers $a_{nk}(n, k = 1, 2, \cdots)$ and let e, f be two non-empty subset of the space s of all sequences. For every $x = (x_k) \in e$ and every integer n, we write $A_n(x) = \sum_k a_{nk} x_k$. The sequence $Ax = (A_n(x))$, if it exists, is called the *transformation of x by the matrix A*. The sum without limits is always taken from k = 1 to $k = \infty$. We say that $A \in (e, f)$ if and only if $Ax \in f$ whenever $x \in e$.

If $p = (p_k)$ is a sequence of strictly positive numbers then we define (see Maddox [4]),

$$c(p) = \{x : | x_k - \ell |^{p_k} \to 0 \text{ for some } \ell\},\$$

$$c_0(p) = \{x : | x_k |^{p_k} \to 0\}.$$

Let ℓ_{∞} , c and c_0 be the spaces of bounded, convergent and null sequences, respectively. When all the terms of (p_k) are constant and all equal to p > 0 we have c(p) = c and $c_0(p) = c_0$.

Now let e(p) be a nonempty subset of s. Then we shall denote the generalized Köthe-Toeplitz dual of e(p) by e(p; 1), i.e.

 $e(p;1) = \{a: \Sigma_k a_k x_k \text{ converges for every } x \in e(p)\}.$

Received May 30, 1989.

Key Words and phrases : Sequence space, Matrix transformations, Incomplete space, Köthe-Toeplitz dual

 ϕ will denote the space of finitely non-zero sequences of complex numbers and R will denote the set of row-finite matrices.

The following inequality will be used frequently throughout the paper:

$$|a_{k} + b_{k}|^{p_{k}} \leq K(|a_{k}|^{p_{k}} + |b_{k}|^{p_{k}})$$
(1)

where $a_k, b_k \in \mathbb{C}, \ 0 < p_k \le \sup p_k = H, \ K = \max(1, 2^{H-1}), \ [3].$

2. The space $\mathcal{C}(p)$

Let $p = (p_k)$ be a sequence of strictly positive numbers and X = (X, g) an incomplete seminormed complex linear space with the seminorm g and zero Θ . Then we define

$$C(p) = \{(x_k) \subset X : \sup_{r \ge 1} g(x_k - x_{k+r})^{p_k} \to 0, \ k \to \infty\}$$

$$C(p) = \{(x_k) \subset X : \text{ there exists } \ell \in X \text{ such that } g(x_k - \ell)^{p_k} \to 0 \ (k \to \infty)\}$$

We will denote the sequence spaces by C, C and C_0 namely the space of Cauchy sequences, convergent sequences and null sequences respectively defined in X = (X, g).

We now give some properties of the above classes of sequences.

Lemma 1. If $p \in \ell_{\infty}$ then C(p) is a linear space.

Proof. Suppose $x, y \in C(p)$ and $\lambda, \mu \in \mathbb{C}$. Whenever $H = \sup p_k < \infty$, we have $|\lambda|^{p_k} \leq \max(1, |\lambda|^H)$. Then from (1) and $|\mu|^{p_k} \leq \max(1, |\mu|^H)$ it follows that

$$\sup_{r \ge 1} g(\lambda x_k + \mu y_k - (\lambda x_{k+r} + \mu y_{k+r}))^{p_k} \le K \sup |\lambda|^{p_k} \sup_{r \ge 1} g(x_k - x_{k+r})^{p_k} + K \sup |\mu|^{p_k} \sup_{r \ge 1} g(y_k - y_{k+r})^{p_k}$$

This implies that $\lambda x + \mu y \in \mathcal{C}(p)$ which completes the proof.

Lemma 2. If $0 < p_k \leq q_k < \infty$ for all k then $\mathcal{C}(p) \subset \mathcal{C}(q)$.

Proof. If $x \in \mathcal{L}(p)$ then, for all sufficiently large k, we write $g(x_{k+r} - x_k)^{p_k} < 1$ and so $g(x_{k+r} - x_k)^{q_k} \leq g(x_{k+r} - x_k)^{p_k} \to 0 \ (k \to \infty)$. Thus $x \in \mathcal{C}(q)$. Therefore $\mathcal{C}(p) \subset \mathcal{C}(q)$.

Lemma 3. Let $p_k > 0$, $q_k > 0$. If $\lim_{k \to 0} p_k/q_k > 0$ then $\mathcal{C}(q) \subset \mathcal{C}(p)$.

Now we will conclude the relation between C and C(p). Let $p \in \ell_{\infty}$, $r \geq 1$. If $x \in C(p)$ then there exists an integer $n_0 > 0$ such that $g(x_k - x_{k+r})^{p_k} < 1$ for every $k > n_0$ and if $x \in C$ then there exists an integer $m_0 > 0$ such that $g(x_k - x_{k+r}) < 1$ for every $k > m_0$. Let us suppose that $0 < p_k \leq 1$ for every k and write $g(x_k - x_{k+r}) \leq g(x_k - x_{k+r})^{p_k}$ for every $k > N = \max(n_0, m_0)$. Thus $C(p) \subset C$. If $1 < p_k \leq H < \infty$ then $g(x_k - x_{k+r})^{p_k} \leq g(x_k - x_{k+r})$ for every k > N and so $C \subset C(p)$. Then we have the following

234

Theorem 1. If $\inf p_k > 0$ then $C \subset C(p)$.

Proof. The proof follows from an argument similar to the one in Lemma 2.

Corollary 1. If $0 < \inf p_k \le \sup p_k < \infty$ then $\mathcal{C}(p) = \mathcal{C}$.

Theorem 2. If $p = (p_k)$ is a decreasing sequence then $C(p) \subset C(p)$.

Proof. Using the inequality (1) we have, for every $x \in C(p)$

$$g(x_{k+r} - x_{k})^{p_{k}} \leq K\{g(x_{k+r} - \ell)^{p_{k}} + g(x_{k} - \ell)^{p_{k}}\}$$

since p is a decreasing sequence. This completes the proof.

Let now Q be the set of all $p = (p_k)$ for which there exists N > 1 such that $\Sigma_k N^{-1/p_k} < \infty$, [4]. If $p = (p_k)$ decreases then $p \in Q$.

We shall denote the generalized Köthe-Toeplitz dual of $\mathcal{C}(p)$ by $\mathcal{C}(p, 1)$.

It is easy to see that if $p \in Q$ and X is complete then C(p) = C(p). Three known methods, due to Maddox [5], Cakar [1], Stieglitz [6], may be modified in an incomplete space C(p). Then we give the following lemmas.

Lemma 4. Let $p \in Q$. Then $C(p, 1) = \{a : \Sigma_k a_k x_k \text{ converges for every } x \in C(p)\} = \phi$.

Let $E \in \{C, C, C_0\}$ We shall use the usual notation *e* for corresponding spaces *E* when X = C, the set of complex numbers.

Lemma 5. Let $p \in \ell_{\infty}$. If $A \in (C(p), E)$ then $A \in (c(p), e)$.

The conditions for $A \in (c(p), c)$ are given by Lascarides, [2].

Lemma 6. Let $p \in \ell_{\infty}$. Then $A \in (c(p), c)$ if and only if

(i) There exists an absolute constant B > 1 such that

$$M_B = \sup_{n} \sum_{k} |a_{nk}| B^{-1/p_k} < \infty.$$

(ii) $\lim_{n} \Sigma_k a_{nk} = \alpha$ exists.

(iii) $\lim_{n \to \infty} a_{nk} = \alpha_k$ exists for every fixed k.

3. Matrix transformations

We are going to characterize some of matrix classes which transform the sequence spaces C(p) into C, C and C_0 .

Theorem 3. Let $p \in Q$. $A \in (\mathcal{C}(p), \mathcal{C})$ if and only if

- (i) $A \in R$
- (ii) $T = \sup_{n,k} |a_{nk}|^{p_k} < \infty$
- (iii) $\lim_{n} \sum_{k=i} a_{nk} = \alpha_i$ exists.
- (iv) $\lim_{n \to \infty} a_{nk} = \alpha_k$ exists for every fixed k.

Proof. For the sufficiency, let us write $H = \sup p_k$ and let $0 < \varepsilon < 1$, $r \ge 1$. Then there exist an integer $n_0 = n_0(\varepsilon, x) \ge 1$ and $B \ge \max(1, NT)$, $\sum N^{-1/p_k} < \infty$ such that $g(x_k - x_{k+r})^{p_k} \le \varepsilon^H B^{-1} < 1$ for $k > n_0$. Let $k_0 > n_0$, using the conditions (i-iv) and $\sum_k N^{-1/p_k} < \infty$ (N > 1), we have

$$g(A_m(x) - A_n(x)) \leq \sum_{k=1}^{n_0} |a_{mk} - a_{nk}| g(x_k - x_{k_0}) + \sum_{k=n_0+1} |a_{mk}| g(x_k - x_{k_0}) + \sum_{k=n_0+1} |a_{nk}| g(x_k - x_{k_0}) + g(x_{k_0}) |\sum_k a_{mk} - \sum_k a_{nk}|$$

Then we have, for sufficiently large $n, m, g(A_m(x) - A_n(x)) \leq \varepsilon$, so $(A_n(x)) \in \mathcal{C}$.

The necessity of (i) is observe from Lemma 4. For the necessity of (iii) and (iv) we observe that $A \in (C(p), \mathcal{C})$ whenever $A \in (\mathcal{C}(p), \mathcal{C})$ since $(\mathcal{C}(p), \mathcal{C}) \subset (C(p), \mathcal{C})$. According to Lemma 5, $A \in (c(p), c)$. Lemma 6 gives the necessity of (iii) and (iv). For the necessity of (ii) it is enough to prove that, in the case $p \in Q$, condition (i) of Lemma 6 and condition (ii) of Theorem 3 are equivalent. If the condition (i) of Lemma 6 holds then there exists an absolute constant integer B > 1 such that

$$|a_{nk}|^{p_k} \leq M_B^{p_k}B \leq B \max(1, M_B^H) < \infty$$

for every n, k and therefore condition (ii) of Theorem 3 holds. If on the other hand $p \in Q$ then there exists an integer N > 1 such that $\sum_k N^{-1/p_k} < \infty$ and if $T < \infty$ then for any integer $B \ge \max(1, NT)$ we have

$$|a_{nk}| \leq T^{1/p_k}$$

for every n, whence

$$\sum_{k} |a_{nk}| B^{-1/p_{k}} \leq \sum_{k} N^{-1/p_{k}} < \infty.$$

This completes the proof.

Finally we can give the following corollaries:

Corollary 2. Let $p \in Q$. Then $A \in (\mathcal{C}(p), C)$ if and only if together with the conditions (i), (ii), (iv) of Theorem 3. we have (iii)' $\lim_k \Sigma_k a_{nk} = \Sigma_n a_k$.

(v) $(a_k) \in \phi$.

Corollary 3. Let $p \in Q$. Then $A \in (\mathcal{C}(p), C_0)$ if and only if conditions (i)-(iv) of Theorem 3. hold with $\alpha_i = 0$ and $\alpha_k = 0$ for every i and k.

References

- Ö. Cakar, On matrix transformations of sequence spaces defined in an incomplete space, Comm. de la Fac. des Sc. de | 'Universitité d'Ankara, 22 A(1973), 107-121.
- [2] C.G. Lascarides, A study of certain sequence spaces of Maddox a generalization of a theorem of I yer, Pacific J. Math. 38, (1971), 487-500.
- [3] I.J. Maddox, Spaces of strongly summable sequences, Quaterly J. Math. Oxford, (2), 18, (1967), 345-355.
- [4] I.J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc. Camb. Phil. Soc., 64, (1968), 335-340.
- [5] I.J. Maddox, Matrix transformations in an incomplete spaces, Canadian J. Math., 20, (1968), 727-734.
- [6] M. Stieglitz, Matrixtransformationen von unvollständigen Folgenräumen Math. Z., 133, (1973), 129-132.

S. Pehlívan

University of Akdeniz.

Ö. Cakar

University of Ankara.