THE SEQUENCE SPACE $\mathcal{C}(p)$ AND RELATED MATRIX TRANSFORMATIONS:

S. PEHLIVAN AND Ö. ÇAKAR

Abstract. In this paper we define the sequence space $\mathcal{C}(p)$ defined in an incomplete seminormed space (X, g), namely

$$
\mathcal{C}(p)=\left\{\left(x_{k}\right) \subset X: \sup _{r \geq 1} g\left(x_{k}-x_{k+r}\right)^{p_{k}} \rightarrow 0, k \rightarrow \infty\right\}
$$

where $p=\left(p_{k}\right)$ is a sequence of positive numbers. Then we investigated some of its fundamental properties and some of related matrix transformations.

1. Introduction and definitions

Let $A=\left(a_{n k}\right)$ be an infinite matrix of complex numbers $a_{n k}(n, k=1,2, \cdots)$ and let e, f be two non-empty subset of the space s of all sequences. For every $x=\left(x_{k}\right) \in e$ and every integer n, we write $A_{n}(x)=\Sigma_{k} a_{n k} x_{k}$. The sequence $A x=\left(A_{n}(x)\right)$, if it exists, is called the transformation of x by the matrix A. The sum without limits is always taken from $k=1$ to $k=\infty$. We say that $A \in(e, f)$ if and only if $A x \in f$ whenever $x \in e$.

If $p=\left(p_{k}\right)$ is a sequence of strictly positive numbers then we define (see Maddox [4]),

$$
\begin{aligned}
c(p) & =\left\{x:\left|x_{k}-\ell\right|^{p_{k}} \rightarrow 0 \text { for some } \ell\right\} \\
c_{0}(p) & =\left\{x:\left|x_{k}\right|^{p_{k}} \rightarrow 0\right\}
\end{aligned}
$$

Let ℓ_{∞}, c and c_{0} be the spaces of bounded, convergent and null sequences, respectively. When all the terms of $\left(p_{k}\right)$ are constant and all equal to $p>0$ we have $c(p)=c$ and $c_{0}(p)=c_{0}$.

Now let $e(p)$ be a nonempty subset of s. Then we shall denote the generalized Köthe-Toeplitz dual of $e(p)$ by $e(p ; 1)$, i.e.

$$
e(p ; 1)=\left\{a: \Sigma_{k} a_{k} x_{k} \text { converges for every } x \in e(p)\right\}
$$

[^0]ϕ will denote the space of finitely non-zero sequences of complex numbers and R will denote the set of row-finite matrices.

The following inequality will be used frequently throughout the paper:

$$
\begin{equation*}
\left|a_{k}+b_{k}\right|^{p_{k}} \leq K\left(\left|a_{k}\right|^{p_{k}}+\left|b_{k}\right|^{p_{k}}\right) \tag{1}
\end{equation*}
$$

where $a_{k}, b_{k} \in \mathbf{C}, 0<p_{k} \leq \sup p_{k}=H, K=\max \left(1,2^{H-1}\right)$, [3].

2. The space $\mathcal{C}(p)$

Let $p=\left(p_{k}\right)$ be a sequence of strictly positive numbers and $X=(X, g)$ an incomplete seminormed complex linear space with the seminorm g and zero Θ. Then we define

$$
\begin{aligned}
& \mathcal{C}(p)=\left\{\left(x_{k}\right) \subset X: \sup _{r \geq 1} g\left(x_{k}-x_{k+r}\right)^{p_{k}} \rightarrow 0, k \rightarrow \infty\right\} \\
& C(p)=\left\{\left(x_{k}\right) \subset X: \text { there exists } \ell \in X \text { such that } g\left(x_{k}-\ell\right)^{p_{k}} \rightarrow 0(k \rightarrow \infty)\right\}
\end{aligned}
$$

We will denote the sequence spaces by \mathcal{C}, C and C_{0} namely the space of Cauchy sequences, convergent sequences and null sequences respectively defined in $X=(X, g)$.

We now give some properties of the above classes of sequences.
Lemma 1. If $p \in \ell_{\infty}$ then $\mathcal{C}(p)$ is a linear space.
Proof. Suppose $x, y \in \mathcal{C}(p)$ and $\lambda, \mu \in \mathbf{C}$. Whenever $H=\sup p_{k}<\infty$, we have $|\lambda|^{p_{k}} \leq \max \left(1,|\lambda|^{H}\right)$. Then from (1) and $|\mu|^{p_{k}} \leq \max \left(1,|\mu|^{H}\right)$ it follows that

$$
\begin{aligned}
\sup _{r \geq 1} g\left(\lambda x_{k}+\mu y_{k}-\left(\lambda x_{k+r}+\mu y_{k+r}\right)\right)^{p_{k}} & \leq K \sup |\lambda|^{p_{k}} \sup _{r \geq 1} g\left(x_{k}-x_{k+r}\right)^{p_{k}} \\
& +K \sup |\mu|^{p_{k}} \sup _{r \geq 1} g\left(y_{k}-y_{k+r}\right)^{p_{k}}
\end{aligned}
$$

This implies that $\lambda x+\mu y \in \mathcal{C}(p)$ which completes the proof.
Lemma 2. If $0<p_{k} \leq q_{k}<\infty$ for all k then $\mathcal{C}(p) \subset \mathcal{C}(q)$.
Proof. If $x \in \mathcal{L}(p)$ then, for all sufficiently large k, we write $g\left(x_{k+r}-x_{k}\right)^{p_{k}}<1$ and so $g\left(x_{k+r}-x_{k}\right)^{q_{k}} \leq g\left(x_{k+r}-x_{k}\right)^{p_{k}} \rightarrow 0(k \rightarrow \infty)$. Thus $x \in \mathcal{C}(q)$. Therefore $\mathcal{C}(p) \subset \mathcal{C}(q)$.

Lemma 3. Let $p_{k}>0, q_{k}>0$. If $\underline{\lim } p_{k} / q_{k}>0$ then $\mathcal{C}(q) \subset \mathcal{C}(p)$.
Now we will conclude the relation between \mathcal{C} and $\mathcal{C}(p)$. Let $p \in \ell_{\infty}, r \geq 1$. If $x \in \mathcal{C}(p)$ then there exists an integer $n_{0}>0$ such that $g\left(x_{k}-x_{k+r}\right)^{p_{k}}<1$ for every $k>n_{0}$ and if $x \in \mathcal{C}$ then there exists an integer $m_{0}>0$ such that $g\left(x_{k}-x_{k+r}\right)<1$ for every $k>m_{0}$. Let us suppose that $0<p_{k} \leq 1$ for every k and write $g\left(x_{k}-x_{k+r}\right) \leq$ $g\left(x_{k}-x_{k+r}\right)^{p_{k}}$ for every $k>N=\max \left(n_{0}, m_{0}\right)$. Thus $\mathcal{C}(p) \subset \mathcal{C}$. If $1<p_{k} \leq H<\infty$ then $g\left(x_{k}-x_{k+r}\right)^{p_{k}} \leq g\left(x_{k}-x_{k+r}\right)$ for every $k>N$ and so $\mathcal{C} \subset \mathcal{C}(p)$. Then we have the following

Theorem 1. If inf $p_{k}>0$ then $\mathcal{C} \subset \mathcal{C}(p)$.
Proof. The proof follows from an argument similar to the one in Lemma 2.
Corollary 1. If $0<\inf p_{k} \leq \sup p_{k}<\infty$ then $\mathcal{C}(p)=\mathcal{C}$.
Theorem 2. If $p=\left(p_{k}\right)$ is a decreasing sequence then $C(p) \subset \mathcal{C}(p)$.
Proof. Using the inequality (1) we have, for every $x \in C(p)$

$$
g\left(x_{k+r}-x_{k}\right)^{p_{k}} \leq K\left\{g\left(x_{k+r}-\ell\right)^{p_{k}}+g\left(x_{k}-\ell\right)^{p_{k}}\right\}
$$

since p is a decreasing sequence. This completes the proof.
Let now Q be the set of all $p=\left(p_{k}\right)$ for which there exists $N>1$ such that $\Sigma_{k} N^{-1 / p_{k}}<\infty$, [4]. If $p=\left(p_{k}\right)$ decreases then $p \in Q$.

We shall denote the generalized Köthe-Toeplitz dual of $\mathcal{C}(p)$ by $\mathcal{C}(p, 1)$.
It is easy to see that if $p \in Q$ and X is complete then $C(p)=\mathcal{C}(p)$. Three known methods, due to Maddox [5], Cakar [1], Stieglitz [6], may be modified in an incomplete space $\mathcal{C}(p)$. Then we give the following lemmas.

Lemma 4. Let $p \in Q$. Then $\mathcal{C}(p, 1)=\left\{a: \Sigma_{k} a_{k} x_{k}\right.$ converges for every $\left.x \in \mathcal{C}(p)\right\}=$ ϕ.

Let $E \in\left\{\mathcal{C}, C, C_{0}\right\}$ We shall use the usual notation e for corresponding spaces E when $X=\mathrm{C}$, the set of complex numbers.

Lemma 5. Let $p \in \ell_{\infty}$. If $A \in(C(p), E)$ then $A \in(c(p), e)$.
The conditions for $A \in(c(p), c)$ are given by Lascarides, [2].
Lemma 6. Let $p \in \ell_{\infty}$. Then $A \in(c(p), c)$ if and only if
(i) There exists an absolute constant $B>1$ such that

$$
M_{B}=\sup _{n} \sum_{k}\left|a_{n k}\right| B^{-1 / p_{k}}<\infty
$$

(ii) $\lim _{n} \Sigma_{k} a_{n k}=\alpha$ exists.
(iii) $\lim _{n} a_{n k}=\alpha_{k}$ exists for every fixed k.

3. Matrix transformations

We are going to characterize some of matrix classes which transform the sequence spaces $\mathcal{C}(p)$ into \mathcal{C}, C and C_{0}.

Theorem 3. Let $p \in Q . A \in(\mathcal{C}(p), \mathcal{C})$ if and only if
(i) $A \in R$
(ii) $T=\sup _{n, k}\left|a_{n k}\right|^{p_{k}}<\infty$
(iii) $\lim _{n} \Sigma_{k=i} a_{n k}=\alpha_{i}$ exists.
(iv) $\lim _{n} a_{n k}=\alpha_{k}$ exists for every fixed k.

Proof. For the sufficiency, let us write $H=\sup p_{k}$ and let $0<\varepsilon<1, r \geq 1$. Then there exist an integer $n_{0}=n_{0}(\varepsilon, x) \geq 1$ and $B \geq \max (1, N T), \Sigma N^{-1 / p_{k}}<\infty$ such that $g\left(x_{k}-x_{k+r}\right)^{p_{k}} \leq \varepsilon^{H} B^{-1}<1$ for $k>n_{0}$. Let $k_{0}>n_{0}$, using the conditions (i-iv) and $\Sigma_{k} N^{-1 / p_{k}}<\infty(N>1)$, we have

$$
\begin{aligned}
g\left(A_{m}(x)-A_{n}(x)\right) \leq & \sum_{k=1}^{n_{0}}\left|a_{m k}-a_{n k}\right| g\left(x_{k}-x_{k_{0}}\right)+\sum_{k=n_{0}+1}\left|a_{m k}\right| g\left(x_{k}-x_{k_{0}}\right) \\
& +\sum_{k=n_{0}+1}\left|a_{n k}\right| g\left(x_{k}-x_{k_{0}}\right)+g\left(x_{k_{0}}\right)\left|\sum_{k} a_{m k}-\sum_{k} a_{n k}\right|
\end{aligned}
$$

Then we have, for sufficiently large $n, m, g\left(A_{m}(x)-A_{n}(x)\right) \leq \varepsilon$, so $\left(A_{n}(x)\right) \in \mathcal{C}$.
The necessity of (i) is observe from Lemma 4. For the necessity of (iii) and (iv) we observe that $A \in(C(p), \mathcal{C})$ whenever $A \in(\mathcal{C}(p), \mathcal{C})$ since $(\mathcal{C}(p), \mathcal{C}) \subset(C(p), \mathcal{C})$. According to Lemma $5, A \in(c(p), c)$. Lemma 6 gives the necessity of (iii) and (iv). For the necessity of (ii) it is enough to prove that, in the case $p \in Q$, condition (i) of Lemma 6 and condition (ii) of Theorem 3 are equivalent. If the condition (i) of Lemma 6 holds then there exists an absolute constant integer $B>1$ such that

$$
\left|a_{n k}\right|^{p_{k}} \leq M_{B}^{p_{k}} B \leq B \max \left(1, M_{B}^{H}\right)<\infty
$$

for every n, k and therefore condition (ii) of Theorem 3 holds. If on the other hand $p \in Q$ then there exists an integer $N>1$ such that $\Sigma_{k} N^{-1 / p_{k}}<\infty$ and if $T<\infty$ then for any integer $B \geq \max (1, N T)$ we have

$$
\left|a_{n k}\right| \leq T^{1 / p_{k}}
$$

for every n, whence

$$
\sum_{k}\left|a_{n k}\right| B^{-1 / p_{k}} \leq \sum_{k} N^{-1 / p_{k}}<\infty
$$

This completes the proof.
Finally we can give the following corollaries:
Corollary 2. Let $p \in Q$. Then $A \in(\mathcal{C}(p), C)$ if and only if together with the conditions (i),(ii),(iv) of Theorem 3. we have
(iii) $\lim _{k} \Sigma_{k} a_{n k}=\Sigma_{n} a_{k}$.
(v) $\left(a_{k}\right) \in \phi$.

Corollary 3. Let $p \in Q$. Then $A \in\left(\mathcal{C}(p), C_{0}\right)$ if and only if conditions (i)-(iv) of Theorem 3. hold with $\alpha_{i}=0$ and $\alpha_{k}=0$ for every i and k.

References

[1] Ö. Cakar, On matrix transformations of sequence spaces defined in an incomplete space, Comm. de la Fac. des Sc. de | 'Universitité d'Ankara, 22 A(1973), 107-121.
[2] C.G. Lascarides, A. study of certain sequence spaces of Maddox a generalization of a theorem of I yer, Pacific J. Math. 38, (1971), 487-500.
[3] I.J. Maddox, Spaces of strongly summable sequences, Quaterly J. Math. Oxford, (2), 18, (1967), 345-355.
[4] I.J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc. Camb. Phil. Soc., 64, (1968), 335-340.
[5] I.J. Maddox, Matrix transformations in an incomplete spaces, Canadian J. Math., 20, (1968), 727-734.
[6] M. Stieglitz, Matrixtransformationen von unvollständigen Folgenräumen Math. Z., 133, (1973), 129-132.
S. Pehlívan

University of Akdeniz.
Ö. Cakar
University of Ankara.

[^0]: Received May 30, 1989.
 Key Words and phrases : Sequence space, Matrix transformations, Incomplete space, KötheToeplitz dual

