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THE SEQUENCE SPACE C(p) AND RELATED MATRIX
TRANSFORMATIONS:

S. PEHLIVAN AND O. CAKAR

Abstract. In this paper we define the sequence space C(p) defined in an incom-
plete seminormed space (X, g), namely

C(p) = {(zx) C X : supg(zk — Tk4r)P* = 0, k — oo}
r>1

where p = (pi) is a sequence of positive numbers. Then we investigated some of
its fundamental properties and some of related matrix transformations.

1. Introduction and definitions

Let A = (@sx) be an infinite matrix of complex numbers ank(n,k=1,2,---) and let
e, f be two non-empty subset of the space s of all sequences. For every £ = (z;) € e and
every integer n, we write A,(z) = Tira,rzr. The sequence Az = (An(z)), if it exists, is
called the transformation of x by the matriz A. The sum without limits is always taken
fromk =1 to k = co. We say that A € (e, f) if and only if Az € f whenever z € e.

If p = (px) is a sequence of strictly positive numbers then we define (see Maddox
[4]),

e(p) = {z:| zx — £ [P*— 0 for some £},
co(p) = {o:] 2 P*— 0},

Let £, ¢ and ¢ be the spaces of bounded, convergent and null sequences, respectively.
When all the terms of (pi) are constant and all equal to p > 0 we have ¢(p) = c and
co(p) = co.

Now let e(p) be a nonempty subset of s. Then we shall denote the generalized
Kothe-Toeplitz dual of e(p) by e(p; 1), i.e.

e(p;1) = {a:Xragz) converges for every z € e(p)}.
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¢ will denote the space of finitely non-zero sequences of complex numbers and R
will denote the set of row-finite matrices.
The following inequality will be used frequently throughout the paper:

| ak +be [P < K(| ax [P* + | by |P*) (1)

where ar, b € C,0< pr. <suppy = H, K = max(l,QH_l): [3].

2. The space C(p)

Let p = (pr) be a sequence of strictly positive numbers and X = (X,g) an incomplete
seminormed complex linear space with the seminorm ¢ and zero ©. Then we define

Cp) = {(=) € X : supg(er —2p4r ) — 0, k — 00}
C(p) = {(zx) C X : there exists £ € X such that g(z; — £)"* — 0 (k — o0)}

We will denote the sequence spaces by C,C and C, namely the space of Cauchy
sequences, convergent sequences and null sequences respectively defined in X = (X, 9).
We now give some properties of the above classes of sequences.

Lemma 1. Ifp € £, then C(p) is a linear space.
Proof. Suppose z,y € C(p) and A\, u € C. Whenever H = sup px < 0o, we have
| A [P*< max(1,| A |¥). Then from (1) and | p |P*< max(1,| # |7) it follows that
9P 9(Azk + pye — (Azk4r + pye4r )™ < Ksup | X [P* sup g(zy — 2y, )P
21 r>1
+ Ksup | p [P* SUp (Uk — Yi4r)**
r—-

This implies that Az + py € C(p) which completes the proof.
Lemma 2. If0 < p; < qi < oo for all k then C(p) C C(9).

Proof. If z € L(p) then, for all sufficiently large k, we write g(zgy, — zp)P* < 1
and s0 g(Ze4r — zk)™* < g(Tyr — k)P — 0 (K — o0). Thus z € C(g). Therefore
C(p) C C(g)-

Lemma 3. Let pr >0, ¢ > 0. Iflim pe/qi > 0 then C(q) C C(p).

Now we will conclude the relation between C and C(p). Let p € b, r > 1. If
z € C(p) then there exists an integer no > 0 such that g(z; — Ti4r)P* < 1 for every
k > ng and if z € C then there exists an integer mgo > 0 such that g(z; — zx4,) < 1 for
every k > mg. Let us suppose that 0 < p; < 1 for every k and write g(zp — zg4r) <
9(zr — T4, )P* for every k > N = max(no,mo). Thus C(p) CC. If 1 < pr < H < o0

then g(zr — zx4,)* < g(zk — zx4,) for every k> N and so C C C(p). Then we have the
following
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Theorem 1. Ifinfp; > 0 then C C C(p).

Proof. The proof follows from an argument similar to the one in Lemma 9.
Corellary 1. If 0 < inf pr < sup pi < co then C(p) = C.

Theorem 2. If p = (px) is a decreasing sequence then C(p) C C(p).

Proof. Using the inequality (1) we have, for every z € C(p)

I(@k4r —zp)P* < K{g(zk4r — OP* + g(zi — £)P*}
since p is a decreasing sequence. This completes the proof.

Let now @ be the set of all p = (pi) for which there exists N > 1 such that
T N“YPe < 00, [4]. If p= (px) decreases then p € Q.

We shall denote the generalized Kothe-Toeplitz dual of C(p) by C(p, 1).

It is easy to see that if p € Q and X is complete then C(p) = C(p). Three known
methods, due to Maddox [5], Cakar [1], Stieglitz [6], may be modified in an incomplete
space C(p). Then we give the following lemmas.

Lemma 4. Letp € Q.‘ Then C(p,1) = {a : Srarzr converges for every z € C(p)} =
é.

Let E € {C,C,Co} We shall use the usual notation e for corresponding spaces E
when X = C, the set of complex numbers.

Lemma 3. Let p € bo. If A € (C(p), E) then A € (c(p), e).
The conditions for A € (c(p), c) are given by Lascarides, [2].

Lemma 6. Let p € £o. Then A € (c(p),c) if and only if
(i) There exists an absolute constant B > 1 such that

Mg = suleankIB_I/”" < oo.
Tk

(ii) lim, Zra,, = a ezists.
(i) im, 6, = o ezists for every fized k.

3. Matrix transformations

We are going to characterize some of matrix classes which transform the sequence
spaces C(p) into C,C and C,.

Theorem 3. Letp € Q. A € (C(p),C) if and only if
(i) Ae R
(ii) T =sup, ; | ank |P*< o0
(iii) lim, Tp=jank = a; exists.
(iv) lim, ani = i ezists for every fized k.
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Proof. For the sufficiency, let us write H = supp; and let 0 < ¢ < 1, » > 1. Then
there exist an integer ny = no(e,z) > 1 and B > max(1, NT), EN~YPx < o6 such that
9(zx — Zp4r )P < e¥B~1 < 1for k > ny. Let ko > ng, using the conditions (i-iv) and
TpN~HPe < 00 (N > 1), we have

9(Am(2) = An(2)) < D | amk — ank | gz — z2,) + D lam | gz — z,)

k=i k=no+1
+ Z | ank Ig(xk—'zko)'*'g(zko) lZamk-—Zank |
k=ng+1 k E

Then we have, for sufficiently large n,m, g(A, (z) — An(z)) <€, 50 (Au(2)) €C.

The necessity of (i) is observe from Lemma 4. For the necessity of (iii) and (iv) we
observe that A € (C(p),C) whenever A € (C(p), C) since (C(p),C) C (C(p),C). According
to Lemma 5, A € (c(p),c). Lemma 6 gives the necessity of (iii) and (iv). For the
necessity of (ii) it is enough to prove that, in the case p € Q, condition (i) of Lemma 6
and condition (ii) of Theorem 3 are equivalent. If the condition (i) of Lemma 6 holds
then there exists an absolute constant integer B > 1 such that

| ane [P* < ME'B < B max(1,Mf) < co

for every n, k and therefore condition (ii) of Theorem 3 holds. If on the other hand p € Q
then there exists an integer N > 1 such that £, N=1/P* < oo and if T' < oo then for any
integer B > max(1, NT) we have '

| Gn [« T/ Pk

for every n, whence
Z | B IB-I/Pk £ ZN_:l/Pk = B
k k

This completes the proof.
Finally we can give the following corollaries:

Corollary 2. Let p € Q. Then A € (C(p),C) if and only if together with the
conditions (i),(i1), (iv) of Theorem 3. we have
(lll)' hmk Zkank = Enak.

(v) (ax) € ¢.

Corollary 3. Let pe Q. Then A € (C(p),Co) if and only if conditions (i)-(iv) of
Theorem 3. hold with a; = 0 and ar =0 for every ¢ and k.
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