A. GENERALIZATION OF SOME COMMUTATIVITY THEOREMS FOR RINGS I

H. A. S. ABUJABAL

Abstract

In this paper we generalize some well-known commutativity theorems for rings as follows: Let $m>1$, and n, k be non-negative integers. Let R be an s unital ring satisfying the polynomial identity $\left[x^{n} y-y^{m} x^{k}, x\right]=0$, for all $x, y \in R$. Then R is commutative.

1. Introduction.

Throughout the present paper, R will represent an associative ring (may be without unity 1). Let $Z(R)$ denote the center of R, N^{\prime} the set of all zero divisors of R, N the set of all nilpotent elements of R, and $C(R)$ the commutator ideal of R. For any $x, y \in R$, we set as usual $[x, y]=x y-y x$.

A ring R is called left (resp. right) s-unital if $x \in R x$ (resp. $x \in x R$) for every $x \in R$. Further, R is called s-unital if R is both left and right s-unital, that is $x \in R x \cap x R$, for every $x \in R$. As stated in [6] and [13], if R is s-unital (resp. left or right s-unital), then for any finite subset F of R there exists an element $e \in R$ such that $e x=x e=x$ (resp. $e x=x$ or $x e=x$) for all $x \in F$. Such an element e will be called a pseudo-identity (resp. pseudo left identity or pseudo right identity) of F in R.

A theorem of Bell [3] has been generalized by Quadri and Khan [14] as follows: If R is a ring with unity 1 and $m>1, k \geq 1$ be integers such that for all $x, y \in R$, $\left[x y-y^{m} x^{k}, x\right]=0$, then R is commutative. The commutativity of a left s-unital ring satisfying [xy- $\left.y^{m} x^{k}, x\right]=0,(m>1, k \geq 1)$, for all $x, y \in R$ has been proved in [13] by Quadri and Khan. In [10] Psomopoulos has shown that an s-unital ring R in which $\left[x^{n} y-y^{m} x, x\right]=0,(m>1, n \geq 1)$ holds for all $x, y \in R$ must be commutative.

In this paper, motivated by the above polynomial identities and the polynomial identity $x^{n}[x, y]=\left[x, y^{m}\right]$ considred by Komatsu [7], we intend to prove a result on the commutativity of an s-unital ring satisfying the following property:
(P) "there exist integers $m>1, n \geq 0$, and $k \geq 0$ such that $\left[x^{n} y-y^{m} x^{k}, x\right]=0$, for all x, y in $R^{\prime \prime}$.

Received June 3, 1989.
Key words and phases : Associative ring, s-unital ring, commutativity of rings, ring with unity. AMS (MOS) Subject Classification 16A70, 16A20.

2. Preliminaries.

In preparation for the proof of our result, we first state the following well-known results.

Lemma 1. ([8, Lemma 3]). Let $x, y \in R$. If $[x,[x, y]]=0$, then for any positive integer $k,\left[x^{k}, y\right]=k x^{k-1}[x, y]$.

Lemma 2.([9, Lemma]). Let R be a ring with unity 1, and let x, y be elements of R. If for some integer $k \geq 1, x^{k} y=0=(x+1)^{k} y$, then necessarily $y=0$.

Lemma 3. ([19, Lemma 3]). Let R be a ring with unity 1. If $\left(1-y^{k}\right) x=0$, then $\left(1-y^{k m}\right) x=0$, for any positive integers m, and k.

Lemma 4. ([6, Proposition 2]). Let f be a polynomial in noncommuting indeterminates $x_{1}, x_{2}, \ldots, x_{n}$ with integer coefficients. Then the following statements are equivalent:

1) For any ring R satisfying $f=0, C(R)$ is a nil ideal.
2) Every semiprime ring satisfying $f=0$ is commutative.
3) For every prime $p,(G F(p))_{2}$ fails to satisfy $f=0$.
3. Main theorem and its corollaries.

The main result of this paper is the following:
Theorem. Let R be an s-unital ring satisfying the property (P), then R is commutative.

Let us pause to notice that for any $x, y \in R$, the property (\mathbb{P}) can be expressed as:

$$
\begin{equation*}
x^{n}[x, y]=\left[x, y^{m}\right] x^{k} \tag{1}
\end{equation*}
$$

Then for any positive integer t, we have

$$
\begin{aligned}
x^{t n}[x, y] & =x^{(t-1) n}\left(x^{n}[x, y]\right) \\
& =x^{(t-1) n}\left[x, y^{m}\right] x^{k} \\
& =x^{(t-2) n}\left(x^{n}\left[x, y^{m}\right]\right) x^{k} \\
& =x^{(t-2) n}\left[x, y^{m^{2}}\right] x^{2 k} \\
& =\cdots
\end{aligned}
$$

By repeating the above process and using (1), we obtain

$$
\begin{equation*}
x^{t n}[x, y]=\left[x, y^{m^{t}}\right] x^{t k} \tag{2}
\end{equation*}
$$

Now, we prove the following lemmas which will be used in the proof of our main theorem.

Lemma 5. Let R be a ring with unity which satisfies the property (P), then $N \subseteq$ $Z(R)$.

Proof. Let $u \in N$. Then by (2) for any $x \in R$, and a positive integer $t \geq 1$, we have $x^{t n}[x, u]=\left[x, u^{m^{t}}\right] x^{t k}$. But since u is nilpotent, then $u^{m^{i}}=0$, for sufficiently large t and we get $x^{t n}[x, u]=0$ for all x in R. But $(x+1)^{t n}[x, u]=0=x^{t n}[x, u]$, for all $x \in R$, then by Lemma 2, this yields $[x, u]=0$. Therefore $u \in Z(R)$, and hence $N \subseteq Z(R)$.

Lemma 6. Let R be a ring with unity 1 which satisfies the property (P), then $C(R) \subseteq Z(R)$.

Proof. In view of Lemma $4, C(R)$ is a nil ideal, since $x=e_{22}$ and $y=e_{21}$ fail to satisfy (1) in $(G F(p))_{2}$, for a prime p. Hence by Lemma 5 , we obtain $C(R) \subseteq Z(R)$, where $e_{21}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$, and $e_{22}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$.

Remark 1. In view of Lemma 6, it is guaranteed that Lemma 1 holds for any pair of elements x and y in a ring with unity 1 which satisfies the property (P).

Lemma 7. Let R be a ring with unity 1 satisfying the property (P). Then R is commutative.

Proof. The ring R is isomorphic to subdirect sum of subdirectly irreducible rings R_{i}, each of which as a homomorphic image of R satisfies the property placed on R. Thus R itself can be assumed to be subdirectly irreducible ring. Let S be the intersection of all its non-zero ideals, then $S \neq(0)$.

Now, if $n=k=0$, then we have $\left[y-y^{m}, x\right]=0$, for all $x, y \in R$ and consequently by [5, Theorem 18] R is commutative. Let $n=0$ and $k=1$ in (1), then replacing x by $(x+1)$ we obtain $\left[x, y^{m}\right]=0$, for all $x, y \in R$. Thus $[x, y]=\left[x, y^{m}\right] x=0$, for all $x, y \in R$. Therefore R is commutative.

Next, suppose that $n \geq 1$ or $k \geq 0$. Let $q=2^{m}-2$ be a positive integer. Then by (1) we have

$$
\begin{aligned}
q x^{n}[x, y] & =2^{m} x^{n}[x, y]-2 x^{n}[x, y] \\
& =2^{m}\left[x, y^{m}\right] x^{k}-x^{n}[x, 2 y] \\
& =\left[x,(2 y)^{m}\right] x^{k}-\left[x,(2 y)^{m}\right] x^{k} \\
& =0
\end{aligned}
$$

By Lemma. 2, we get $q[x, y]=0$, for all x, y in R. Now combining Lemma 6 with Lemma 1 , we obatin $\left[x^{q}, y\right]=q x^{q-1}[x, y]=0$. Thus

$$
\begin{equation*}
x^{q} \in Z(R), \text { for all } x, y \in R \tag{3}
\end{equation*}
$$

Replace y by y^{m} in (1), then we get

$$
\begin{equation*}
x^{n}\left[x, y^{m}\right]=\left[x,\left(y^{m}\right)^{m}\right] x^{k} \tag{4}
\end{equation*}
$$

Also by Lemma 6 and Lemma 1, we have

$$
\begin{aligned}
x^{n}\left[x, y^{m}\right] & =\left[x, y^{m}\right] x^{n} \\
& =m y^{m-1}[x, y] x^{n} \\
& =m y^{m-1} x^{n}[x, y] \\
& =m y^{m-1}\left[x, y^{m}\right] x^{k}
\end{aligned}
$$

and,

$$
\begin{aligned}
{\left[x,\left(y^{m}\right)^{m}\right] x^{k} } & =m\left(y^{m}\right)^{m-1}\left[x, y^{m}\right] x^{k} \\
& =m y^{m^{2}-m}\left[x, y^{m}\right] x^{k} \\
& =m y^{m-1} y^{(m-1)^{2}}\left[x, y^{m}\right] x^{k} .
\end{aligned}
$$

Thus (4) gives

$$
\begin{equation*}
m y^{(m-1)}\left(1-y^{(m-1)^{2}}\right)\left[x, y^{m}\right] x^{k}=0 \tag{5}
\end{equation*}
$$

Replace x by $(x+1)$ in (5), then we get $m y^{m-1}\left(1-y^{(m-1)^{2}}\right)\left[x, y^{m}\right](x+1)^{k}=0$. So by Lemma 2, $m y^{m-1}\left(1-y^{(m-1)^{2}}\right)\left[x, y^{m}\right]=0$. Then Lemma 3 gives

$$
\begin{equation*}
m y^{(m-1)}\left(1-y^{q(m-1)^{2}}\right)\left[x, y^{m}\right]=0 \tag{6}
\end{equation*}
$$

Next, we claim that $N^{\prime} \subseteq Z(R)$. Let $u \in N^{\prime}$, then by (3) $u^{q(m-1)^{2}} \in N^{\prime} \cap Z(R)$, and $S u^{q(m-1)^{2}}=0$. By using (6) we obtain $m u^{(m-1)}\left[x, u^{m}\right]\left(1-u^{q(m-1)^{2}}\right)=0$.

If $m u^{m-1}\left[x, u^{m}\right] \neq 0$, then $\left(1-u^{q(m-1)^{2}}\right) \in N^{\prime}$, and so $S\left(1-u^{q(m-1)^{2}}\right)=0$ which gives a contradiction that $S \neq(0)$. Therefore $m u^{m-1}\left[x, u^{m}\right]=0$. From (1) and using Lemma 1 repleatedly we obtain

$$
\begin{aligned}
x^{2 n}[x, u] & =x^{n}\left(x^{n}[x, u]\right) \\
& =x^{n}\left[x, u^{m}\right] x^{k} \\
& =\left[x, u^{m^{2}}\right] x^{2 k} \\
& =m u^{m(m-1)}\left[x, u^{m}\right] x^{2 k} \\
& =m u^{m-1} u^{(m-1)^{2}}\left[x, u^{m}\right] x^{2 k} \\
& =m u^{m-1}\left[x, u^{m}\right] u^{(m-1)^{2}} x^{2 k} .
\end{aligned}
$$

This implies that $x^{2 n}[x, u]=0$. Hence Lemma 2 gives $[x, u]=0$, that is $u \in Z(R)$. Therefore $N^{\prime} \subseteq Z(R)$.

Now, for any $x \in R, x^{q}$ and $x^{q m} \in Z(R)$. Then by (1) for any $y \in R$, we have

$$
\begin{aligned}
\left(x^{q}-x^{q m}\right) x^{n}[x, y] & =x^{q}\left(x^{n}[x, y]\right)-x^{q m}\left(x^{n}[x, y]\right) \\
& =x^{n}\left(x^{q}[x, y]\right)-x^{q m}\left[x, y^{m}\right] x^{k} \\
& =x^{n}\left[x, x^{q} y\right]-\left[x,\left(x^{q} y\right)^{m}\right] x^{k} \\
& =x^{n}\left[x, x^{q} y\right]-x^{n}\left[x, x^{q} y\right] .
\end{aligned}
$$

Therefore, $\left(x^{q}-x^{q m}\right) x^{n}[x, y]=0$, and

$$
\begin{equation*}
\left(x-x^{q m-q+1}\right) x^{n+q-1}[x, y]=0 \tag{7}
\end{equation*}
$$

Now, if R is not commutative, then by [5, Theorem 18], there exists an element $x \in R$ such that $\left(x-x^{t}\right) \notin Z(R)$, where $t=q m-q+1$. This also reveals $x \notin Z(R)$. Thus neither x nor $\left(x-x^{t}\right)$ is a zero-divisor, and so $\left(x-x^{t}\right) x^{n+q-1} \notin N^{\prime}$. Hence (7) forces that $[x, y]=0$, for all $x, y \in R$. Thus $x \in Z(R)$ which is a contradiction. Therefore R must be commutative. This completes the proof.

Corollary 1. ([14, Theorem]). Let R be a ring with unity 1 , and let $m>1$ and $k \geq 1$ be fixed positive integers. If $\left[x y-y^{m} x^{k}, x\right]=0$, for all x, y in R, then R is commutative.

Proof. Put $n=1$, and take, $k \geq 1$ in Lemma 7. Then we obtain $\left[x y-y^{m} x^{k}, x\right]$, for all $x, y \in R$. Then by Lemma $7, R$ must be commutative.

Proof of the theorem. In view of Proposition 1 of [6], R is commutative, if R with unity 1 satisfying the property (P) is commutative, and this is guaranteed by Lemma 7 .

Corollary 2. ([10, Theorem]). Let R be an s-unital ring, and let $m>1$ and $n \geq 1$ be fixed positive integers. If $\left[x^{n} y-y^{m} x, x\right]=0$, for all $x, y \in R$, then R is commutative.

Proof. Set $k=1$, and consider $n \geq 1$ in the main theorem. Then we obtain $\left[x^{n} y-y^{m} x, x\right]=0$ for all $x, y \in R$ and $m>1$. Thus the commutativity of R follows from the main Theorem.

Corollary 3. ([13, Theorem]). Let R be a left s-unital ring. If there exist positive integers $m>1$ and $k \geq 1$ such that for any $x, y \in R,\left[x y-y^{m} x^{k}, x\right]=0$, then R is commutative.

Proof. By [13, Lemma 4] R is s-unital. Then the commutativity of R follows from Proposition 1 of [6], and Corollary 1.

Corollary 4. ([7, Theorem]) Let m, n be fixed non-negative integers. Suppose that R satisfies the polynomial identity

$$
\begin{equation*}
x^{n}[x, y]=\left[x, y^{m}\right] . \tag{*}
\end{equation*}
$$

(a) If R is left s-unital, then R is commutative except when $(m, n)=(1,0)$.
(b) If R is right s-unital, then R is commutative except for $m=1$, and $n=0$; and also $m=0$ and $n>0$.

Proof. (a) Let R be a left s-unital ring, and let $x, y \in R$ such that $e x=x$ and $e y=y$ for some element $e \in R$. If $m=0$, and $n>0$, then $x[x, y]=0$, and hence $y=y e \in y R$. Thus R is s-unital, and R is commutative by Theorem. If $m=1$, and $n>0$, then (*) becomes $x^{n}[x, y]=[x, y]$. Hence $x=x^{n+1}-x^{n+1} e+x e=x\left(x^{n}-x^{n} e+e\right) \in x R$. Thus R is s-unital, and R is commutative.

Next, we may assume that $m>1$ and $n>0$. By making repeated use of $\left(^{*}\right)$, we see that for any positive integer t

$$
\begin{equation*}
x^{t n}[x, y]=\left[x, y^{m^{t}}\right] \tag{**}
\end{equation*}
$$

Let $u \in N$. Then for any $x \in R$, and $t \geq 1$ we have by $\left({ }^{* *}\right), x^{t n}[x, u]=\left[x, u^{m^{t}}\right]$. But since u is nilpotent, $u^{m^{t}}=0$ for sufficiently large t. Thus $x^{t n}[x, u]=0$. Since R is left s-unital, then $u=e u$ for some $e \in R$. But $e^{t n}[e, u]=0$ which gives $u=u e$. Let $x \in R$, then there exists $e^{\prime} \in R$, such that $e^{\prime} x=x$. Further, for some $e^{\prime \prime} \in R, e^{\prime \prime} e^{\prime}=e^{\prime}$, and thus $e^{\prime \prime} x=x$. Therefore $\left(x-x e^{\prime \prime}\right)^{2}=0$, that is $\left(x-x e^{\prime \prime}\right) \in N$. Since $e^{\prime}\left(x-x e^{\prime \prime}\right)=x-x e^{\prime \prime}$ we have $x-x e^{\prime \prime}=\left(x-x e^{\prime \prime}\right) e^{\prime}=0$ which gives $x=x e^{\prime \prime}$. Hence R is s-unital. Thus R is commutative by the main Theorem.
(b) Let R be a right s-unital ring, and let $y \in R$ such that $y e=y$, for some $e \in R$. If $m=1$, and $n>0$ then $x^{n}[x, y]=[x, y]$, for all $x, y \in R$. Thus $y=e^{n} y-e^{n+1} y+e y=$ ($\left.e^{n}-e^{n+1}+e\right) y \in R y$, and hence the asseration is clear. Let $m>1$ and $n>0$, and let $u \in N$. Following the same argument as in (a), we have $x^{t n}[x, u]=0$, and $u=u e$ for some $e \in R$. Thus $u=e u$. Let $x \in R$, then there exists $e^{\prime}, \in R$ such that $x e^{\prime}=x$ and for some $e^{\prime \prime} \in R, e^{\prime} e^{\prime \prime}=e^{\prime}$. Thus $x e^{\prime \prime}=x$. Therefore $\left(x-e^{\prime \prime} x\right)^{2}=0$, and hence $\left(x-e^{\prime \prime} x\right) \in N$. Thus $x-e^{\prime \prime} x=\left(x-e^{\prime \prime} x\right) e^{\prime}=e^{\prime}\left(x-e^{\prime \prime} x\right)=0$ which forces $x=e^{\prime \prime} x$. Hence R is s-unital, and R is commutative by Theorem.

Remark 2. ([7, Remark]) let K be a field. Then, the non-commutative ring $R=\left(\begin{array}{ll}K & 0 \\ K & 0\end{array}\right)$ has a right identity element and satisfies $x[x, y]=0$.

Acknowledgement.

I would like to express my gratitude and indebtedness to the referee for his helpful suggestions and valuable comments, and I am thankful to Dr. M.S. Khan for his valuable advice.

References

[1] H. Abu-Khuzam, H. Tominaga and A. Yaqub, Commutativity Theorems for s-unital rings satisfying polynomial identities, Math. J. Okayama Univ., 22, (1980), 111-114.
[2] H. E. Bell, On some commutativity theorems of Herstein, Arch. Math., 24, (1973), 34-38.
[3] H. E. Bell, Some commutativity results for rings with two variable constraints, Proc. Amer. Math. Soc., 53, (1975), 280-285.
[4] H. E. Bell, A commutativity condition for rings, Canad. J. Math., 28, (1976), 986-991.
[5] I. N. Herstein, A generalization of a theorem of Jacobson, Amer. J. Math., 73, (1951), 756-762.
[6] Y. Hirano, Y. Kobayashi and H. Tominaga, Some Polynomial identities and commutativity of s-unital rings, Math. J. Okayama Univ., 24, (1982), 7-13.
[7] H. Komatsu, A commutativity theorem for rings, Math. J. Okayama Univ., 26, (1984), 109-111.
[8] W. K. Nicholson and A. Yaqub, A commutativity theorem for rings and groups, Canad. Math. Bull., 22, (1979), 419-423.
[9] W. K. Nicholson and A. Yaqub, A Commutativity theorem, Algebra Universalis, 10, (1980), 260263.
[10] E. Psomopoulos, A commutativity theorem for rings, Math. Japon., 29 No. 3 (1984), 371-373.
[11] E. Psomopoulos, Commutativity theorems for rings and groups with constraints on commutators, Internat. J. Math. and Math. Sci., Vol. 7 No. 3 (1984), 513-517.
[12] E. Psomopoulos, H. Tominaga and A. Yaqub, Some commutativity theorems for n-torsion free rings, Math. J. Okayama Univ., 23, (1981), 37-39.
[13] M. A. Quadri and M. A. Khan, A commutativity theorem for left s-unital rings, Bull. Inst. Math. Acad. Sinica 15, (1987), 323-327.
[14] M. A. Quadri and M. A. Khan, A commutativity theorem for associative ring, Math. Japon., 33 No. 2 (1988), 275-279.
[15] H. Tominaga and A. Yaqub, Some commutativity properties for rings II, Math. J. Okayama Univ., 25, (1983), 173-179.
[16] H. Tominaga and A. Yaqub, A commutativity theorem for one - sided s-unital rings, Math. J. Okayama Univ., 26, (1984), 125-128.

Department of Mathematics, Faculty of Science, King Abdul-Aziz University, P.O. Box 9028, Jeddah 21413, Saudi Arabia.

