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A GENERALIZATION OF SOME COMMUTATIVITY 
THEOREMS FOR RINGS I 

H. A. S. ABU JABAL 

Abstract. In this paper we generalize some well-known commutativity theorems 
for rings as follows: Let m > I, and n, k be non-negative integers. Let R be ans 
unital ring satisfying the polynomial identity [xny - ymxk, x] = 0, for all x, y ER. 
Then R is commutative. 

1. Introduction. 

Throughout the present paper, R will represent an associative ring (may be without 
unity 1). Let Z(R)denote the center of R, N' the set of all zero divisors of R, N the set 
of all nilpotent elements of R, and C(R) the commutator ideal of R. For any x, y E R, 
we set as usual [x,y] = xy- yx. 

A ring R is called left (resp. right) s-unital if x E Rx (resp. x E xR) for every x E R. 
Further, R is called s-unital if R is both left and right s-unital, that is x E Rx n xR, for 
every x E R. As stated in [6] and [13], if R is s-unital (resp. left or right s-unital), then 
for any finite subset F of R there exists an element e E R such that ex = xe = x (resp. 
ex= x or xe = x) for all x E F. Such an element e will be called a pseudo-identity (resp. 
pseudo left identity or pseudo right identity) of F in R. 

A theorem of Bell [3] has been generalized by Quadri and Khan [14] as follows: 
If R is a ring with unity 1 and m > 1, k ~ l be integers such that for all x, y E R, 
[xy - ymxk, x] = 0, then R is commutative. The commutativity of a left s-unital ring 
satisfying [xy- ymxk,x] = 0, (m > l,k ~ 1), for all x,y ER has been proved in [13] 
by Quadri and Khan. In [10] Psomopoulos has shown that an s-unital ring R in which 
[xny-ymx,x] = 0, (m > 1,n ~ 1) holds for all x,y ER must be commutative. 

In this paper, motivated by the above polynomial identities and the polynomial 
identity xn[x, y] = [x, ym] considred by Komatsu [7], we intend to prove a result on the 
commutativity of an s-unital ring satisfying the following property: 
(P) "there exist integers m > 1, n ~ 0, and k ~ 0 such that [xny - ymxk, x] = 0, for all 

x, yin R". 
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2. Preliminaries. 

In preparation for the proof of our result, we first state the following well-known 
results. 

Lemma 1. {[8, Lemma 31). Let x, y E R, If [x, [x, y]] = 0, then for any positive 
integer k, [xk,y] = kxk-1[x,y]. 

Lemma 2.([9, Lemma]). Let R be a ring with unity 1, and let x, y be elements of 
R. If for some integer k > 1, xky = 0 = (x + l)ky, then necessarily y = 0. 

Lemma 3. {[13, Lemma 3}). Let R be a ring with unity 1. If (l - yk)x = 0, then 
(1 - ykm)x = 0, for any positive integers m, and k. 

Lemma 4. {[6, Proposition 2}). Let f be a polynomial in noncommuting inde 
terminates xi, x2, ... , Xn with integer coefficients. Then the following statements are 
equivalent: 
1) For any ring R satisfying f = 0, C(R) is a nil ideal. 
2) Every semiprime ring satisfying f = 0 is commutative. 
3) For every prime p, (GF(p))2 fails to satisfy f = 0. 

3. Main theorem and its corollaries. 

The main result of this paper is the following: 

Theorem. Let R be an s-unital ri":g satisfying the properly (P), then R is commu 
tative. 

Let us pause to notice that for any x, y E R, the property (P) can be expressed as: 

(1) 

Then for any positive integer t, we have 

x(t-l)n(xn [x, y]) 

x(t-l)n[x, ym]xk 

x(t-2)n(xn [x, ym])xk 

x(t-2)n[x, ym2]x2k 

By repeating the above process and using (1), we obtain 

tn[ ] [ m'] tk x x,y = x,y x . (2) 

Now, we prove the following lemmas which will be used in the proof of our main 
theorem. 
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Lemma 5. Let R be a ring with unity which satisfies the property (P), then N ~ 
Z(R). 

Proof. Let u E N. Then by (2) for any x E R, and a positive integer t 2: 1, we 
have xtn[x, u] = [x, um']xtk. But since u is nilpotent, then um' = 0, for sufficiently large 
t and we get xtn[x, u] = 0 for all x in R. But (x+ l/n[x, u] = 0 = xtn[x, u], for all x ER, 
then by Lemma 2, this yields [x, u] = 0. Therefore u E Z(R), and hence N ~ Z(R). 

Lemma 6. Let R be a ring with unity 1 which satisfies the properly (P), then 
C(R) ~ Z(R). 

Proof. In view of Lemma 4, C(R) is a nil ideal, since x = e22 and y = e21 fail to 
satisfy (1) in (GF(p))2, for a prime p. Hence by Lemma 5, we obtain C(R) ~ Z(R), 

where e21 = ( ~ ~) , and e22 = ( ~ ~) . 
Remark 1. In view of Lemma 6, it is guaranteed that Lemma 1 holds for any pair 

of elements x and y in a ring with unity 1 which satisfies the property (P). 

Lemma 7. Let R be a ring with unity 1 satisfying the property (P). Then R is 
commutative. 

Proof. The ring R is isomorphic to subdirect sum of subdirectly irreducible rings 
Ri, each of which as a homomorphic image of R satisfies the property placed on R. Thus 
R itself can be assumed to be subdirectly irreducible ring. Let S be the intersection of 
all its non-zero ideals, then Sf. (0). 

Now, if n = k = 0, then we have [y - ym, x] = 0, for all x, y ER and consequently 
by (5, Theorem 18] R is commutative. Let n = 0 and k = l in (1), then replacing x by 
(x+ 1) we obtain [x, ym] = 0, for all x, y ER. Thus [x,y] = [x, ym]x = 0, for all x, y ER. 
Therefore R is commutative. 

Next, suppose that n 2: 1 or k 2: 0. Let q = 2m - 2 be a positive integer. Then by 
(1) we have 

2mxn[x, y] - 2xn[x, y] 
2m[x,ym]xk - xn[x, 2y] 
[x,(2y)m]xk - [x,(2y)m]xk 
0. 

By Lemma 2, we get q[x,y] = 0, for all x,y in R. Now combining Lemma 6 with Lemma 
1, we obatin [xq,y] = qxq-l[x,y] = 0. Thus 

xq E Z(R), for all x, y ER. 

Replace y by ym in ( 1), then we get 

(3) 

(4) 
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Also by Lemma 6 and Lemma 1, we have 

and, 

Thus ( 4) gives 
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[x,ym]xn 

mym-l[x,y]xn 

mym-1 xn[x, y] 
mym-l[x, ym]xk. 

m(ym)m-1 [x, ym]xk 

mym2-m[x, ym]xk 

mym-ly(m-1)2 [x, ym]xk. 

myCm-1)(1- yCm-l)2)[x, ym]xk = 0. (5) 

Replace x by (x + 1) in (5), then we get mym-1(1 - yCm-l)
2
)[x, ym](x + ll = 0. So by 

Lemma 2, mym-1(1-y(m-l)2)[x,ym] = 0. Then Lemma 3 gives 

(6) 

Next, we claim that N' ~ Z(R). Let u E N', then by (3) uq(m-1)
2 

E N' n_ Z(R), 
and Suq(m-l)2 = 0. By using (6) we obtain muCm-l)[x, um](l - uq(m-l)2) = 0. 

If mum-l [x, um] / 0, then (1 - uq(m-1)2) EN', and so S(l - uq(m-l)2) = 0 which 
gives a contradiction that S # (0). Therefore mum-l[x, um] = 0. From (1) and using 
Lemma 1 repleatedly we obtain 

xn(xn[x,u]) 
xn[x, um]xk 

[x, um2]x2k 

mum(m-l)[x, um]x2k 

mum-lu(m-1)2 [x, um]x2k 

mum-I [x' um]uCm-1)2 x2k. 

This implies that x2n[x, u] = 0. Hence Lemma 2 gives [x, u] = 0, that is u E Z(R). 
Therefore N' ~ Z(R). 

Now, for any x E R, xq and xqm E Z(R). Then by (1) for any y ER, we have 

xq(xn[x, y]) - xqm(xn[x, y]) 
xn(xq[x,y]) - xqm[x,ym]xk 

xn[x,xqy] - [x,(xqy)m]xk 
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Therefore, (xq - xqm)xn[x,y] = 0, and 
(x - xqm-q+l )xn+q-l [x, y] = 0. (7) 

Now, if R is not commutative, then by (5, Theorem 18], there exists an element 
x E R such that (x - xt) ft Z(R), where t = qm - q + l. This also reveals x ft Z(R): 
Thus neither x nor (x - xt) is a zero-divisor, and so (x - xt)xn+q-l ft N'. Hence (7) 
forces that [ x, y] = 0, for all x, y E R. Thus x E Z ( R) which is a contradiction. Therefore 
R must be commutative. This completes the proof. 

Corollary 1. {[14, Theorem}). Let R be a ring with unity 1, and let m > l and 
k 2:: 1 be fixed positive integers. If [ xy - ym xk, x] = 0, for all x, y in R, then R is 
commutative. 

Proof. Put n = l, and take, k 2:: 1 in Lemma 7. Then we obtain [xy-ymxk,x], 
for all x, y E R. Then by Lemma 7, R must be commutative. 

Proof of the theorem. In view of Proposition 1 of [6], R is commutative, if R with 
unity 1 satisfying the property (P) is commutative, and this is guaranteed by Lemma 7. 

Corollary 2. {[10, Theorem]}. Let R be an s-unital ring, and let m > 1 and n > 1 
be fixed positive integers. If [x"y- ymx, x] = 0, for all x, y E R, then R is commutative. · 

Proof. Set k = l, and consider n 2:: 1 in the main theorem. Then we obtain 
[xny - ymx, x] = 0 for all x, y E R and m > 1. Thus the commutativity of R follows 
from the main Theorem. 

Corollary 3. {[13, Theorem}). Let R be a left s-unital ring. If there exist positive 
integers m > l and k 2:: 1 such that for any x, y E R, [xy - ymxk, x] = 0, then R is 
commutative. 

Proof. By [13, Lemma 4] R is s-unital. Then the commutativity of R follows from 
Proposition 1 of [6], and Corollary 1. 

Corollary 4. ([7, Theorem}) Let m, n be fixed non-negative integers. Suppose that 
R satisfies the polynomial identity 

(a) If R is left s-unital, then R is commutative except when (m,n)= (1,0). 
(b) If R is right s-uniial, then R is commutative except form= 1, and n = O; and also 
m = 0 and n > 0. 

Proof. ( a) Let R be a left s-unital ring, and let x, y E R such that ex = x and ey = y 
for some element e ER. If m = 0, and n > 0, then x[x,y] = 0, and hence y = ye E yR. 
Thus R is s-unital, and R is commutative by Theorem. If m = 1, and n > 0, then (*) 
becomes xn[x,y] = [x,y]. Hence x = xn+l - xn+le + xe = x(xn - xne + e) E xR. Thus 
R is s-unital, and R is commutative. 
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Next, we may assume that m > 1 and n > 0. By making repeated use of(*), we see 
that for any positive integer t 

(**) 

Let u E N. Then for any x ER, and t 2: 1 we have by (**), xtn[x, u] = [x, um']. But 
since u is nilpotent, um' = 0 for sufficiently large t. Thus xt"[x, u] = 0. Since R is left 
s-unital, then u = eu for some e ER. But etn[e, u] = 0 which gives u = ue. Let x E R, 
then there exists e' ER, such that e'x = x. Further, for some e" ER, e"e' = e', and thus 
e" x = x. Therefore ( x - xe")2 = 0, that is ( x - xe") E N. Since e' ( x - xe") = x - xe" 
we have x - xe" = (x - xe")e' = 0 which gives x = xe". Hence R is s-unital. Thus R is 
commutative by the main Theorem. 

(b) Let R be a right s-unital ring, and let y E R such that ye = y, for some e E R. 
If m = 1, and n > 0 then xn[x, y] = [x,yJ, for all x, y ER. Thus y = eny- en+ly + ey = 
(en - en+l + e)y E Ry, and hence the asseration is clear. Let m > 1 and n > 0, and 
let u E N. Following the same argument as in (a), we have xtn[x, u] = 0, and u = ue 
for some e E R. Thus u = eu. Let x E R, then there exists e'. E R such that xe' = x 
and for some e" E R, e' e" = e'. Thus xe" = x. Therefore ( x - e" x )2 = 0, and hence 
(x - e"x) E N. Thus x - e"x = (x - e"x)e' = e'(x - e"x) = 0 which forces x = e"x. 
Hence R is s-unital, and R is commutative by Theorem. 

Remark 2. ([7, Remark]) let I{ be a field. Then, the non-commutative rmg 

R= (~~ ~) has a right identity element and satisfies x[x,y] = 0. 
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