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GENERALIZED HILBERT INTEGRAL OPERATORS
ON THE HERZ SPACES

KUANG JICHANG

Abstract. This paper gives some necessary and sufficient conditions for the gen-
eralized Hilbert integral operators to be bounded on the Herz spaces. The corre-
sponding new operator norm inequalities are obtained.

1. Introduction

Considerable attention has been given to the classical Hilbert operator 1" defined by

1.0 = [ () fd (1)

z+y
and the classical Hilbert inequality
i

HTfHP § sin(ﬂ/p)

[fllp, for 1 <p < oo, (1.2)

where [|f, = (J5° |f(z)|Pdz)'/P and the constant factors 7/ sin(w/p) is the best value
(see [1]). In view of the mathematical importance and applications, considerable atten-
tion has also been given to various improvements, refinements and extensions of many
inequalities by various authors (see e.g., [3, 4, 5, 6, 7, 8, 9, 10, 11] and the references cited
therein).However, hardly any work was done on inequalities on the Herz spaces. It is
well-known that the Herz spaces play an important role in characterizing the properties
of functions and multipliers on the classical Hardy spaces. In recent years, a series of pa-
pers have paid more attention to the study of the Herz spaces themselves (see [12, 13]).
The aim of this paper is to establish some new inequalities related to the generalized
Hilbert integral operator

1.0 = | " K y) )y (13)

with the general kernel K (z,y). We obtain some necessary and sufficient conditions
for the generalized Hilbert integral operator T' to be bounded on the Herz spaces. The
corresponding new operator norm inequalities are obtained.
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2. Definitions and statement of the main results

Definition 1. Let « € R, 0 < p, ¢ < 00, By, = {x € R" : |v| < 2}, D;, = By — By
(k€ Z), ¢ = pp, denote the characteristic function of the set Dy.

(1) The homogeneous Herz space K JP(R™) is defined by [12]:

Kgr(R) = {f € L, (R" = {0}) « | flljgn (R") < o0}, (21)
where

00 1/p
iz ={ 3 2oz} (22)

k=—o0

(2) The homogeneous Herz type space K, &P (w) is defined by

Kgp(w) = {f € L (B~ {0)): | fllgoy < o0 ). (2:3)

y }W; (2.0

We can similarly define the non-homogeneous Herz space K *P(R") and K "P(w).
It is easy to see that when p = ¢, we have KS*’(R”) = KpP(R") = LP(R"), and
O‘/pp(R") = a/pp(R") L?(|z|*dx). Throughout this paper, we write

= ([ r@roma)”

Our main results are the following two theorems:

where

W llics oy = {

k=—o0

Theorem 1. Leta € R, 0 < p <00, A >0 and 1 < q < oo, w(z) = (1N, Let
F(p) = [;ZtO1-YOPKP(1,t)dt and K(xz,y) be a nonnegative measurable function on
,00) X (0,00) which satisfies the following conditions:

(0
(1) K(tz,ty) =t K (z,y) for all t > 0;
(2) There exist the constants C1(p), Ca(p) > 0, such that

F(1) < Ci(p){F(p)}?, for 1<p< oc; (2.5)
F(1) < Ca(p){F()}'/7, for 0<p<1.

Then the generalized Hilbert integral operator T defined by (1.3) is a bounded operator
Jrom K&P(w) into KgP(RY) if and only if

(o]
/ Ao =W R (1 4)dt < oo, (2.7)
0
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Moreover, when (2.7) holds, the operator norm ||T|| of T on K:;’p(w) satisfies the following
inequality:

%) o
|t R s < 7] < Cpa) [ O (@)
0 0

where

1p=1 1/p lal
Olp. ) = {2 {C1(1/p)}/PCa(p)(1 +21°0), 0<p<1 o)

21—1/p01(p){02(1/p)}1/;v(1 + 2|Oé\)7 1<p<o0 .

Corollary 2. If t\ '=Y4K(1,t) is concave function on (0,00) and K(1,t) has com-
pact support: supp K(1,t) C [0,b], then by (2.5), (2.6), Holder inequality and Theorem
24 in [2, §43, pp.43-44], we obtain Cy(p) = b'~Y/P and Cy(p) = 271 (1 + p)/Pb'~V/P, thus
by (2.9), we get

21/P=2(1 4 p)/r(1 20y, 0<p<1
C(p,a)_{ (L+p)/P(L 42, 0<p 010

21-2/P(14 1/p)(1+21°), 1<p<oo’

Theorem 3. Let o« € R, 1 < p < oo, A >0 and K(x,y) be a nonnegative measurable
function defined on (0,00) x (0,00). Which satisfies the following condition: K (tz,ty) =
t= K (x,y) for all t > 0. Let wy(x) = 2 and wy(z) = (1= NPT* Then the generalized
Hilbert integral operator T is defined by (1.3) is a bounded operator from LP(ws) into
LP(w1) if and only if

(o]
/ A1 FD/P R (1) dt < oo (2.11)
0
Moreover, when (2.11) holds, the operator norm |T|| of T on LP(ws) satisfies

|| = / A1 @FD/P R (1 ) dt. (2.12)
0

IfK(x,y) = %cp(o,x)(y), A > O‘T'fl, then by (1.3) and (2.12), we reduced the classical Hardy
operator

To(fe) = [ iy

and

{/OOO » [ s

where ||Tol| = p/(Ap — o — 1) is the best possible constant. In pacticular, when o = 0,
A =1, (2.13) reduce to the classical Hardy inequality [3, 4]:

(/Ooo %/Ox ft)dt pdm) v < L(/OOQ |f(x)|de) l/p. (2.14)

p 1/p o0 1/p
:co‘d:c} <L< / | f(x)|ﬁm<“>fﬂ+adx) . (2.13)
0

“Ap—a-—1

p—1
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Hence, our main results imply many useful inequalities with the best constant factors.

There are some similar results for the non-homogeneous Herz spaces. We omit the
details here.

3. Proofs of Theorems 1 and 3

In what follows, we shall write simply Kg’p(R_lF) and Kg’p(w) to denote K and K (w),
respectively.

Proof of Theorem 1. Using Minkowski inequality for integrals and setting y = tx,

||<Tf>gok|q:{/ / v }1/q
S/o (/Dk| f(ta) 7= A)qdﬂc)l/qK(l,t)dt

© /q
= / / [f)|ytNaay ) YK (1, t)dt.
0 2k—1g<y<2kt

For each t € (0, 00), there exists an integer m such that 2m~! < ¢ < 2™, Setting

we get

Agm ={y € (0,00) : oftm—1 < 2k+m},

we obtain
LS 1/q

I syeela < | ( | iwrewa [ If(y)lqw(y)dy> PR (L
0 A(k 1),m Ak,m

[oe]
< [ (I ortmmtllaw + 1 sl )R (1

It follows that

ITf|K<{ ZW[ | (1 orimla

k=—o0

p) 1/P
7 )tk—l—l/qK(l,t)dt} } .

(3.1)
Now, we consider two cases for p:

Case 1. 0 < p < 1. In this case, it follows from (3.1), (2.6) and (2.5) that

171l < Calo) > 2 [T

k=—o0

+ I rsml)
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1/p
xt(All/Q)pr(l,t)dt}

o0
S21/”_1C2(p){[ DAt [V CTY [

k=—o0

. 1/p
0

o] o) 1/p
+[ S 2 mer) fop / 2mapt<“1/q>pffp<1,t>dt} }

k=—o0

<27 HC (/)Y P Co (D)1 N /0 (27 2TV (1, 1)t

<2 C) 1+ 2D e [ OTIR L0 (32)

Case 2. 1 < p < co. In this case, it follows from (3.1), (2.5) and (2.6) that

o0 00
> 2 [ (1 foniml
0

k=—o0

p
1711 < Ga(o){ oo+ 1 itrmlle

1/p
xt(A_l_l/Q)”K”(l,t)dt}

p
q,w

< 211/p01(P){ { > 2tmeher| fop ]

k=—o0

oo 1/p
% / g~ (m=ap(A—1-1/a)p [cp (7 t)dt}
0

]

< 21—1/7’01(p)Cz(l/p)l/”HfHK(w)/ (27 (m e qgmmey A=A (1, )t
0

0o o) 1/p
Z 2(k+m)ap||f90k+m”g,w/0 2—mapt(>\—1—1/Q)pr(17t)dt:|

k=—o00

o0
<2 (p)Ca(1/p) (14 2y [ O L (33
0
Hence, by (3.2) and (3.3), we get
o0
I7] < Cp.a) [ Ak (3.4)
0

where C(p, «) is defined by (2.9).
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To prove the opposite inequality, we set for each ¢ € (0, 1),

o 07 O<zx S 17
fe(l') - x)\—a—l—l/q—e7 x> 1,
then
1=kl =/ g(A—am1=1/a=9)a,(1=Na gy = Oyo-klate)a (3.5)
q,w 2k71<x§2k )
where o
2 aTe)q 1
Oy= |2 —-
(a+¢)q
It follows that
ok 1/qo—k(a-+te) e 1/q 27¢
Observe that .
T(feyx) = 2~ (0FH/0+9) / Aot | (1, 1) dt. (3.7)
;Cfl

For each ¢ € (0, 1), there exists a positive integer [, such that 2/=! < 1/e < 2!, so that

[e )

1T fell% = ZQkOép{ /l‘>1 [T(ffax)@k(x)}qdm}p/q

k=1

- - q p/q
:ZQIWP / x—(a+1/q+a)q(/ tA—(a+1+1/q+a)K(1,t)dt) dx
k=1 2k-l<p<2k @t
0o oo p
> Z 2kap</ tA—(a+1+1/q+a)K(17t)dt) (/
€ 2

p/q
x—(a+1/q+a)qu>
k=l+1

k—1gp <2k

o0

o0 P p/a
- (/ t’\_(a+1+1/q+€)K(1,t)dt) Z Qkap(csg—k(a-i-&)Q)
€ k=l+1
oo p2—6p(l+1)
= Cg/q(/ tk_(a+1+1/Q+5)K(1,t)dt) m (38)
€
Thus,
oo
||| > T fellx 2—61/ A (et 1/ate) (0 (1 4)dt. (3.9)
ek e

Take limits as ¢ — 0 in (3.9), we obtain
(o)
sl z/ (et g (1 ) dt.
0

This finishes the proof of Theorem 1.
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Proof of Theorem 3. By Minkowsks inequality for integrals and setting y = tx, we

have
po < { / N ( / N K(x,y>|f<y>|dy)pxadx}l/p

0o oo 1/p
< / { / | f(m)|p:c<1—k>p+adx} K1, 1)t
0 0

,,M/ A1 @FD/P R (1 ) dt.
0

1T

= [/l

It follows that
1T fllp,wn % A—1—(a+1)/
IT|| = sup 7——2=2 < t PK(1,t)dt. (3.10)
££0 |1 fllpws 0

To prove the opposite inequality , we set for any ¢ € (0, 1),

0, 0<ax <,
Je(@) = A 1-(Fa)/p—e, x>1,

then
& 1
P —pe—lg. — 3.11
el = [ 77 = (3.11)

Thus,

1/p
1T felpor = < / |T<f€,z)|pxadx)
x>1

o » 1/p
/ x7(1+p€) </ t)\flf(lJra)/psz(l’ t)dt) dx
z>1 1

(/ tk_l_(Ha)/p—eK(Lt)dt)(pf)_l/p-

Y

This implies

T o0
7| > 1T fellp.cn 2/ A=A+ /p=e (1, ) dt. (3.12)
€

[ fellp.w

Take limits as ¢ — 0 in (3.12), we get
(o)
|T|| > / AP R(1 1)t (3.13)
0

Then by (3.12) and (3.13), we have ||T| = [~ ¢*1~(+2)/PK(1,¢)dt. The Theorem is
proved.
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