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ON SOME PROPERTIES OF MONIC POLYNOMIALS

P. BHATTACHARYYA

1. Introduction

Let
f(z2) = Tl TN ol R W k> 2

be a monic polynomial of degree k.
Let E{z :| f(z) |< R} where R > 0 and d(E) be the diameter of the set E. Then

we prove

Theorem 1.

d(E) > 2RY*

The theory of iteration of a rational or entire function of a complex variable z deals
with the sequence of natural interates f,,(z) defined by

Bolz) = & Faila)= f5LZ); n=0,1~- .

In the theory developed by Fatou [3,4] and Julia [5], the central object of study is the
Fatou Set of those points of the complex plane in no neighbourhood of which the sequence
of natural interates { fn(2)} forms a normal family in the sense of Montel. Unless f(z) is
a rational function of order 0 or 1, the set F'(f) is a nonempty perfect set. For a survey of
the main properties of the Fatou Set we refer the reader to the excellent paper of Brolin
[2]. Bhattacharyya and Arumaraj [1] considered the question of bounds of the diameter
of the set F(f) where f(z) is a monic polynomial. They conjectured that if f(z) is a
monic polynomial of degree > 2, then d(F(f)) > 2.
We will show that this conjecture follows from our Theorem 1. We thus have

Theorem 2. If f(z) is a monic polynomial of degree k > 2, then d(F(f)) > 2.

We also prove

Theorem 3. If d(F(f)) = 2 where f is a monic polynomial of degree k > 2, then
f(2) = (z = &)k, k > 2 for some o which can be zero.
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If « is zero then it is obvious that d(F(z*)) = 2. This shows that the bounds
obtained in theorem 1 and 3 are sharp.
We prove our theorems in section 2.

2. Proof of the theorems

We first prove theorem 2, assuming theorem 1 which we shall prove next.

Proof of theorem 2. Let {f,(2)} be the natural iterates of f(z) where
f2) = 2% + @mz*t oo 4o, E3 0,

We use the construction employed by Bhattacharyya and Arumaraj [1] for F(f). We
choose R > 0 such that

| f(2) | > Rfot |z |> R.

We set
D_n, = {z:]| fa(z) |< R}
and define
D e ngozoD_n.

Then F(f) = 0D.

From theorem 1 we have
d(D_,) > 2RY*" > 2 for every n.

Thus d(D) > 2, i.e. d(F(f)) > 2.
This proves the theorem.

Proof of theorem 1. Take any constant 5 such that | 7 |= 1. We shall find this 7
later. The equation

nf2) = f) (2.1)
defines a member of the function elements of z = oo which have the form
b b
w:nllkz+b0+?1+z_§+"‘ (2'2)

one for each k-th root of 7. Note that w is not linear. Each such function element is a
branch of an algebraic function w of z which satisfies (2.1). All possible branches which
arise from analytic continuation are analytic for all finite z, except for a finite number of

algebraic singularities and at these singularities and at these singularities the value of w
is finite since w = oo implies z = 0.
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Denote by g(z) any value of one of the algebraic branches obtained as above from
(2.2). Then

nf(z) = f(9(2))
so that if z is in F i.e. | f(2) |< R then

| fa(2)) [=1af(2) | < R

ie. g(F) C E and g(OF) C E as 0F is {z :| f(2) |= R}. Thus

{d(E)}’c 2 max|z-g(z) [f

1.e.

{am)} 2 mex {R1:-aG) 1 /15G)1} (23)

Now
¢(z) = (z—g(2)*/f(z) (2.4)

is analytic at co with ¢(c0) = (1 — u)* where p is the determination of 5'/* taken for
g(z) in (2.2). We choose = +1 or —1 according as k is even or odd, so that n = (—1)*.
Taking the determination pu = 9'/* = —1, gives ¢(co0) = 2 for the corresponding branch
g(z)-

We now continue the branch of g just defined to obtain all possible analytic con-
tinuations, keeping z restricted to the domain D = (C U {00})\E. This gives rise to
a possibly many valued (algebraic) function which has atmost finitely many algebraic
singularities at certain finite points and a number of branches, each with a simple pole
at co, where g is as in (2.2). ' |

The corresponding continuation of ¢ in (2.4) remains finite at finite points of D, since
f(z) # 0 in D, while the values at co are of the form (1 — '/¥)¥ of which the greatest
is 2%, Let the set of these continuations be denoted by ¢*. If ¢* is not a constant, the
values ¢*(D) form an open connected set by the open mapping theorem. The branches
¢* are continuous in D, bounded at z = oo, so in fact ¢*(D) is bounded, since ¢*(D)
contains the value 2F.

Set :
B = sup {:r: |z >0, zin ¢*(D)}.

Then B is ¢(y) for some v in D = HE. ,
[For there exist z, in D, branches ¢, ¢n(2,) — B. We can assume z, converges in D
and z, 4 oo since g > 2*.

Thus z, — oo in D and we can assume all ¢n are in fact the same ‘branch’ of ¢
since they are but finitely many. Thus ¢(y) = 8 is in the boundary of ¢*(D). By the
open mapping theorem 8 € D, so f € 0D =90F = z :| f(z) |= R].
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Taking z = # and fixing g so that

|7Rﬁ”v 8(r) =

We have in (2.3)
d(E)* > R-8 > 2*R.

Thus
d(E) > 2RY*,

The proof of the theorem is now complete.

Proof of theorem 3. Take ¢ =constant 2% where ¢ is as in the proof of theorem
1. Consider the expansions near a zero of f(z). Suppose that

&) = az—a) + -,

sor<k.
Then z = g(2) at z = «, so g(a) = a. By (2.1)
Ae=af + = (g=a) + -
so that
g — a = n/"(z—a) + higher terms.
Hence
z—g(z) = (z—a)(1=n*") + higher terms of (z —a).

This gives

ok _— _(z;g(zlk
f(z)
= (z-a)*"(1=9*"") + ..., k—r>0.
But then k —r < 0. Hence r must be equal to k. This means that f has a single zero of
order k at o. Hence f must be (z — a)F.

From Theorem 2 it follows that
d(F(f)) = 2 implies f(z) = (z — @)* and conversely.
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