ON SOME PROPERTIES OF MONIC POLYNOMIALS

P. BHATTACHARYYA

1. Introduction

Let

 $f(z) = z^k + a_1 z^{k-1} + \cdots + a_k, \qquad k \ge 2$

be a monic polynomial of degree k.

Let $E\{z : | f(z) | \le R\}$ where R > 0 and d(E) be the diameter of the set E. Then we prove

Theorem 1.

$$d(E) \geq 2R^{1/k}$$

The theory of iteration of a rational or entire function of a complex variable z deals with the sequence of natural interates $f_n(z)$ defined by

$$f_0(z) = z, f_{n+1}(z) = f(f_n(z)), n = 0, 1, \cdots$$

In the theory developed by Fatou [3,4] and Julia [5], the central object of study is the *Fatou Set* of those points of the complex plane in no neighbourhood of which the sequence of natural interates $\{f_n(z)\}$ forms a normal family in the sense of Montel. Unless f(z) is a rational function of order 0 or 1, the set F(f) is a nonempty perfect set. For a survey of the main properties of the *Fatou Set* we refer the reader to the excellent paper of Brolin [2]. Bhattacharyya and Arumaraj [1] considered the question of bounds of the diameter of the set F(f) where f(z) is a monic polynomial. They conjectured that if f(z) is a monic polynomial of degree ≥ 2 , then $d(F(f)) \geq 2$.

We will show that this conjecture follows from our Theorem 1. We thus have

Theorem 2. If f(z) is a monic polynomial of degree $k \ge 2$, then $d(F(f)) \ge 2$.

We also prove

Theorem 3. If d(F(f)) = 2 where f is a monic polynomial of degree $k \ge 2$, then $f(z) = (z - \alpha)^k$, $k \ge 2$ for some α which can be zero.

Received June 20, 1989.

P. BHATTACHARYYA

If α is zero then it is obvious that $d(F(z^k)) = 2$. This shows that the bounds obtained in theorem 1 and 3 are sharp.

We prove our theorems in section 2.

2. Proof of the theorems

We first prove theorem 2, assuming theorem 1 which we shall prove next.

Proof of theorem 2. Let $\{f_n(z)\}$ be the natural iterates of f(z) where

$$f(z) = z^k + a_1 z^{k-1} + \cdots + a_k, \ k \ge 2.$$

We use the construction employed by Bhattacharyya and Arumaraj [1] for F(f). We choose R > 0 such that

$$|f(z)| > R$$
 for $|z| > R$.

We set

$$D_{-n} = \{z : | f_n(z) | \le R\}$$

and define

$$D = \bigcap_{n=0}^{\infty} D_{-n}.$$

Then $F(f) = \partial D$.

From theorem 1 we have

$$d(D_{-n}) \geq 2R^{1/k^n} \geq 2$$
 for every n .

Thus $d(D) \ge 2$, i.e. $d(F(f)) \ge 2$. This proves the theorem.

Proof of theorem 1. Take any constant η such that $|\eta| = 1$. We shall find this η later. The equation

$$\eta f(z) = f(\omega) \tag{2.1}$$

defines a member of the function elements of $z = \infty$ which have the form

$$\omega = \eta^{1/k} z + b_0 + \frac{b_1}{z} + \frac{b_2}{z^2} + \cdots$$
 (2.2)

one for each k-th root of η . Note that ω is not linear. Each such function element is a branch of an algebraic function ω of z which satisfies (2.1). All possible branches which arise from analytic continuation are analytic for all finite z, except for a finite number of algebraic singularities and at these singularities and at these singularities the value of ω is finite since $\omega = \infty$ implies $z = \infty$.

248

Denote by g(z) any value of one of the algebraic branches obtained as above from (2.2). Then

$$\eta f(z) = f(g(z))$$

so that if z is in E i.e. $|f(z)| \leq R$ then

$$|f(g(z))| = |\eta f(z)| \le R$$

i.e. $g(E) \subset E$ and $g(\partial E) \subset E$ as ∂E is $\{z : | f(z) | = R\}$. Thus

$$\left\{d(E)\right\}^k \geq \max_{z \in \partial E} |z - g(z)|^k$$

i.e.

$$\left\{ d(E) \right\}^{k} \geq \max_{|f(z)|=R} \left\{ R \mid z - g(z) \mid^{k} / \mid f(z) \mid \right\}.$$
(2.3)

Now

$$\phi(z) = (z - g(z))^k / f(z)$$
(2.4)

is analytic at ∞ with $\phi(\infty) = (1 - \mu)^k$ where μ is the determination of $\eta^{1/k}$ taken for g(z) in (2.2). We choose $\eta = +1$ or -1 according as k is even or odd, so that $\eta = (-1)^k$. Taking the determination $\mu = \eta^{1/k} = -1$, gives $\phi(\infty) = 2^k$ for the corresponding branch g(z).

We now continue the branch of g just defined to obtain all possible analytic continuations, keeping z restricted to the domain $D = (C \cup \{\infty\}) \setminus E$. This gives rise to a possibly many valued (algebraic) function which has at most finitely many algebraic singularities at certain finite points and a number of branches, each with a simple pole at ∞ , where g is as in (2.2).

The corresponding continuation of ϕ in (2.4) remains finite at finite points of D, since $f(z) \neq 0$ in D, while the values at ∞ are of the form $(1 - \eta^{1/k})^k$, of which the greatest is 2^k . Let the set of these continuations be denoted by ϕ^* . If ϕ^* is not a constant, the values $\phi^*(D)$ form an open connected set by the open mapping theorem. The branches ϕ^* are continuous in \overline{D} , bounded at $z = \infty$, so in fact $\phi^*(D)$ is bounded, since $\phi^*(D)$ contains the value 2^k .

Set

$$\beta = \sup \{ x \mid x > 0, x \text{ in } \phi^*(D) \}.$$

Then β is $\phi(\gamma)$ for some γ in $\partial D = \partial E$.

[For there exist z_n in D, branches ϕ_n , $\phi_n(z_n) \to \beta$. We can assume z_n converges in \overline{D} and $z_n \not\to \infty$ since $\beta > 2^k$.

Thus $z_n \to \infty$ in \overline{D} and we can assume all ϕ_n are in fact the same 'branch' of ϕ since they are but finitely many. Thus $\phi(\gamma) = \beta$ is in the boundary of $\phi^*(D)$. By the open mapping theorem $\beta \in D$, so $\beta \in \partial D = \partial E = z : |f(z)| = R]$.

Taking $z = \beta$ and fixing g so that

$$|\frac{\gamma-g(\gamma)}{f(\gamma)}|^k = \phi(\gamma) = \beta.$$

We have in (2.3)

$$d(E)^k \geq R \cdot \beta > 2^k R.$$

Thus

 $d(E) > 2R^{1/k}.$

The proof of the theorem is now complete.

Proof of theorem 3. Take $\phi = \text{constant } 2^k$ where ϕ is as in the proof of theorem 1. Consider the expansions near a zero of f(z). Suppose that

$$f(z) = a(z-\alpha)^r + \cdots,$$

so $r \leq k$.

Then
$$z = g(z)$$
 at $z = \alpha$, so $g(\alpha) = \alpha$. By (2.1)
 $\eta(z - \alpha)^r + \cdots = (g - \alpha)^2 + \cdots$

so that

$$g - \alpha = \eta^{1/r}(z - \alpha) + \text{higher terms}$$

Hence

$$z - g(z) = (z - \alpha)(1 - \eta^{1/r}) + \text{higher terms of } (z - \alpha).$$

This gives

$$2^{k} = \frac{(z - g(z))^{k}}{f(z)}$$

= $(z - \alpha)^{k-r} (1 - \eta^{k/r}) + \cdots, k - r \ge 0$

But then $k - r \leq 0$. Hence r must be equal to k. This means that f has a single zero of order k at α . Hence f must be $(z - \alpha)^k$.

From Theorem 2 it follows that

d(F(f)) = 2 implies $f(z) = (z - \alpha)^k$ and conversely.

References

- Bhattacharyya, P., and Y.E. Arumaraj, On the Fatou Set of Monic Polynomials. Ann. Acad. Sci. Fenn. Ser A I Math. 7, 1982, 157-163.
- [2] Brolin, H., Invariant set under iteration of rational function. Ark. Mat. 6, 1965 -67, 103-144.
- [3] Fatou, P., Sur les equations fonctionnelies. Bull. Soc. Math. France 47, 1919, 161-271, and 48, 1920, 33-94, 208-314.
- [4] Fatou, P., Surl'iteration des fonctions transcendantes entieres. Acta. Math. 47, 1926, 337-370.
- [5] Julia, G., Memoire sur l'iteration des fonctions rationelles. J. Math. Pures Appl. (8) 1, 1918, 47-245.

Indian Institute of Technology, Department of Mathematics, Madras-600 036, India.

250