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ON SOME PROPERTIES OF MONIC POLYNOMIALS 

P. BHATTACHARYYA 

1. Introduction 

Let 
k>2 

be a monic polynomial of degree k. 
Let E{z :I f(z) I::; R} where R > 0 and d(E) be the diameter of the set E. Then 

we prove 

Theorem 1. 
d(E) > 2R1/k 

The theory of iteration of a rational or entire function of a complex variable z deals 
with the sequence of natural interates fn(z) defined by 

fo(z) = z, fn+i(z) = f(fn(z)), n = 0, 1, · · · 

In the theory developed by Fatou [3,4] and Julia [5], the central object of study is the 
Fatou Set of those points of the complex plane in no neighbourhood of which the sequence 
of natural interates {fn(z)} forms a normal family in the sense of Mentel. Unless f(z) is 
a rational function of order O or 1, the set F(f) is a nonempty perfect set. For a survey of 
the main properties of the Fatou Set we refer the reader to the excellent paper of Brolin 
[2]. Bhattacharyya and Arumaraj [1] considered the question of bounds of the diameter 
of the set F(f) where f(z) is a monic polynomial. They conjectured that if /(z) is a 
monic polynomial of degree > 2, then d(F(f)) 2: 2. 

We will show that this _conjecture follows from our Theorem 1. We thus have 

Theorem 2. If f(z) is a monic polynomial of degree k 2: 2, then d(F(f)) 2: 2. 
We also prove 

Theorem 3. If d(F(f)) = 2 where f is a monic polynomial of degree k > 2, then 
J(z) = (z - a)k, k 2: 2 for some a which can be zero. 
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If a is zero then it is obvious that d(F(zk)) = 2. This shows that the bounds 
obtained in theorem 1 and 3 are sharp. 

We prove our theorems in section 2. 

2. Proof of the theorems 

We first prove theorem 2, assuming theorem 1 which we shall prove next. 

Proof of theorem 2. Let {fn(z)} be the natural iterates of f(z) where 

We use the construction employed by Bhattacharyya and Arumaraj [1] for F(f). We 
choose R > 0 such that 

1/(z)I> Rfor lzl>R. 
We set 

D_n = {z :I fn(z) l:s; R} 
and define 

Then F(f) = 8D. 

From theorem 1 we have 

d(D-n) 2:: 2R1/kn 2:: 2 for every n. 

Thus d(D) 2:: 2, i.e. d(F(f)) 2:: 2. 
This proves the theorem. 

Proof of theorem 1. Take any constant TJ such that I TJ I= 1. We shall find this TJ 
later. The equation 

TJ f(z) = f(w) 
defines a member of the function elements of z = oo which have the form 

I/k b1 b2 
w = TJ z + bo + - + - + z z2 

(2.1) 

(2.2) 

one for each k-th root of T/· Note that w is not linear. Each such function element is a 
branch of an algebraic function w of z which satisfies (2.1). All possible branches which 
arise from analytic continuation are analytic for all finite z, except for a finite number of 
algebraic singularities and at these singularities and at these singularities the value of w 
is finite since w = oo implies z = oo. 
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Denote by g(z) any value of one of the algebraic branches obtained as above from 
(2.2). Then 

TJ f(z) 

so that if z is in E i.e. I f(z) I< R then 
f(g(z)) 

I f(g(z)) I= I TJf(z) I~ R 

i.e. g(E) CE and g(8E) CE as 8E is {z :! f(z) I= R}. Thus 

{d(E)}k ~ max I z - g(z) lk 
· zEoE 

i.e. 

{d(E)}k ~ max {RI z - g(z) lk / I f(z) I}. 
IJ(z)l=R 

(2.3) 

Now 
<f;(z) = (z - g(z)l / f(z) (2.4) 

is analytic at oo with </;( oo) = (1 - µ l where µ is the determination of f/1/ k taken for 
g(z) in (2.2). We choose TJ = +1 or -1 according ask is even or odd, so that T/ = (-ll. 
Taking the determination µ = 1)11 k = -1, gives </J( oo) = 2k for the corresponding branch 
g(z). 

We now continue the branch of g just defined to obtain all possible analytic con 
tinuations, keeping z restricted to the domain D = (CU {oo})\E. This gives rise to 
a possibly many valued (algebraic) function which has atmost finitely many algebraic 
singularities at certain finite points and a number of branches, each with a simple pole 
at oo, where g is as in (2.2). 

The corresponding continuation of </Jin (2.4) remains finite at finite points of D, since 
f(z) f. 0 in D, while the values at oo are of the form (1 - TJI/k)k, of which the greatest 
is 2k. Let the set of these continuations be denoted by </;*. If </;* is not a conft.ant, the 
values </J*(D) form an open connected set by the open mapping theorem. The branches 
</;* are continuous in D, bounded at z = oo, so in fact ¢*(D) is bounded, since <f>*(D) 
contains the value 2k. 

Set 
{3 = sup{xlx>O, xin4>*(D)}. 

Then {3 is</>(,) for some 1 in 8D = 8E. 
[For there exist Zn in D, branches <Pn, <Pn(zn) -+ {3. We can assume Zn converges in D 
and Zn f+ oo since {3 > 2k. 

Thus Zn -+ oo in D and we can assume all <Pn are in fact the same 'branch' of¢ 
since they are but finitely many. Thus </>{'Y) = {3 is in the boundary of </>*(D). By the 
open mapping theorem {3 ED, so {3 E 8D =BE= z :I f(z) I= R]. 
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Taking z = /3 and fixing g so that 
I '7(~\,) lk = </>(,) = /3. 

We have in (2.3) 

Thus 
d(E) > 2R1/k. 

The proof of the theorem is now complete. 

Proof of theorem 3. Take </> =constant 2k where </> is as in the proof of theorem 
1. Consider the expansions near a zero of /(z). Suppose that 

f(z) = a(z - a{ + 
so r < k. 

Then z = g(z) at z = a, so g(a) = a. By (2.1) 
TJ( z - a r + . . . = (g - a )2 + ... 

so that 
g - a = r/11

• ( z - a) + higher terms. 
Hence 

z - g(z) = (z - a:)(1 - 1Jlfr) + higher terms of (z - a). 
This gives 

(z - g(z ))k 
f(z) 

(z - at-r(l - T}kfr) + k- r > 0. 
But then k - r ::; 0. Hence r must be equal to k. This means that f has a single zero of 
order k at a. Hence f must be ( z - al. 

From Theorem 2 it follows that 
d(F(f)) = 2 implies f(z) = (z - a)k and conversely. 
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