ON FUNCTIONAL-DIFFERENTIAL INCLUSIONS WITH STATE CONSTR.AINTS

NIKOLAOS S. PAPAGEORGIOU

Abstract

In This paper we examine differential inclusions with memory and state constrains. We prove two existence theorem. One with nonconvex valued orientor field and the other with a convex valued one. Finally we consider also the problem with no state constraints.

1. Introduction.

In this paper we examine functional-differential inclusions with state constraints, defined in a separable Hilbert space X. So the multivalued Cauchy problem under consideration has the following form:

$$
\left\{\begin{array}{l}
-\dot{x}(t) \in N_{K(t)}(x(t))+F\left(t, x_{t}, \dot{x}_{t}\right) \text { a.e. on } T=[0, b] \tag{*}\\
x(u)=\phi(u) \quad \text { for all } u \in T_{0}=[-r, 0]
\end{array}\right.
$$

Here $K(t)$ is the time varying state constraint set which will be convex valued and $N_{K(t)}(x(t))$ is the normal cone to $K(t)$ at $x(t)$ (see Aubin-Cellina [2]). Recall that for all $x \in \overline{K(t)} N_{K(t)}(x)=\partial \delta_{K(t)}(x)$, where $\partial \delta_{K(t)}(\cdot)$ denotes the convex subdifferential of the indicator function $\delta_{K(t)}(\cdot)\left(\delta_{K(t)}(x)=0\right.$ if $x \in K(t),+\infty$ otherwise). Also $F(\cdot, \cdot, \cdot)$ is a multivalued perturbation with values in the Hilbert space X. Given $x: \hat{T}=[-r, b] \rightarrow X$, by $x_{i}(\cdot)$ we will denote the map describing the history from $t-r$ up to time t of $x(\cdot)$. Sn $x_{t}:[-r, 0] \rightarrow X$ is defined by $x_{t}(s)=x(t+s) s \in[-r, 0]$.

We will prove two existence theorems. One with nonconvex valued perturbation and the other with convex valued $F(\cdot, \cdot, \cdot)$. Also we consider the case where $K(t)=X \Rightarrow$ $N_{K(t)}(x)=\{0\}$ and so the multivalued Cauchy problem has no state constraints.

Received July 26, 1989.
Research supported by N.S.F. Grant D.M.S.- 8802688 .
Running head title: "Functional-differential inclusions".
1980 AMS Subject classification: 34 K 20 .
Key words and phrases: Normal cone, upper semicontinuous multifunction, lower semicontinuous multifunction, selection theorem, Gronwall's inequality, graph measurability.

The results of this paper extend earlier works by Antosiewicz-Cellina [1],Fryszkowski [7], Kisielewicz [9], Moreau [10] and Papageorgiou [13], [14]. Also we extend to infinite dimensional systems with memory, the work on "differential variational inequalities" of Aubin-Cellina [2] (see chapter 5, section 6).

2. Preliminaries.

Let (Ω, Σ) be a measurable space and X a separable Banach space. We will be using the following notations:

$$
P_{f(c)}(X)=\{A \subseteq X: \text { A nonempty, closed, (convex) }\}
$$

and $P_{(w) k(c)}(X)=\{A \subseteq X:$ A nonempty, (w-)compact, (convex) $\}$
For $A \in 2^{X} \backslash\{\emptyset\}$, the norm $|A|$ is defined by $|A|=\sup \{\|x\|: x \in A\}$. Also a multifunction $F: \Omega \rightarrow 2^{X} \backslash\{\emptyset\}$ is said to be graph measurable if and only if $G r F=$ $\{(\omega, x) \in \Omega \times X: x \in F(\omega)\} \in \Sigma \times B(X)$, with $B(X)$ being the Borel σ-field of X. A $P_{f}(X)$-valued multifunction is said to be measurable if and only if for every $z \in X \omega \rightarrow d(z, F(\omega))=\inf \{\|z-x\|: x \in F(\omega)\}$ is measurable. For a $P_{f}(X)$-valued multifunction, measurability implies graph measurability and the converse is true if there exists a complete, σ-finite measure $\mu(\cdot)$ on (Ω, Σ).

Now assume (Ω, Σ, μ) is a σ-finite measure space. For any multifunction $F: \Omega \rightarrow$ $2^{X} \backslash\{\emptyset\}$, let $S_{F}^{1}=\left\{f \in L^{1}(X): f(\omega) \in F(\omega) \mu\right.$-a.e. $\}$. If $F(\cdot)$ is graph measurable, then using Aumann's selection theorem, it is easy to check that $S_{F}^{1} \neq \emptyset$ if and only if $\omega \rightarrow$ $\inf \{\|x\|: x \in F(\omega)\} \in L_{+}^{1}$. Also if $F(\cdot)$ is $P_{f}(X)$-valued, then S_{F}^{1} is strongly closed in the Lebesgue-Bochner space $L^{1}(X)$. A multifunction $F: \Omega \rightarrow P_{f}(X)$ is said to be integrably bounded if and only if $F(\cdot)$ is measurable and $\omega \rightarrow|F(\omega)|=\sup \{\|x\|: x \in F(\omega)\} \in L_{+}^{1}$. Clearly for such a multifunction $S_{F}^{1} \neq \emptyset$.

Suppose that Y, Z are Hausdorff topological spaces and $F: Y \rightarrow 2^{Z} \backslash\{\emptyset\}$. We say that $F(\cdot)$ is upper semicontinuous (u.s.c.) (resp. lower semicontinuous (l.s.c.)) if for all $V \subseteq Z$ open, the set $\{y \in Y: F(y) \subseteq V\}$ (resp. $\{y \in Y: F(y) \cap V \neq \emptyset\}$) is open in Y. Other equivalent definitions of upper and lower semicontinuity can be found in Delahaye-Denel [4].

On $P_{f}(X)$ we can define a (generalized) metric $h(\cdot, \cdot)$ by setting

$$
h(A, B)=\max \left\{\sup _{a \in A} d(a, B), \sup _{b \in B} d(b, A)\right\}
$$

where $d(a, B)=\inf \{\|a-b\|: b \in B\}$ and $d(b, A)=\inf \{\|b-a\|: a \in A\}$. Recall that $\left(P_{f}(X), h\right)$ is a complete metric space. If $\Omega=[0, b]$, a multifunction $F: \Omega \rightarrow P_{f}(X)$ is said to be h-absolutely continuous with modulus $r(\cdot) \in L_{+}^{1}$ if and only if $h\left(F(t), F\left(t^{\prime}\right)\right) \leq$ $\int_{t}^{t^{\prime}} r(s) d s$ for all $t, t^{\prime} \in \Omega=[0, b]$.

Finally if $\left\{A_{n}\right\}_{n \geq 1}$ is a sequence of nonempty subsets of X, we write $w-\overline{\lim } A_{n}=\{x \in$ $\left.X: x=w-\lim x_{n_{k}}, x_{n_{k}} \in A_{n_{k}}, n_{1}<n_{2}<\ldots<n_{k}<\ldots\right\}$ and $s-\underline{\lim } A_{n}=\{x \in X: x=$
$\left.s-\lim x_{n}, x_{n} \in A_{n}, n \geq 1\right\}$. Here s-denotẹs the strong topology on X and w-the weak topology.

3. Existence theorems.

Let $T_{0}=[-r, 0], T=[0, b], \hat{T}=[-r, b], r>0$ and X is a separable Hilbert space. We will make the following hypotheses concerning the data of problem (*).
$H(K): K: T \rightarrow P_{k c}(X)$ is an h-absolutely continuous multifunction with modulus $r(\cdot) \in$ L_{+}^{1}.
$H(F): F: T x C\left(T_{0}, X\right) \times L^{1}\left(T_{0}, X\right) \rightarrow P_{f}(X)$ is a multifunction s.t.
(1) $(t, y, h) \rightarrow F(t, y, h)$ is graph measurable,
(2) $(y, h) \rightarrow F(t, y, h)$ is l.s.c. from $C\left(T_{0}, X\right) \times L^{1}\left(T_{0}, X\right)_{w}$ into X
(3) $|F(t, y, h)| \leq a(t)+b(t)\|y\|_{\infty}$ a.e. with $a(\cdot), b(\cdot) \in L_{+}^{1}$,
$H_{0}: x_{0}: T_{0} \rightarrow X$ is absolutely continuous, $x_{0}(0) \in K(0)$.
Theorem 3.1. If hypothesis $H(K), H(F)$ and H_{0} hold, then $\left(^{*}\right)$ admits a solution.
Proof. First we will determine an a priori bound for the solutions of $\left({ }^{*}\right)$. So let $x(\cdot) \in C(T, X)$ be such a solution. From Daures [3] (see also Moreau [10]), we know that

$$
\begin{aligned}
& \|\dot{x}(t)\| \leq r(t)+\left|F\left(t, x_{t}, \dot{x}_{t}\right)\right| \leq r(t)+a(t)+b(t)\left\|x_{t}\right\|_{\infty} \text { a.e. } \\
\Rightarrow & \|x(t)\| \leq\left\|x_{0}\right\|+\int_{0}^{t}\left(r(s)+a(s)+b(s)\left\|x_{s}\right\|_{\infty}\right) d s \\
\Longrightarrow & \left\|x_{t}\right\|_{\infty} \leq\left\|x_{0}\right\|+\int_{0}^{t}\left(r(s)+a(s)+b(s)\left\|x_{s}\right\|_{\infty}\right) d s
\end{aligned}
$$

Invoking Gronwall's inequality we get that

$$
\left\|x_{t}\right\|_{\infty} \leq\left(\left\|x_{0}\right\|+\|r\|_{1}+\|a\|_{1}\right) \exp \|b\|_{1}=M
$$

Then let $\hat{F}: T \times C\left(T_{0}, x\right) \times L^{1}\left(T_{0}, X\right) \rightarrow P_{f}(X)$ be defined by

$$
\hat{F}(t, y, h)= \begin{cases}F(t, y, h) & \text { if }\|y\|_{\infty} \leq M \\ F\left(t, \frac{M y}{\|y\|}, h\right) & \text { if }\|y\|_{\infty}>M\end{cases}
$$

So we have that $\hat{F}(t, y, h)=F\left(t, p_{M}(y), h\right)$, where $p_{M}(\cdot)$ is the M-radial retraction. Recall that $p_{M}(\cdot)$ is Lipschitz continuous. So the map $u: T \times C\left(T_{0}, X\right) \times L^{1}\left(T_{0}, X\right) \times X \rightarrow$ $T \times C\left(T_{0}, X\right) \times L^{1}\left(T_{0}, X\right) \times X$ defined by $(t, y, h, v) \xrightarrow{u}\left(t, p_{M}(y), h, v\right)$ is measurable. Then observe that $G r \hat{F}=\left\{(t, y, h, v) \in T \times C\left(T_{0}, X\right) \times X: v \in \hat{F}(t, y, h)=F\left(t, p_{M}(y), h\right)\right\}=$ $u^{-1}(G r F)$. But by hypothesis $H(F)(1), G r F \in B(T) \times B\left(C\left(T_{0}, X\right)\right) \times B\left(L^{1}\left(T_{0}, X\right)\right)$. So \hat{F} is graph measurable. Also $(y, h) \rightarrow \hat{F}(t, y, h)$ is clearly l.s.c. Finally note that
$|\hat{F}(t, y, h)| \leq a(t)+b(t) M=c(t)$ a.e. $c(\cdot) \in L_{+}^{1}$. In the sequel we will consider $\left(^{*}\right)$ with the orientor field $F(t, y, h)$ replaced by $\hat{F}(t, y, h)$.

Let $W \subseteq C(\hat{T}, X)$ be defined by :

$$
\begin{gathered}
W=\left\{y \in C(\hat{T}, X): y(t)=x_{0}+\int_{0}^{t} g(s) d s, t \in T\|g(t)\| \leq r(t)+c(t) a . e .,\right. \\
\left.y(u)=\phi(u), u \in T_{0}\right\}
\end{gathered}
$$

Clearly W is equicontinuous, convex and closed. Let $V=\{y \in W: y(t) \in K(t) t \in$ $T\}$. Then from Daures [3] and Moreau [10], we know that $V \neq \emptyset$ and $V(t)=\{v(t)$: $v \in V\}=W(t) \cap K(t) \in P_{k}(X)$. So invoking the Arzela-Ascoli theorem, we deduce that V is compact in $C(\hat{T}, X)$. Also let $Q=\left\{h \in L^{1}(\hat{T}, X):\|h(t)\| \leq r(t)+c(t)\right.$ a.e. and $h(u)=\dot{x}_{0}(u)$ a.e. on $\left.T_{0}\right\}$ (note that since X is a Hilbert space and by hypothesis H_{0}, $x_{0}: T_{0} \rightarrow X$ is absolutely continuous, $\dot{x}_{0}(\cdot)$ exists a.e. on $\left.T_{0}\right)$. Clearly Q with the relative weak $L^{1}(\hat{T}, X)$-topology is compact and since $L^{1}(\hat{T}, X)$ is separable, Q is metrizable too. In the sequel we will consider Q with this relative weak $L^{1}(\hat{T}, X)$-topology.

Next consider the multifunction $G: V \times Q \rightarrow P_{f}\left(L^{1}(X)\right)$ defined by

$$
G(y, h)=S_{\hat{F}(\cdot, y, h)}^{1}
$$

Since $\hat{F}(\cdot, \cdot, \cdot)$ is graph measurable, $t \rightarrow \hat{F}\left(t, y_{t}, h_{t}\right)$ is measurable and also almost everywhere bounded by $c(t)$. So $G(y, h) \neq \emptyset$ for all $(y, h) \in V \times Q$. Also invoking theorem 4.1 of [12] we get that $G(\cdot, \cdot)$ is l.s.c. from $V \times Q$ into $L^{1}(X)$. Apply Fryszkowski's selection theorem [6] to get $g: V \times Q \rightarrow L^{1}(X)$ continuous s.t. $g(y, h) \in G(y, h)$. For each $(y, h) \in V \times Q$ consider the equation

$$
\left\{\begin{array}{l}
-\dot{x}(t) \in N_{K(t)}(x(t))+g(y, h)(t) \text { a.e. on } T \\
x(u)=x_{0}(u) \text { for } u \in T_{0}
\end{array}(*)(y, h) .\right.
$$

As before from Daures [3] and Moreau [10]. we deduce that $\left(^{*}\right)(y, h)$ has a unique solution $s(g(y, h))(\cdot) \in C(\hat{T}, X)$. For any $u \in L^{1}(X)$, let $\hat{s}(u)=(s(u), \dot{s}(u))$. From [13] (see also the lemma below) we know $s(\cdot)$ is continuous, while $\dot{s}(\cdot)$ has closed graph, hence is continuous on $L^{1}(X)$. Therefore $\hat{s}(\cdot)$ is continuous from $L^{1}(X)$ into $V \times Q$. Let $q=\hat{s} o g$. Then $q: V \times Q \rightarrow V \times Q$ is continuous and so from the Schauder-Tichonov fixed point theorem, we get $(y, h) \in V \times Q$ s.t. $q(y, h)=(y, h)$. Then $y=s(g(y, h))(\cdot) \in C(\hat{T}, X)$ is the solution of $\left(^{*}\right)$ with orientor field $\hat{F}(t, y, h)$. Note that

$$
\begin{aligned}
\|\dot{y}(t)\| & \leq r(t)+\left|\hat{F}\left(t, y_{t}, \dot{y}_{t}\right)\right| \text { a.e. } \\
& \left.\leq r(t)+a(t)+b(t)\left\|y_{t}\right\|_{\infty} \text { a.e. (recall the definition of } \hat{F}(\cdot, \cdot, \cdot)\right) \\
\Rightarrow & \|y\|_{\infty} \leq M \\
& \Rightarrow \hat{F}\left(t, y_{t}, \dot{y}_{t}\right)=F\left(t, y_{t}, \dot{y}_{t}\right) \\
& \Rightarrow y(\cdot) \text { solves }(*)
\end{aligned}
$$

The next existence theorem involves convex valued perturbations. To prove it we will need a continuous dependence result, which is actually interesting by itself. So consider the following evolution inclusion.

$$
\left\{\begin{array}{l}
-\dot{x}(t) \in N_{K(t)}(x(t))+f(t) \text { a.e. } \\
x(0)=x_{0}
\end{array}\right.
$$

We know that given $x_{0} \in K(0)$ and $f \in L^{1}(X)$, the multivalued Cauchy problem (**) has a unique solution $s(f)(\cdot) \in C(T, X)$. The next proposition examines the map $f \rightarrow$ $s(f)(\cdot)$.

Proposition 3.1. If hypothesis $H(K)$ holds, $x_{0} \in K(0)$ and $f \in W \in P_{w k}\left(L^{1}(X)\right)$, then $f \rightarrow s(f)$ is continuous from W_{w} into $C(T, X)$.
\mathbb{P} roof. Recall that W_{w} is compact, metrizable. Also W is uniformly integrable. Since $\|\dot{s}(f)(t)\| \leq r(t)+\|f(t)\|$ a.e. (see Daures [3]), we deduce that $\{s(f)(\cdot)\}_{f \in W}$ is equicontinuous. Also for all $f \in W$ and all $t \in T, s(f)(t) \in K(t) \in P_{k c}(X)$. Hence from the Arzela-Ascoli theorem we deduce that $\{s(f)(\cdot)\}_{f \in W}$ is relatively compact in $C(T, X)$.

Next let $f_{n} \xrightarrow{w} f$ in $W \subseteq L^{1}(X)$. Set $x_{n}=s\left(f_{n}\right)$ and $x=s(f)$. Recalling that $N_{K(t)}(\cdot)=\partial \delta_{K(t)}(\cdot)$ and exploiting the monotonicity of the convex subdifferential, we have:

$$
\begin{aligned}
& \left(-\dot{x}_{n}(t)+\dot{x}(t),-x_{n}(t)+x(t)\right) \leq\left(f_{n}(t)-f(t),-x_{n}(t)+x(t)\right) \text { a.e. } \\
\Rightarrow & \frac{1}{2} \frac{d}{d t}\left\|x_{n}(t)-x(t)\right\|^{2} \leq\left(f_{n}(t)-f(t),-x_{n}(t)+x(t)\right) \text { a.e. } \\
\Rightarrow & \left\|x_{n}(t)-x(t)\right\|^{2} \leq 2 \int_{0}^{t}\left(f_{n}(s)-f(s),-x_{n}(s)+x(s)\right) d s .
\end{aligned}
$$

From the first part of the proof, we know that we may assume without any loss of generality, that $x_{n} \rightarrow \hat{x}$ in $C(T, X)$. Then we have:
$\left\|x_{n}(t)-x(t)\right\| \leq 2 \int_{0}^{t}\left(f_{n}(s)-f(s),-x_{n}(s)+\hat{x}(s)\right) d s+2 \int_{0}^{t}\left(f_{n}(s)-f(s),-\hat{x}(s)+x(s)\right) d s$
Since $x_{n} \rightarrow \hat{x}$ in $C(T, X)$ and $f_{n} \xrightarrow{w} f$ in $W \subseteq L^{1}(X)$, we have

$$
\begin{aligned}
& \int_{0}^{t}\left(f_{n}(s)-f(s),-x_{n}(s)+\hat{x}(s)\right) d s
\end{aligned} \rightarrow 0 .
$$

So $\left\|x_{n}(t)-x(t)\right\|^{2} \rightarrow 0 \Longrightarrow x=\hat{x} \Longrightarrow x_{n}=s\left(f_{n}\right) \rightarrow x=s(f)$ in $C(T, X)$.
Q.E.D.

Now we are ready for the existence result, when the set valued perturbation is convex valued.

We will need the following hypotheses on the orientor field $F(t, y, h)$.
$H(F)_{1}: F: T \times C\left(T_{0}, X\right) \times L^{1}\left(T_{0}, X\right) \rightarrow P_{f c}(X)$ is a multifunction s.t.
(1) $(t, y, h) \rightarrow F(t, y, h)$ is graph measurable,
(2) $(y, h) \rightarrow F(t, y, h)$ is u.s.c. from $C\left(T_{0}, X\right) \times L^{1}\left(T_{0}, X\right)_{w}$ into X_{w},
(3) $|F(t, y, h)| \leq a(t)+b(t)\|y\|_{\infty}$ a.e. with $a(\cdot), b(\cdot) \in L_{+}^{1}$.

Theorem 3.2. If hypotheses $H(K), H(F)_{1}$ and H_{0} hold, then (*) admits a solution.
Proof. As in the proof of theorem 3.1 we can check that every solution $x(\cdot) \in$ $C(\hat{T}, X)$ satisfies $\left\|x_{t}\right\|_{\infty} \leq M$. Then we define $\hat{F}(t, y, h)=F\left(t, p_{M}(y), h\right)$. Clearly $\hat{F}(\cdot, \cdot, \cdot)$ has the same measurability and continuity properties as $F(\cdot, \cdot, \cdot)$. In addition observe that $|\hat{F}(t, y, h)| \leq a(t)+b(t) M=c(t)$ a.e. $c(\cdot) \in L_{+}^{1}$. In what follows we will consider the multivalued Cauchy problem $\left(^{*}\right)$ with $\hat{F}(\cdot, \cdot, \cdot)$ being the set valued perturbation.

Let $V=\left\{g \in L^{1}(X):\|g(t)\| \leq a(t)+r(t)\right.$ a.e. $\}$ From Dunford's compactness theorem (see Diestel-Dhl [5], theorem 1, p.101), we have that V is weakly compact in $L^{1}(X)$. Let $R: V \rightarrow 2^{L^{1}(X)}$ be defined by $R(g)=S_{\hat{F}(\cdot, s(g),, s(g) .)}^{1}$. It is easy to see that $R(g) \in P_{f c}(V)$. We claim that $R(\cdot)$ is u.s.c. on V with the relative weak $L^{1}(X)$-topology. Because of the weak compactness of V in $L^{1}(X)$ and since the weak $L^{1}(X)$-topology on V is metrizable ($L^{1}(X)$ being separable), we know that it is enough to check that $R(\cdot)$ has closed graph. So let $\left\{\left(g_{n}, f_{n}\right)\right\}_{n \geq 1} \subseteq G r R$ and assume $\left(g_{n} ; f_{n}\right) \xrightarrow{w \times w}(g, f)$ in $V \times V$. From proposition 3.1, we know that $s(g)_{n} \rightarrow s(g)$ in $C(\hat{T}, X)$. Also by passing to a subsequence if necessary, we may assume that $\dot{s}(g)_{n} \xrightarrow{w} \dot{s}(g)$ in $L^{1}(X)$. Invoking theorem 3.1 of [12], we have:

$$
f(t) \in \overline{\operatorname{conv}} w-\overline{\lim } \hat{F}\left(t, s\left(g_{n}\right)_{t}, \dot{s}\left(g_{n}\right)_{t}\right) \text { a.e. }
$$

Observe that $s\left(g_{n}\right)_{t} \rightarrow s(g)_{t}$ in $C\left(T_{0}, X\right)$ and $\dot{s}\left(g_{n}\right)_{t} \xrightarrow{w} \dot{s}(g)_{t}$ in $L^{1}\left(T_{0}, X\right)$. So because of $H(F)_{1}$ and the definition of $\hat{F}(\cdot, \cdot, \cdot)$ we have, $w-\varlimsup \hat{\lim } \hat{F}\left(t, s\left(g_{n}\right)_{t}, \dot{s}(g)_{t}\right) \subseteq$ $\hat{F}\left(t, s(g)_{t}, \dot{s}(g)_{t}\right)$ a.e. Hence

$$
\begin{aligned}
& f \in S_{\tilde{F}(\cdot, s(g),, \dot{s}(g) \cdot)}^{1} \\
\Longrightarrow & (g, f) \in G r R \\
\Longrightarrow & R(\cdot) \text { is u.s.c. on } V_{w} .
\end{aligned}
$$

Apply the Kakutani-KyFan fixed point theorem, to get $f \in V$ s.t. $f \in R(f)$. Clearly then $s(f)(\cdot)$ is the desired solution of $\left(^{*}\right)$ with $\hat{F}(\cdot, \cdot, \cdot)$ being the orientor field. Then using the definition of $\hat{F}(t, y, h)$ and Gronwall's inequality, we can show that $\left\|s(f)_{t}\right\|_{\infty} \leq M$ $t \in T \Rightarrow \hat{F}\left(t, s(f)_{t}, \dot{s}(f)_{t}\right)=F\left(t, s(f)_{t}, \dot{s}(f)_{t}\right) \Rightarrow s(f)(\cdot)$ is the desired solution of $\left(^{*}\right)$

Finally we will consider the case where no state constraints are present i.e. $K(t)=X$ for all $t \in T$ and so $N_{K(t)}(x)=X$. Our theorem extends theorem 3.1' of [14] as well as the finite dimensional results of Kisielewicz [9] (theorems 1 and 2).

So the multivalued Cauchy problem under consideration is now the following

$$
\left\{\begin{array}{l}
\dot{x}(t) \in F\left(t, x_{t}, \dot{x}_{t}\right) \text { a.e. on } T \\
x(u)=x_{0}(u) u \in T_{0}
\end{array}\right.
$$

Here X ia any separable Banach space. We will need the following hypotheses on the data of $\left({ }^{* *}\right)$.
$H(F)_{2}: F: T \times C\left(T_{0}, X\right) \times L^{1}\left(T_{0}, X\right) \rightarrow P_{f}(X)$ is a multifunction s.t.
(1) $(t, y, h) \rightarrow F(t, y, h)$ is graph measurable,
(2) $(y, h) \rightarrow F(t, y, h)$ is l.s.c. from $C\left(T_{0}, X\right) \times L^{1}\left(T_{0}, X\right)_{w}$ into X
(3) $|F(t, y, h)| \leq\left(1+\|y\|_{\infty}\right) G(t)$ a.e., with $G: T \rightarrow P_{k c}(X)$ integrably bounded. $H_{01}: x_{0}(\cdot) \in C\left(T_{0}, X\right)$

Theorem 3.3. If hypotheses $H(F)_{2}$ and H_{01} hold, then (${ }^{* *}$) admits a solution.
Proof. Again, exploiting the growth hypothesis $H(F)_{2}(3)$ and using Gronwall's inequality, we get that $\left\|x_{t}\right\|_{\infty} \leq\left(\left\|x_{0}\right\|_{\infty}+\||G(\cdot)|\|_{1}\right) \exp \left(\| \mid\left(G(\cdot) \mid \|_{1}\right)=M\right.$. Define $\hat{F}(t, y, h)=F\left(t, p_{M}(y), h\right)$. We know (see the proof of theorem 3.1) that $\hat{F}(\cdot, \cdot, \cdot)$ has the same measurability and continuity properties as $F(\cdot, \cdot, \cdot)$. Also $|\hat{F}(t, y, h)| \leq(1+M)$ $G(t)=\hat{G}(t)$ a.e. with $\hat{G}: T \rightarrow P_{k c}(X)$ integrably bounded.

Next let $W \subseteq C(\hat{T}, X)$ be defined by:

$$
W=\left\{y \in C(\hat{T}, X): y(t)=x_{0}+\int_{0}^{t} g(s) d s, t \in T, g \in S_{\hat{G}}^{1}, y(u)=x_{0}(u) u \in T_{0}\right\}
$$

It is clear that W is an equicontinuous subset of $C(\hat{T}, X)$. Also for every $y \in W$ and every $t \in T$, we have $y(t) \in x_{0}+\int_{0}^{t} \hat{G}(s) d s$. But from Radström's embedding theorem (see for example Hiai-Umegaki [8], section 3), we have that $\int_{0}^{t} \hat{G}(s) d s \in P_{k c}(X)$. So $\overline{W(t)}=\operatorname{cl}\{y(t): y(\cdot) \in W\} \in P_{k}(X)$. Hence invoking the Arzela-Ascoli theorem we deduce that W is relatively compact in $C(\hat{T}, X)$. We claim that it is compact. So we need to show that it is closed in $C(\hat{T}, X)$. To this end let $y_{n} \rightarrow y$ in $C(\hat{T}, X), y_{n} \in W$. Then by definition we have:

$$
\begin{aligned}
y_{n}(t) & =x_{0}+\int_{0}^{t} g_{n}(s) d s, t \in T, g_{n} \in S_{\hat{G}}^{1} \\
\text { and } y_{n}(u) & =x_{0}(u), u \in T_{0}
\end{aligned}
$$

But note (see proposition 3.1 of [11]) that S_{G}^{1} is w-compact in $L^{1}(X)$. So by passing to a subsequence if necessary, we may assume that $g_{n} \xrightarrow{w} g \in S_{\hat{G}}^{1}$ in $L^{1}(X)$. Then $y_{n}(t)=$
$x_{0}+\int_{0}^{t} g_{n}(s) d s \stackrel{w}{\rightarrow} x_{0}+\int_{0}^{t} g(s) d s=y(t) t \in T, y(u)=x_{0}(u) u \in T_{0} \Rightarrow y \in W \Rightarrow W$ is compact in $C(T, X)$.

Let $R: W \times\left(S_{\hat{G}}^{1}, w\right) \rightarrow P_{f c}\left(L^{1}(X)\right)$ be defined by $R(y, h)=S_{\hat{F}(\cdot, y ., h .)}^{1}$. As in the proof of theorem 3.1 we can check that $R(\cdot, \cdot)$ is l.s.c.. Apply Fryszkowski's selection theorem [6] to get $r: W \times\left(S_{\hat{G}}^{1}, w\right) \rightarrow L^{1}(X)$ continuous s.t. $r(y, h)=S_{\hat{F}(\cdot, y ., h .)}^{1}$. Then let $W \times\left(S_{\hat{G}}^{1}, w\right) \rightarrow W \times\left(S_{\hat{G}, w}^{1}\right)$ be defined by

$$
k(y, h)(\cdot)=\left(k_{1}(y, h)(\cdot), r(y, h)(\cdot)\right)
$$

where $k_{1}(y, h)(t)=x_{0}+\int_{0}^{t} r(y, h)(s) d s t \in T$ and $k_{1}(y, h)(u)=x_{0}(u) u \in T_{0}$. Since by construction $r(\cdot, \cdot)$ is continuous, $k(\cdot, \cdot)$ is too. So apply the Schauder-Tichonov fixed point theorem to get $(x, h) \in W \times S_{\hat{G}}^{1}$ s.t.

$$
\begin{aligned}
k(x, h) & =(x, h) \\
\Longrightarrow h(t) & =g(x, h)(t) \text { a.e. and } x(t)=x_{0}+\int_{0}^{t} h(s) d s t \in T
\end{aligned}
$$

Clearly then $h(\cdot)=\dot{x}(\cdot) \in S_{\hat{F}(\cdot, x, \dot{x} .)}^{1}$. As before using the definition of $\hat{F}(\cdot, \cdot, \cdot)$ and Gronwall's inequality, we get that $\hat{F}\left(t, x_{t}, \dot{x}_{t}\right)=F\left(t, x_{t}, \dot{x}_{t}\right) \Rightarrow x(\cdot) \in C(\hat{T}, X)$ solves ${ }^{* *}$).
Q.E.D.

Remark. Theorem 3.3 can not be derived from theorem 3.1, since in that theorem $K(\cdot)$ was $P_{k c}(X)$-valued, while for problem $\left({ }^{* *}\right)$, we need to take $K(t)=X, t \in T$.

References

[1] H.A. Antosiewicz and A. Cellina, "Continuous selections and differential relations" J. Diff. Equations 19 (1975), pp. 386-398.
[2] J.P. Aubin and A. Cellina, Differential Inclusions Springer, Berlin (1984).
[3] J.-P. Daures, "Un probleme d'existence de commandes optimales avec liaisons sur l'etat" Sem. Anal. Convexe, Exp. no. 8, pp. 8-1, 8-24, Montpellier (1974).
[4] J. Delahaye and J. Denel, "The continuities of the point to set maps, definitions and equivalences" Math. Programming Study 10 (1979), pp. 8-12.
[5] J. Diestel and J. Uhl, Vector Measures Math. Survey, Vol 15, A.M.S. Providence, R.I. (1977).
[6] A. Fryszkowski, "Continuous selections for a class of nonconvex multivalued maps" Studia Math 78 (1983), pp. 163-174.
[7] A. Fryszkowski, "Existence of solutions of functional-differential inclusions in nonconvex case" Annales Polon. Math XLV (1985), pp. 121-124.
[8] F. Hiai and H. Umegaki, "Integrals, conditional expectations and martingales of multivalued functions" J. Multiv. Anal. 7 (1977), pp. 149-182.
[9] M. Kisielewicz, "Existence theorems for generalized functional-differential equations of neutral type" J. Math. Anal. Appl. 78 (1980), pp. 173-182.
[10] J.-J. Moreau, "Evolution problem associated with a moving convex set in a Hilbert space" J. Diff. Eq. 26 (1977), pp. 347-274.
[11] N.S. Papageorgiou, "On the theory of Banach space valued multifunctions; Part 1: Integration and conditional expectation" J. Multiv. Anal. 17 (1985), pp. 185-206.
[12] N.S. Papageorgiou, "Convergence theorems for Banach space valued integrable multifunctions" Intern. J. Math. and Math. Sci. 10 (1987), pp. 433-442.
[13] N.S. Papageorgiou, "Differential inclusions with state constraints" Proc. of the Edinburgh Math. Soc. 32 (1989), pp. 81-98.
[14] N.S. Papageorgiou, "On the theory of functional-differential inclusions of neutral type in Banach spaces" Funkc. Ekvac. 31 (1988), pp. 103-120.

University of California, 1015 Department of Mathematics, Davis, California 95616, U.S.A.
and
Florida Institute of Technology, Department of Applied Mathematics 150 W. University Blrd, Melbourne, Flordia 32901-6988, U.S.A.

