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EVALUATION OF THE E-FUNCTION WHEN TWO OF THE
UPPER PARAMETERS ARE EQUAL OR DIFFER BY AN INTEGER

SHAHWAR F. RAGAB

Introduction.

In a former paper [1] in this journal. I evaluated infinite series involving MacRoberts’
E-functions, the definitions and properties of which are to be found in ([2]; pp; 348-352)
and in ([3], pp; 203-206). The E-function is defined ([2], p. 409) thus:
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where | arg z |< (p — ¢ — 1), the prime in the product sign signifies that the factor
for which s = r is left and the asterisk in the EF-function means that the parameter
o, — a, + 1 is omitted

If p < ¢, then ([2]; p. 352).
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Now, if two of the o's are equal or differ by integral values, some of the series on
the right of (1) cease to exist. For instance, if a3 = a + ¢, a2 = «, where £ is a positive
integer, the first two series are nom existent. Here it will be shown that they can be
replaced by the expression
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where
= ¢(f+n)+¢(n)—¢(a+£+n—1)—logz
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and p - '1
¥(z) = {1ogr(z+1)} ————F((::l))

The proof of (3) will be given in §2, whils two subsidiary theorems will be stated and
proved in §3. Also the value of Ko(z), where Ky(z) is the modified Bessel function of
the second kind, will be derived in §3; while new infinite integrals will be deduced as
particular cases in §4.

The following formulae will be required in the proofs: ([2]; p.141)
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If m is a positive integer, then ([2], p.154, ex.5).
II;’;'[,I{P(ZJr%)} (2r)3m=Emi-mep(m2) (10)
Also ([2], p.207).
Ku(@) = g {L() - L)} (1)
where
II»‘(Z) Z n'l‘(niu+ 1)(2)u+2n (12)

If m is a positive integer and if R(k) > 0, then ([2], p.466 ex. 30).
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where ¢py, = 22=1; p = 1,2,--- ,m — 1. If z is real and positive and R(m % p) > 0,

m

then ([2]; p 395, ex. 109).
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where
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§2. Proof of the main theorem (3).

If o1 = a+ £, o = o+ ¢, where £ is zero or a positive integer and ¢ is small, the
sum of the first two series on the right of (1), can be written
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The limit when ¢ — 0 of the first two terms in the last expression is obtained

by removing the factor ', then differentiating with respect to €, and finally making

¢ — 0. On replacing n by £+ n in the second series of the last expression, formula (3)
is obtained. Thus (3) is proved.

§3. Derivation of Ky(z).

The first subsidiary theorem to be proved is

K, (z) = —I—ZlEa = T *"f) (15)

I - 47ri_iL )2#’ i€ 4
where ,(z) is the modified Bessel function of the second kind defined by (11) and (12)
and the symbol ¥; _; means that in the expression following it 7 is to be replaced by —i

and the two expressions are to be added.
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To prove (15), expand the E-function on the right of (15) by means of (1), substract
the corresponding terms and so obtain (15) by a second application of (12). To find the

value of Ky(z), put g =0 in (15) so getting

Ko(x) = 5 1p0,0,1: %)
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From (3) with a =£=10, p = 3, ¢ = 0, this becomes,
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Now apply (5) and (7) and get.
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which is a known result ([2], p.268).
The second theorem to be proved in this section is

m-—1
Z '/)(;tn‘ —n—1) = mé(mn) — ¢(n) — (m — 1)y — mlogm;

where m and n are positive integres.
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To prove (17) take logarithms of both sides of (10) differentiate with respect to Z, so
getting

m—1
Z v(z+ r_tn- —1) = myp(mz — 1) — mlogm — ¥(z2).
t=1 5

Now apply (5), and get
Z ¥(z + . 1) = my(—mz) — ¢(—z) —mlogm + 7 cot 7z — mw cot(mrmz).
o= ;

But, when z — —n, 7 cot 7z — mx cot 7(mz) — 0.

From this (17) follows. Thus (17) is proved.

§4. Evaluation of certain infinite integrals.

We are now in a position to evaluate a large number of infinite new integrals by
applying formula (3).
For example, if m is a positive integer, p = 0; then (14) gives
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When m = 1, from (3) with £=0, a = %, p = 2, ¢ = 0 this becomes
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When m = 2, (18), (3), (7) and (8) give
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Again,if m =1, u =0, a; = 1, then (14) gives
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1
From (3) with £ =0, a1 = as =

2,a3_1 p=23, ¢ =0, this becomes
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Now from (5), (6), (7), (8) and (9), this becomes.

I\0(2/\) ( p
0 (Z+)\2)d/\ - 2\/—Z n')2¢ m(27+logz)

0(2\/_)+7I’1F2(1 2 g, Z) (21)

where 1‘2(2) is the Bessel function of the first kind. Also, if m =2, u =0, p = 1,
with a; = 1, ¢ = 0; then (14) gives
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From (3) with£=0,a=1,p=3,¢=0, a3 = %; this becomes
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Again, if m is any positive integer, then (13) with k = 1 becomes
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From (3) with £=0,a=1,p=14m, ¢ =0, this becomes.
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Here apply (17) with (n + 1) in place of n noting that
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then the last expression becomes

oo e ( 1)m+1 b {( 1)m+1z}n
/0 mdt = Z(mn—}-m ] {mqb(mn-i—m—l)—m'y—-logz)

mim je ;)t ) (23)

i sin ) =g (mn+t—1)!

Many particular cases can be derived from the main theorems (21), (22) and (23) by

specializing the values of the parameters p,q and m. For example, if m = 1, (23)
becomes.
(o] —t (oo}
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dt = — n
/0 —¢r: t (7 + log z)€? ’2 n! Z (24)
References

[1] Ragab, S.F. “Infinite series of E-functions” Tamkang J. of Math. V.20, ...., 1989.

[2] MacRobert., T.M., “Functions of a complez variables Macmillon and Comp. London 1962.

[3] Erdelyi A., Magnus W., oberhettinger F. and Tricomi F., “Higher “Transcendental functions Vol.
1. ” Mcgrew Hill 1953.

Faculty of Engineering, Cairo University, Cairo (E.A.R.) Egypt.



