
TAMKANG JOURNAL OF MATHEMATICS 
Volume 21, Number 3, Autumn 1990 

ON THE MONOTONE CONVERGENCE OF SOME ITERATIVE PROCEDURES 
IN PARTIALLY ORDERED BANACH SPACES 

IOANNIS K. ARGYROS 

Abstract. We provide some enclosure methods for the solution of a nonlinear 
equation in a partially ordered Banach space. By using a certain projection oper­ 
ator we show that the solution can be obtained from the solution of a system of 
linear algebraic equations. 

I. Introduction. 

In this paper we study the convergence of the iterative procedures 

F(yn) + P A(yn, Yn-1)(Yn+l - Yn) = 0 (1) 

and 
0 (2) 

to a zero z of the nonlinear equation 

F(x) = 0. (3) 

Here, F is a nonlinear operator defined on a convex subset D of a Banach space E with 
values in a Banach space E. For fixed x, y E D, A( x, y) denotes a linear operator from 
E to E and Pis a projection operator (P2 = P), that projects the space E into Ep ~ E. 

The study of iterative procedures under partial ordering started in 1939 by L.V. 
Kantorovich [4). In 1952, A. Baluev [3) gave sufficient conditions for the monotone 
convergence of Newton's method in partially ordered topological spaces. In 1970, J .W. 
Schmidt and H. Leonhardt [7] used the Secant method for constructing pairs of monotone 
sequences converging to a zero of F. Various generalizations were later obtained by many 
authors, when p = I, the identity operator on F [3], [4], [5], [6], [7), [8]. In this case the 
iterates x11 and Yn, n 2: 0 generated by (1) and (2) ca11 rarely be computed in infinite 
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dimensional spaces. However, if Ep is finite dimensional with dim(Ep) = N, then from 
(1) and (2) we obtain systems of linear algebraic equations of order at most N. 

We provide sufficient conditions for the monotone convergence of the sequence { xn} 
and {Yn} to a zero z of F, as well as error bounds on the distances JJxn - zJJ, JJxn - Xn-1 II, 
IIYn - zll and JJYn - Yn-ill- 

II. Prelirninaries. 

In this section we reproduce some definitions from the theory of partially ordered 
linear space [4), [6]. 

Let E be a linear space. A subset I< of E is called a cone if J( + I{ C I< and o:K C I< 
for o: > 0. The cone J{ is proper if I< n {-K} = {O}. The relations "S" defined by 

x S y if and only if y - x E K (4) 

is a partial ordering on J{ which is compatible with the linear structure of this space. Two 
elements x and y of E are called comparable if either x S y or y S x holds. The space E 
endowed with the above relation is called a partially ordered linear space (POL-space). 
If E has a topology compatible with its linear structure and if the cone I< is closed in 
that topology then E is called a partially ordered topological space (POTL-space). 

We remark that in a POTL-space the intervals [a, b] = { x; a S x S b} are closed sets. 
A lot of examples show that the closedness of the nonnegative cone is not, in general, 
a strong enough connection between the ordering and the topology [8]. A stronger 
connection is considered by the following definitions. 

Definition 1. A POTL-space is called normal if given a local base U for the 
topology, there exists a positive number TJ so that if O S z E U EU, then [O, z] C T)U. 

Definition 2. A POTL-space is called regular if every order bounded increasing 
sequence has a limit. 

If the topology of a POTL-space is given by a norm then this space is called a 
paTiially ordered normed space (PON-space). If a PON-space is complete with respect to 
its topology then it is called a partiaily ordered Banach space '(POB-space ). According 
to Definition 1 a PON-spac~ is normal if and orily if there' Jxisfs' a positive number a 
such that 

for all x, y EE with OS x Sy. (5) 

Note that any regular POB-space is normal. The reverse is not true. For example, the 
space C[O, 1] of all continuous real functions defined on [O, 1], ordered. by the cone of 
nonnegative functions, is normal but is not regular. All finite dimensional POL-spaces 
are both normal and regular. 

Let us define now some special type of operators acting between two POL-spaces. 
If E and E are two linear spaces then we denote by (E, E) the set of all operators 
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from E into E and by L(E, E) the set of all linear operators from E into E. If E 
and £ are topological linear space then we denote by B(E, E) the set of all continuous 
linear operators from E into E. Now let E and Ebe two POL-spaces and consider an 
operator GE (E, E). G is called isotone (resp. antitone) if x ::; y implies G(x) ::; G(y) 
(resp. G(x) 2::: G(y)). G is called nonnegative if G(x) 2::: 0 implies x 2:'.: 0. For linear 
operators the nonnegativity is clearly equivalent with the isotony. Also, a linear operator 
is inverse nonnegative if and only if it is invertible and its inverse is nonnegative. If G is 
a nonnegative operator then we write G 2::: 0. If G and Hare two operators from E into 
E such that H - G is nonnegative then we write G 2::: H. If Z is a linear space then we 
denote by I = Iz the identity operator in Z. If Z is a POL-space then we obviously have 
J 2::: 0. Suppose E and E are two POL-space and consider the operators T E L(E, E) 
and S E L(E, E). If ST< IE (resp. if ST 2:'.: IE) then S is called a left subinverse (resp. 
superinverse) of T and T is called a right subinverse (resp. superinverse) of S. We say 
that S is a subinverse of T if S is a left as well as right subinverse of T. 

III. Monotone convergence results. 

We can now formulate the main theorem. 

Theorem 1. Let E be a regular POTL-space, E a POTL-space and F : DC E--+ 
E. 

Assume 
(i) there exist points xo, Yo, Y-1 in D with 

xo::; Yo:::; Y1, [xo, y_i] CD, F(xo):::; 0:::; F(yo). (6) 

(ii) Set 
Q1 = {(x, y) E E2

; Xo::; X::; Y:::; Yo}, 

Q2 = {(y,y_i)EE2; xo:::;y:::;yo}, 

and 
Q3 = Q1 U Q2. 

Let A: Q3--+ B(E, E) be an operator such that 

PA(w,z)(y-x) < F(y) - F(x) (7) 

for all (x,y), (y,w) E Qi, (w,z) E Q3. 
(iii) The linear operator PA( u, v) has a continuous nonsingular nonnegative left subin­ 
verse. 
Then there exist two sequences {xn}, {yn}, n 2:'.: 1 and two points x*,y* of E such that 
for all n > 0 

F(yn) + p A(Yn' Yn-1)(Yn+l - Yn) = 0, 
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F(x11) + P A(Yn, Yn-1)(Xn+1 - Xn) = 0, 
F( xn) ::; 0 ::; F(yn ), 

lim Xn = x* 
n-oo 

and 1. * 
1m Yn = Y · n-oo 

(8) 

(9) 

(10) 

Moreover, if the operator L11 = P A(y11, Yn-1) are inverse nonnegative then any zero z of 
Fin [xo, Yo] is in [x*, y*]. 

Proof. Let Lo be a continuous nonsingular nonnegative left subinverse of L0• Let 
us define the operator 

T1 [0,yo - xo] - E 

by 
T1(x) = x - Lo(F(xo) + Lo(x)). 

Then T1 is clearly isotone, continuous with 

T1(0) = -LoF(xo) > 0 

and 
Yo - xo - LoF(yo) + Lo(F(yo) - F(xo) - Lo(Yo - xo)) 

< Yo - xo - LoF(yo) ::; Yo - xo. 

By the well-known Kantorovich theorem on nonlinear equations on partially ordered 
space (4], we deduce the existence of a fixed point v of T1 in [O, y0 - x0]. Set x1 = x0 + v, 
then 

F(xo) + Lo(x1 - xo) = 0, 
By (7), we get 

F(x1) = F(x1) - F(xo) + Lo(xo - xi) ::; 0. 

Similarly, let us consider the operator T2 : [O, Yo - xi] --+ E given by 

T2(x) = x + Lo(F(yo) - Lo(x)). 
The operator T2 is isotone, continuous with 

and 

Yo - x1 - LoF(xi) + Lo(F(yo) - F(x1) - Lo(Yo - x1)) 
< Yo - X1 - LoF(xi) ::; Yo-· x1. - 
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As before, we deduce the existence of a fixed point v1 in [O, Yo - x1] of T2. Set Y1 = y0 - v1 
to obtain 

F(yo) + Lo(Y1 - Yo) = 0, 
By (7), we get 

F(yi) = F(yi) - F(yo) - Lo(Y1 - Yo) 2:: 0. 

Using induction on n, we generate two sequences {xn} and {Yn}, n > 1 satisfying (1), 
(2), (8), (9). But the space Eis regular, therefore there exist x*, y* EE satisfying (10), 
with x* :Sy*. 

Let z be a zero of F in [xo, Yo]. Then, we have 

Lo(Y1 - z) = Lo(Yo) - F(yo) - Lo(z) = Lo(Yo - z) - (F(yo) - F(z)) > 0 

and 

Lo(x1 - z) = Lo(xo) - F(xo) - Lo(z) = Lo(xo - z) - (F(xo) - F(z)) :S 0. 

If the operator £0 is inverse isotone, then x1 :S z < y1. Similarly, using induction on n, 
we get Xn :S z < Yn· That is, x* :S z Sy*. 

That completes the proof of the theorem. 
We now show that if certain conditions are satisfied then x* and y* are zeros of F. 

Theorem 2. Suppose that the operator F is continuous at x*, y* and the hypotheses 
of Theorem 1 are satisfied. lvloreover, assume that one of the following conditions is 
satisfied 
(a) x* = y*; 
(b) E is normal and there exists an operator T : E --+ E with T(O) = 0 which has an 

isotone inverse continuous at the origin and such that Ln :S T for sufficiently large 

( c) E is normal and there exists an operator S : E --+ E _with S(O) = 0 continuous at 
the origin and such that Ln S S for sufficiently large n; and 

( d) the operator Ln, n 2:: 0 are equicontinuous. 
Then 

F(x*) = F(y*) = 0. 
Proof. 

(a) By the continuity of F and (8) we get F(x*) :SO :5 F(x*). That is F(x*) = 0. 
(b) By (1), (2), (8)-(10) we have 
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So, 

But E is normal and limn-+oo ( Xn - Xn+1) = limn-+oo (Yn - Yn+1) = 0. Therefore, 
limn-+oo T-1 F(xn) = limn-+oo T-1 F(yn) = 0. That is, F(x*) = F(y*) = 0, by 
continuity. 

(c) For sufficiently large n, as in (b) we get 

Since E is normal and F, S are continuous we get F(x*) = F(y*) = 0. 
(d) By the equicontinuity of the operators Ln it follows that limn ....... 00 Ln(vn) = 0 if 

limn-+oo Vn = 0. In particular, 

lim Ln(Xn - Xn+I) = lim Ln(Yn - Yn+1) = 0. n-+oo n-+oo 

· But from (1), (2) and the continuity of F at x* and y* we get F(x*) = F(y*) = 0. 
That completes the proof of the theorem. 
We now give sufficient conditions for the uniqueness of a zero of Fin [x0, y0]. 

Theorem 3. Let E and E be two POL-spaces and F: DC E--+ E. Suppose 
(a) there exist xo, Yo E D such that xo :::; Yo and [xo, Yo] C D. Let Q1 = {(x, y) E 

E2
; xo :::; x :::; y :::; Yo}; 

(b) ther exists an operator T : Q1 --+ L(E, E) such that PT(x, y) has a nonnegative 
left superinverse for each (x, y) E Q1 and F(y) - F(x) 2:'.: PT(x, y)(y - x) for all 
(x, y) E Q1. 

(c) (x*,y*)EQ1 andF(x*)=F(v*). 

Then 
• * X = y. 

Proof. Let S(x*, y*) be a nonnegative left superinverse of PT(x*, y*). We have 

0:::; y* - x* ~ S(x*, y*)PT(x*, y*)(y* - x*):::; S(X*, y*)(F(y*) - F(x*)) = 0. 
Hence, x* = y*. 

That completes the proof of the theorem. 
Note that the estimates (9) give automatic error bounds at each step of the iterative 

procedures (1) and (2). In order to obtain further estimates on the distances llxn - x* II, 
llxn+l - Xnll (similarly for 11::/n - y* 11 and IIYn+l - Yn II) we develop the following theorem. 
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Theorem 4. Let E and E be Banach spaces and F : D C E - E . .Assume 
( a) the linear operator PA( u, v) is invertible and 

ll(P A( u, v) )-111 < b 

for al/u,v E U(xo,r) = {x E E/llx- xoll < r}; 
(b) the following conditions are satisfied 

IIF(y) - F(x)- PA(u,.v)(y- x)II ::; cilY- xlll+d,,, 

(11) 

(12) 

(13) 

for x E U(xo, r) and u, v E U(xo, r); 
( c) the following estimates are true 

IIF(xo)II ::; bo; 

bbo = TJ < l 

(14) 

(15) 

and 
h = bcrJd < 1 (16) 

where 
d mindn 

n 

Then the operator F has a zero x* in .U(x0, r) and . . ' : 

(17) 

where 
r = 9oTJ 
00 

qn = Lht;, n 2: 0, 
i=I 

t0 = 0, 
and 

Proof. Let us assume that x1, x2, ... , x11 E U(xo, r). Using the identity 
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(2) and (12) we get 
(18) 

and 

Hence, 
JJxn+l - Xn II :S hq,. TJ. 

From the inequality 

n+l n 

IJxo - Xn+1JJ :S L llxi - Xi-ill :S L h9iTJ < qoTJ < r 
i=l i=O 

we deduce that Xn+l E U(xo, r). From 

n+p-1 I: h9iry :s qn11, 
i=n 

n 2:: 0 (19) 

we get that the sequence { Xn}, n 2:: 0 is a Cauchy sequence in a Banach space and as 
such it converges to some x*. By taking p - oo we get ( 17) and x* E U ( x0, r). Finally, 
by letting n - oo in (18) we get F(x*) = 0. 

That completes the proof of the theorem. 

Note that if it is Frechet differentiable and 

IIF'(x) - F'(y)IJ :S cl!x - yJI for all x, y E U(xo, r) (20) 

then we can set di = 1 and c = ! sup E JI F" ( x) 11 in Theorem 4. Moreover, note that 
condition (20) has been used by various authors [1], (2], (4], [5] to prove convergence for 
Newton's method 

n > 0. (21) 

Furthermore, if the Frechet derivative F'(x) of Fis Holder continuous on U(x0, r), that 
lS 

IIF'(x) - F'(y)II :S clJx - YI!'\, 0 < .X < 1, x,y E U(xo, r) 

then our Theorem 4 through (21) shows that the order of convergence of iteration {Zn}, 
n 2:: 0 is 1 + A, [1], [2]. 

We now complete this paper with an application. For simplicity we take P = I. 

IV. Applications. 
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Let E = E = R2 and consider a system of two nonlinear equations 

q1(s, t) = 0, 
q2(s, t) = 0. 

Then x = (s, t), F(x) = (q1(s, t), q2(s, t)). Let 

From (2) we get 
(22) 

where 

U1 - V1 U2 - V2 

A(u,v) = I I (23) 
qz( u1, u2) - q2( V1, u2) q2( V1, u2) - q2( v1, v2) 

U1 - V1 U2 - V2 

for u = (u1, u2) and v = (v1, v2). 
In order to calculate 6.x11 = 6.un, 6.v11) we must solve (22) which is a system of 

algebraic equations. If the rest of the assumptions of Theorems 1 and 4 are satisfied then 
the conclusions apply. 
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