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INTEGRABILITY OF TRIGONOMETRIC SERIES 

S. · ZAHID ALI ZEN EI 

Abstract. Generalization of the theorems of Taljakovskii (7] and Sing and Sharma 
[5] have been obtained. 

1. A sequence < an > of positive numbers is said to be quasi-monotone if Llan > - oc 
an/n for some positive oc. It is obvious that every null monotonic decreasing sequence 
is quasi-monotone. A sequence < an > is said to be h-quasi-monotone if an -+ 0, an > 0 
ultimately and Llan ~ -6n, where < 6n > is a sequence of positive numbers. Clearly a 
null quasi monotone sequence is 6-quasi-monotone with 6n =oc an/n. 

We say that a sequence < an > of numbers satisfies condition S or an E S, if an -+ 0 
as n -+ oo and there exists a sequence of numbers < Ak > such that 
(a) Ak l 0, 
(b) E%°=1 Ak < oo, (1.1) 
and 
(c) I Llak I :S Ak, for all k. 
By replacing the condition (a) of (1.1) only by: 
( a') < Ak > is quasi-monotone 
(a") < Ak > is 6-quasi-monotone and Ek6k < oo, we say that < an >E S(oc) and 

< an >E S(6) respectively. 
Thus, in view of the above definitions it is obvious that S C S( oc) C S( 6). And all these 
three are the generalization of quasi-convex sequence. Our condition S( 6) is weaker than 
the conditions Sand S(oc) of Sidon [4] and that of Sing and Sharma [5] respectively. 

2. Let 

f(x) 
1 00 

2ao + Lan cosnx 
n=l 

and 
00 

g(x) = Lan sin nx, 
n=l 
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be the trigonometric series. 
Integrability of the above series has been discussed by several authors, for example 

Young [8], Kolmogorov [3) and Sidon [4). In 1973, Teljakoveskii (7) has proved the 
following Theorems by taking a set of weaker conditions of Sidon [4) than those of the 
earlier authors. 

Theorem A. Let the coefficient of the series f(x) satisfy the condition S. Then 
the series is a Fourier series and the following relation holds 

where C is an absolute constant. 

Theorem D. Let the coefficient of series g(x) satisfy the condition S. Then the 
following relation holds for p = l, 2, ... 

In particular g( x) is a Fourier series iff E~=l ~ < oo. 
Very recently Sing and Sharma [5] have proved Theorem A and B for the class S( <X). 

In this paper we generalize Theorem A and B for the class S(8), so as to get the above 
mentioned generalization of Taljakoveskii [7] and Sing and Sharma [5] as a special cases. 

3. We prove the following theorem. 

Theorem 1. Let the coefficient of the series f(x) satisfy the condition S(8). Then 
the series is a Foureir series and the following relation holds 

where C is an absolute constant 

Theorem 2. Let the coefficient of series g(x) satisfy the condition S( 8). Then the 
series coverges to a function and the following relation holds for p = 1, 2, 3 ... 

4. For the proof of the above theorem we require the following lemmas. 
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Lemma 1[2]. If the sequence of numbers <ex> satisfies the condition lexil~ 1, then 

171" Lk . sin(i + 1/2)x I dx < C(k + 1), I ex, 2 . ;2 - 
O i=O S1Il X 

and 

/1r l t exi cos(i.+ 1/2)x I dx ~ C(k + 1), 
J.ir/p+I i=O 2smx/2 

Where C is a positive absolute constant. 

Lemma 2 [1). If< an > is 6-quasi-monotone with Env 6n < oo v =J. 0 then the 
convergence of Env-lan implies that nvan - 0, n - oo. 

Lemma 3. Let < an > be a 8-quasi-monotone sequence with 

00 00 00 L n8n < oo. If Lan < oo, then L(n + 1) I ~a;. I< oo. 
n=l n=l n=l 

Proof. By partial summation we have 

n-1 
L(k + l)~ak + (n + l)an - a1. 
k=l 

Since < an > is 8-quasi-monotone sequence and Ek=I ak < oo, we have nan = o(l), by 
Lemma 2. Therefore, by taking the limit we have, 

00 00 

Lak = L(k+l)~ak-a1. 
k=l k=l 

From which it is clear that Ek=I (k + l)~ak < oo. 
Now, 

00 

L(k + 1) I ~ak I 
k=l 

00 

L(k + 1) I Uk - llk+i + 6k - 8k I 
k=l 
00 00 

< L(k + l)(ak - ak+l + 8k) +I: 6k(k + 1) 
k=l k=l 
00 00 

L(k + I)~ak + 2 L 8k(k + 1) 
k=l 

< oo, 
k=l 
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by virtue of the hypothesis. 

5. Proof of Theorem 1. By virtue of hypothesis Aan ~ -6n, we have 

Also the convergence of :Ef=1 k6k implies that :Ef=16k < oo. Therefore, using the condi 
tion that an -+ 0, we have 

00 00 00 

LI Aan I :S LAan + 2L8n < oo. 
n=l n=l n=l 

Thus 9f + E~=l an cos nx converges to f(x) for all x except possibly x = 0. 
By summation by parts, we have 

n 

f(x) = }~[a;+ Lakcoskx] 
k=l 
n-1 

. [ ao "'"""' ao ] nl.:.~ 2 + L._; Dk(x)Aak + anDn(x) - 2 
k=l 

n-1 

}~ [L Dk(x)Aak + anDn(x)] 
k=l 

by the fact that limn-+-oo anDn(x) = 0 if x =/; 0 where Dn(x) = 1/2 + cosx + cos2x + 
... + cos nx. 
Now applications of Abel's transformation and Lemma 1 and 2 yield, 

00 

< cI:(k+ 1) I AAk I, 
k=O 
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since I ~~i l=lcxil:::; l. 
Then by Lemma 3. 

{'Ir 00 

Jo I a2° + Lancosnx I< oo, 
O n=l 

and satisfies the following inequality 

11r·1~0+i=akCOskxl:; cf(k+l)l~Akl~ ci=Ak, 
O k=l k=O k=O 

This proves the theorem. 

Proof of Theorem 2. Since ~an 2:: -8n, we have I ~an I~ an + 28n. The 
convergence of the series Ek=l k8k < oo implies that Ek=t 8k < oo. Therefore, by using 
the condition that an -:-+ 0, we have 

00 00 00 

L I ~an I ~ L ~an + 2 L 8n 
n=l n=l n=l 

Thus, Ek=l an sin nx converges to g(x) for every x. 
We suppose that a0 = 0 and Ao= max(I a1 l,Ai), we see that Ao~ EAk, Putting 

- - cosx/2 
Do(x) = 2. 12 

for k2: 1 sm x 

Dk = Do(x) + sinx + sin2x + ... + sinkx 
cos(k + 1/2)x 

2 sin x/2 
Then 

f 1r I t ak sin kx I dx 
l1r/p+l k=l 

/1r I t~akD;(x) I dx 
l1r/p+l k=O 

t [Ii I tt>a.D;(x) I dx 
j=l 1r/J+l k=O 

+ o(t 11r~i I t~akD;(x) I dx) 
j=l 1r/J+1 k=j 

Application of Abel's transformation and lemma 2 yield: 
00 00 ~ 

L~akD;(x) = LAk Aak D;(x) 
kaj kaj k 

oo k ~ . j-1 ~a- 
L ~ak ~ A:, D;-(x)-Ai ~ A/ D;-(x) 
k=j i=O i=O 

Ii+ h, say 
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Therefore 
p {rr/j oo 

I2 = L }., . I LAakD;(x) I dx 
j=l 1r/J+l k=j 
p oo /rr k A 

< :;[?; I AAk I l1r/i+1 I~ ;i n;(x) I dx 

11r/i i-l Aa· 
+ Aj . IL A·' D;(x) I dx] 

7r/J+l i=O ' 

oo 11r k A 
< L I AAk I . I L A~i n; ( X) I dx 

k=l rr/J+I i=O ' 

~ lrr/j j dx 
+C~Ai -.-- 

i=I 1r/i+1 2sm x/2 
00 00 

< C L(k + 1) 1 AAk I +c LA;, by Lemma 1, 
k=l j=l 
00 

< C L(k + 1) I AAk I, 
k=l 

Hence by Lemma 3 
00 

h ~ C I)k + 1) I AAk I < 00. 

k=l 

For all x E [O, 1r] k = 0, l, 2, · · · 

n;:(x) 1 + O(k + 1). 
X 

we have 

I, = t [h I ~Aa,D;;-(x) I dx 
j=l rr/j+l k=O 

t, [;:, I ~Aa, Id:+ o(t, [;:,~I Aa, I (k + l)dx) 
t I a! I +o(t I~; I) +o(t~ (k+ 1).J Aak I) 
j=l J j=l J · j=lk=O J 

But 
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and 

Therefore, 

Hence 

This proves Theorem 2. 
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