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ALMOST CONVERGENCE AND ALMOST SUMMABILITY 

EKREM SAVAS 

Summary. The purpose of this paper is to introduce and discuss the spaces of 
almost summable sequences. Also some matrix transformations have been charac­ 
terized. 

1. Introduction 
Let s be the set of all sequences with real or complex terms and let £00,c and c0 denote, 

respectively, the Banach spaces of bounded, convergent and null sequences x = (xk) with 
the usual norm llxll = supk lxk I- 

Let D be the shift operator on s,i.e., 

It may be recalled that Banach limit L is a nonegative linear functional on £00 such that 
L is invariant under the shift operator (i.e., L(Dx) = L(x) for all x E £00) and that 
L(e) = 1 where e = (1, 1, 1, ... ), (I]. A sequence x E £00 is said to be almost convergent 
if all Banach limits of x coincide, [2]. 

Let c denote the set of all almost convergent sequences. 
For any sequence x, we write 

.tmn = tmn(x) 1 m 

m+ 1 LXn+i· 
i=l 

Lorentz [2] established the following result: 
Theorem A. x E c if and only if tmn(x) tends to a limit as m--+ oo, uniformly in 

n. 

Recently, some new sequence spaces which arose naturally from the concept of almost 
convergence have been introduced by Nanda [4]. If (Pm) is a bounded sequence of positive 
real numbers, then we define (see, [4]), 

f(p) = {x: LI tmn IPm converges uniformly inn} 
m 

f(p) = {x: sup LI tmn IPm< oo}. 
n m 
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(Here and afterw~rds summatio:r_:s without limits run from 1 to oo ). If Pm = y for all m, 
~e write lp and lp for l(p) and l(p) respectively. If Pm = 1 we write£ and £ for lp and 
fp respectively. 

Let A = (ank) be an infinite matrix of real or complex numbers. We write Ax = 
(An(x)) if An(x) = EkankXk converges for each n. Let X and Y be any two nonempty 
subsets of s. If ( x k) E X implies that Ax = ( An ( x)) E Y, we say that A defines a matrix 
transformation from X into Y and we denot~ it by A: X -t Y. By (X, Y) we mean the 
class of matrices A such that A : X -t Y. 

2. Almost summability. 

We define 

(A,p) 

(A, P)oo 

(A,p) 

n 

n 

{ x : L I tmn (Ax) jPm converges uniformly in n} 
m 

,... 

(A,p) {x: sup LI tmn(Ax) jPm< oo} 
n m 

where 
tmn(Ax) La(n, k, m)xk 

k 

such that 
1 m 

a(n, k, m) = + l Lan+i,k· 
m i=O 

If Pn = p for all n then we write (A)p and (A)~ for (A, p) and (A, p)00 respectively. If 
p = 1 we omit the suffix p and write (A). Note that (A) denotes these~ of all absolutely 
s~mmable sequences. Similarly if Pm = p for all m we write (A)p and (Ap) for (A, p) and 
(A,p) respectively. 

We have 
,... 

Theorem 1. (A,p) C (A,p). 
Proof. Let x E (A,p). Then there is an integer M such that 

L I La(n,k,m)xk jPm ~ 1. 
m>M k 

(2.1) 

Hence it is enough to show that, for fixed m, Eka(n, k, m)xk is bounded. It follows 
from (2.1) that 

I I:a(n, k, m)xk I ~ 1 form 2: Mand for all n. 
k 
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But if m ~ 1 

(m+1)La(n,k,m)x1:-mZ::a(n,k,m-l)x1: = Lan+m,1: (2.2) 
1: 1: 1: 

Hence for any fixed m ?: M + 1, E1:an+m,1:X1: is bounded. Therefore E1:a(n, k, m)x1: is 
bounded for all m, n and this completes the proof. 

-- Theorem 2. (A)p C (A)00• 

Proof. Note that 

sup I I::a(n,k,m)x1: I < sup(L I I::a(n,k,m)x1: IP)l/p (2.3) 
m,n 1: n m 1: 

sup I L a(n, k, m)x1: I > sup I L a(n, k, O)x1: I = sup I L an1:X1: I (2.4) 
n,m 1: n 1: n 1: 

sup IL a(n, k, m)x1: I 
n,m 1: 

1 m 
sup I L + 1 L an+i,1:Xk I 
n,m 1: m i:O 

I~ I E~11 ~ sup L...J an+i,1:X1: sup --- 
n,i 1: m m + 

< SU~ I L an+i,1:X1: I 
n,, 1: 

sup I I:an1:X1: I, 
n 1: 

Now the result follows from (2.3), (2.4) and (2.5). 

If X is a linear space over the field C then a paranorm on X is a function g : X -+ R 
which satisfies the following axioms for X' y E X' 

g(O) 
g(x) 

g(x + y) < 

0 
g(-x) 
g(x) + g(y) 

A - Ao, x - xo imply Ax--+ Aoxo 

where A, Ao E C and x, xo E X; in other words, I A - Ao I-+ 0, g(x - xo) -+ 0 imply 
g(Ax - Aoxo) -+ 0. A paranormed space is a linear space X with a paranorm g and is 
written as (X,g). 

Theorem 3. ( A, p) is linear topological space para normed by 

f(x) = (LI Lan1:X1: IP")l/M 
n 1: 
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where M · max(l, sup Pn)- (A, p) is paranormed by 

g(x) sup(L IL a(n, k, m)xk IPm )1/M 
m k 

(2.6) 

(A,p) is paranormed by (2.6} if inf pm> 0. Also if inf Pn > 0 then (A,p)= is paranormed 
by 

Proof. Because of Theorem 1 (2.6) is meaningful for x E (A,p). We consider only 
(A,p). It can be proved by "standart" arguments that g is a paranorm on (.A.,p). As one 
step in the proof, we shall only show that for fixed x, AX --+ 0 as X--+ 0. If x E (.A.,p), ' . 
then given c: > 0 there is an M such that, for all n 

L I La(n, k, m)xk !Pm < €. 

m>M k 

(2.7) 

So if O < A ::; 1, then 

m>M k m>M k 

and since, for fixed M, 
M-1 L I L a(n, k, m)AXk IPm ··-+ 0 
m:O k 

as A --+ 0, this completes the proof. 

Theorem 4. Let O < Pm ::; qm, then (A, p) C (A, q). 

Proof. Let x E (A,p). then there is an integer M such that (2.1) holds. Hence for 
m 2: M I Eka(n, k, m)xk I::; 1. So that 

I L a(n, k, m)xk lq"' ::; IL a(n, k, m)xk jPm 
k k 

and this completes the proof. 

3. Some matrix transformations 

In· this section we characterize some matrix transformations 
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Theorem 5. Let bnk > 0. If 

sup L l.ank I (bnk)lfp < oo 
n k 

and 
sup L I a(n, k, m) I (bnk)-lf q. < oo 
k m 

where p-1 + q-1 = 1, then A E (fp, fp)· 
Proof. We have by Holder's inequality 

I tmn(Ax) IP < (LI a(n, k, m) I (bnk)l/p )p-l 
k 

L I a(n, k, m) I (bnk)-lfq I Xk IP . 
k 

Hence 

LI tmn(Ax) IP ~ (LI a(n, k, m) I (bnk)lfp )p-l 
m k 

L I Xk IP LI a(n, k, m) I (bnk)-lfq. 
k m 

Also it follows from Lemma in (4] that (3.1) is equivalent to 

sup LI a(n, k, m) I (bnk)l/p < oo. 
n k 

Now the result follows from (3,2), (3.3) and (3.4). 

Theorem 6. Let 1 ~ p < oo. Then A E (£00,fp) if and only if 

L(L I a(n, k, m) l)P < oo, uniformly inn, 
m k 

Proof. Sufficiency. Suppose that (3.5) holds and that x E £00• then 

LI tmn(Ax) IP ~ L(L I a(n,k,m)xk l)P 
m m k 

~ llxll~ L(L I a(n, k, m) l)P. 
m k 

Therefore Em I tmn(Ax) IP converges uniformly inn and so A E (£00,fp). 
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. (3.2) 

(3.3) 

(3.4) 

(3.5) 
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Necessity. Suppose that A E ((;,o ,lp) and that x E l00, Therefore 

m 

exists uniformly inn. Now (qn) is a sequence of continuous seminorms on l00 such that 
supn qn(x) < oo. Therefore by Banach-Steinhaus theorem ([3], p.114) there exists a 
constant K such that 

(Vn, Vx E loo). (3.6) 

Putting x = sgn a(n, k, m) in (3.6) we observe that (3.5) holds. this completes the proof. 
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