NOTE ON DISCRETE HARDY'S INEQUALITY

DAH-YAN HWANG AND GOU-SHENG YANG

1. Introduction.

In [1] Copson established the following Hardy's inequality involving series of positive terms.

Theorem A. If $p>1, \lambda_{n}>0, a_{n}>0, \Lambda_{n}=\Sigma_{i=1}^{n} \lambda_{i}, A_{n}=\Sigma_{i=1}^{n} \lambda_{i} a_{i}$ and $\sum_{n=1}^{\infty} \lambda_{n} a_{n}^{p}$ converges, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{n}\left(A_{n} / \Lambda_{n}\right)^{p} \leq\left(p / p^{-1}\right)^{p} \Sigma_{n=1}^{\infty} \lambda_{n} a_{n}^{p} \tag{1}
\end{equation*}
$$

The constant is the best possible.
B.G. Pachpatte [3] has recently established the following generalization of the inequality (1)

Theorem B. Let $p, \lambda_{n}, a_{n}, \Lambda_{n}$ and A_{n} be as in Theorem A and let $H(u)$ be a realvalued positive convex function defined for $u>0$. If $\sum_{n=1}^{\infty} \lambda_{n} H^{p}\left(a_{n}\right)$ converges, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{n} H^{p}\left(A_{n} / \Lambda_{n}\right) \leq(p / p-1)^{p} \Sigma_{n=1}^{\infty} \lambda_{n} H^{p}\left(a_{n}\right) \tag{2}
\end{equation*}
$$

The constant is the best possible.
In the present note we will establish some new inequalities which generalize the inequalities (1) and (2).

2. Main results.

Theorem 1. let $p>1, \beta_{n}>0, \lambda_{n}>0, a_{n}>0 . \Sigma_{n=1}^{\infty} \lambda_{n} a_{n}^{p}$ converge, and further let $\Lambda_{n}=\sum_{i=1}^{n} \beta_{i} \lambda_{i}, A_{n}=\sum_{i=1}^{n} \beta_{i} \lambda_{i} a_{i}$. If there exists $\kappa>0$ such that

$$
\begin{equation*}
p-1+\frac{\left(\beta_{n+1}-\beta_{n}\right) \Lambda_{n}}{\beta_{n+1} \beta_{n} \lambda_{n}} \geq \frac{p}{\kappa} \quad \text { for } n=1,2,3, \ldots \tag{3}
\end{equation*}
$$

Received June 14, 1989; revised March 5, 1990.
then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{n}\left(A_{n} / \Lambda_{n}\right)^{p} \leq \kappa^{p} \sum_{n=1}^{\infty} \lambda_{n} a_{n}^{p} \tag{4}
\end{equation*}
$$

The case $\beta_{n}=1, n=1,2, \ldots$ and $k=p /(p-1)$ shows the constant in (4) to be the best possible.

Proof. Define $\alpha_{n}=A_{n} \Lambda_{n}^{-1}$ for $n=1,2,3, \ldots$ and let $\alpha_{0}=\lambda_{0}=\beta_{0}=1$. By making use of the elementary inequality,

$$
x^{p}+(p-1) y^{p} \geq p x y^{p-1}
$$

where x and y are nonnegative numbers and agree that $\Lambda_{0}=0$. We have, for $n=$ $0,1,2, \ldots$,

$$
\begin{aligned}
-p \lambda_{n+1} a_{n+1} \alpha_{n+1}^{p-1}= & -p \beta_{n+1} \lambda_{n+1} a_{n+1}\left(\alpha_{n+1}^{p-1} / \beta_{n+1}\right) \\
= & -p\left(\alpha_{n+1} \Lambda_{n+1}-\alpha_{n} \Lambda_{n}\right)\left(\alpha_{n+1}^{p-1} / \beta_{n+1}\right) \\
= & -p\left(\Lambda_{n+1} / \beta_{n+1}\right) \alpha_{n+1}^{p}+p\left(\Lambda_{n} / \beta_{n+1}\right) \alpha_{n} \alpha_{n+1}^{p-1} \\
\leq & -p\left(\Lambda_{n+1} / \beta_{n+1}\right) \alpha_{n+1}^{p}+\left(\Lambda_{n} / \beta_{n+1}\right) \alpha_{n}^{p} \\
& +(p-1)\left(\Lambda_{n} / \beta_{n+1}\right) \alpha_{n+1}^{p} .
\end{aligned}
$$

so that,

$$
\begin{aligned}
& (p-1) \lambda_{n+1} \alpha_{n+1}^{p}+\frac{\left(\beta_{n+1}-\beta_{n}\right) \Lambda_{n}}{\beta_{n+1} \beta_{n} \lambda_{n}} \lambda_{n} \alpha_{n}^{p}-p \lambda_{n+1} a_{n+1} \alpha_{n+1}^{p-1} \\
& \leq(p-1) \lambda_{n+1} \alpha_{n+1}^{p}+\frac{\left(\beta_{n+1}-\beta_{n}\right) \Lambda_{n}}{\beta_{n+1} \beta_{n} \lambda_{n}} \alpha_{n}^{p}-p\left(\Lambda_{n+1} / \beta_{n+1}\right) \alpha_{n+1}^{p} \\
& +\left(\Lambda_{n} / \beta_{n+1}\right) \alpha_{n}^{p}+(p-1)\left(\Lambda_{n} / \beta_{n+1}\right) \alpha_{n+1}^{p} \\
& =\frac{\Lambda_{n} \alpha_{n}^{p}}{\beta_{n}}-\frac{\Lambda_{n+1} \alpha_{n+1}^{p}}{\beta_{n+1}} .
\end{aligned}
$$

By adding the inequalities for $n=0,1,2,3, \ldots, N-1$, we have

$$
\begin{aligned}
& \sum_{n=0}^{N-1}(p-1) \lambda_{n+1} \alpha_{n+1}^{p}+\sum_{n=0}^{N-1} \frac{\left(\beta_{n+1}-\beta_{n}\right) \Lambda_{n}}{\beta_{n+1} \beta_{n} \lambda_{n}} \lambda_{n} \alpha_{n}^{p}-p \sum_{n=0}^{N-1} \lambda_{n+1} a_{n+1} \alpha_{n+1}^{p-1} \\
& \leq\left(-\Lambda_{N} / \beta_{N}\right) \alpha_{N}^{p} \leq 0
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \sum_{n=1}^{N}(p-1) \lambda_{n} \alpha_{n}^{p}+\sum_{n=1}^{N-1} \frac{\left(\beta_{n+1}-\beta_{n}\right) \Lambda_{n}}{\beta_{n+1} \beta_{n} \lambda_{n}} \lambda_{n} \alpha_{n}^{p} \\
& \leq p \sum_{n=1}^{N} \lambda_{n} a_{n} \alpha_{n}^{p-1} .
\end{aligned}
$$

Using (3) and since ($p-1$) $\lambda_{N} \alpha_{N}^{p} \geq 0$, we have

$$
\begin{equation*}
\sum_{n=1}^{N-1} \lambda_{n} \alpha_{n}^{p} \leq \kappa \sum_{n=1}^{N} \lambda_{n} a_{n} \alpha_{n}^{p-1} \tag{5}
\end{equation*}
$$

By let N tend to infinity in (5) and using Holder inequality with indices p and $p / p-1$, we have

$$
\begin{aligned}
\sum_{n=1}^{\infty} \lambda_{n} \alpha_{n}^{p} & \leq \kappa \sum_{n=1}^{\infty} \lambda_{n} a_{n} \alpha_{n}^{p-1}=\kappa \sum_{n=1}^{\infty} \lambda_{n}^{1 / p} a_{n} \lambda_{n}^{(p-1 / p)} \alpha_{n}^{p-1} \\
& \leq \kappa\left(\sum_{n=1}^{\infty} \lambda_{n} a_{n}^{p}\right)^{\frac{1}{p}}\left(\sum_{n=1}^{\infty} \lambda_{n} \alpha_{n}^{p}\right)^{\frac{p-1}{p}}
\end{aligned}
$$

Dividing the above inequality by the last factor on the right and raising the result to the p th power, we obtain

$$
\sum_{n=1}^{\infty} \lambda_{n} \alpha_{n}^{p} \leq \kappa^{p} \sum_{n=1}^{\infty} \lambda_{n} a_{n}^{p}
$$

this is the desired inequality (4).
Remark 1. Theorem 1 redues to Theorem A when $\kappa=p /(p-1)$ and $\beta_{n}=1$, for $n=1,2,3, \ldots$.

Theorem 2. Let H be a real-valued positive convex function defined on $(0, \infty)$, and let $p, \beta_{n}, \lambda_{n}, a_{n}, \Lambda_{n}, A_{n}$ and κ be as in Theorem 1. If $\Sigma_{n=1}^{\infty} \lambda_{n} H^{p}\left(a_{n}\right)$ converges, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{n} H^{p}\left(A_{n} / \Lambda_{n}\right) \leq \kappa^{p} \sum_{n=1}^{\infty} \lambda_{n} H^{p}\left(a_{n}\right) \tag{6}
\end{equation*}
$$

Proof. Since H is a convex function, by Jensen's inequality, we have

$$
H\left(A_{n} / \Lambda_{n}\right) \leq F_{n} / \Lambda_{n}
$$

where

$$
F_{n}=\sum_{i=1}^{n} \lambda_{i} \beta_{i} H\left(a_{i}\right)
$$

Thus

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{n} H^{p}\left(A_{n} / \Lambda_{n}\right) \leq \sum_{n=1}^{\infty} \lambda_{n}\left(F_{n} / \Lambda_{n}\right)^{p} \tag{7}
\end{equation*}
$$

Replace a_{n} by $H\left(a_{n}\right)$ in (4), we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{n}\left(F_{n} / \Lambda_{n}\right)^{p} \leq \kappa^{p} \sum_{n=1}^{\infty} \lambda_{n} H^{p}\left(a_{n}\right) \tag{8}
\end{equation*}
$$

The desired inequality then follows from (7) and (8).
Remark 2. The inequality (4) is the spacial case of the inequality (6) when $H(u)=$ u, and Theorem 2 reduces to Theorem B when $\kappa=p /(p-1)$ and $\beta_{n}=1$, for $n=$ $1,2,3, \ldots$. This case shows the constant in (6) to be the best possible.

The following is a discrete analogue of Theorem 3 in [2].
Theorem 3. Let $p, \beta_{n}, \lambda_{n}, a_{n}, \Lambda_{n}, A_{n}$ and κ be as in Theorem 1, and let $\varphi>0$ be defined on $(0, \infty)$ so that $\varphi^{\prime \prime} \geq 0$ and

$$
\begin{equation*}
\varphi \varphi^{\prime \prime} \geq(1-1 / p)\left(\varphi^{\prime}\right)^{2} \tag{9}
\end{equation*}
$$

If $\sum_{n=1}^{\infty} \lambda_{n} \varphi\left(a_{n}\right)$ converges, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{n} \varphi\left(A_{n} / \Lambda_{n}\right) \leq \kappa^{p} \sum_{n=1}^{\infty} \lambda_{n} \varphi\left(a_{n}\right) \tag{10}
\end{equation*}
$$

Proof. Let $\psi(u)=\varphi^{1 / p}(u), u>0$. Then, by (9), $\psi^{\prime \prime} \geq 0$. Hence ψ is convex on $(0, \infty)$. Thus, by Theorem 2 , we have

$$
\sum_{n=1}^{\infty} \lambda_{n} \psi^{p}\left(A_{n} / \Lambda_{n}\right) \leq \kappa^{p} \sum_{n=1}^{\infty} \lambda_{n} \psi^{p}\left(a_{n}\right)
$$

and therefore

$$
\sum_{n=1}^{\infty} \lambda_{n} \varphi\left(A_{n} / \Lambda_{n}\right) \leq \kappa^{p} \cdot \sum_{n=1}^{\infty} \lambda_{n} \varphi\left(a_{n}\right)
$$

This completes the proof.
Remark 3. Theorem 3 reduces to Theorem 2 and Theorem 1 when $\varphi(u)=H^{p}(u)$ and $\varphi(u)=u^{p}$, respectively. Also we note that the inequality (2) and (1) are the special cases of the inequality (10) when $\varphi(u)=H^{p}(u), \kappa=p /(p-1)$ and $\beta_{n}=1$, for $n=1,2, \ldots$, respectively.

References

[1] E.T. Copson, "Note on a series of positive terms," J. London Math. Soc. 2(1927), 9-12.
[2] N. Levinson, "Generalizations of an inequality of Hardy," Duck Math. J. 31 (1964), 389-394.
[3] B.G. Pachpatte, "A note on Copson's inequality involving series of positive terms," Tamkang J. Math. 21, 1, (1990) 13-19.

