NOTE ON DISCRETE HARDY'S INEQUALITY

DAH-YAN HWANG AND GOU-SHENG YANG

1. Introduction.

In [1] Copson established the following Hardy's inequality involving series of positive terms.

Theorem A. If p > 1, $\lambda_n > 0$, $a_n > 0$, $\Lambda_n = \sum_{i=1}^n \lambda_i$, $A_n = \sum_{i=1}^n \lambda_i a_i$ and $\sum_{n=1}^\infty \lambda_n a_n^p$ converges, then

$$\sum_{n=1}^{\infty} \lambda_n (A_n / \Lambda_n)^p \leq (p/p^{-1})^p \sum_{n=1}^{\infty} \lambda_n a_n^p.$$
(1)

The constant is the best possible.

B.G. Pachpatte [3] has recently established the following generalization of the inequality (1)

Theorem B. Let $p, \lambda_n, a_n, \Lambda_n$ and A_n be as in Theorem A and let H(u) be a realvalued positive convex function defined for u > 0. If $\sum_{n=1}^{\infty} \lambda_n H^p(a_n)$ converges, then

$$\sum_{n=1}^{\infty} \lambda_n H^p(A_n/\Lambda_n) \leq (p/p-1)^p \sum_{n=1}^{\infty} \lambda_n H^p(a_n).$$
(2)

The constant is the best possible.

In the present note we will establish some new inequalities which generalize the inequalities (1) and (2).

2. Main results.

Theorem 1. let p > 1, $\beta_n > 0$, $\lambda_n > 0$, $a_n > 0$. $\sum_{n=1}^{\infty} \lambda_n a_n^p$ converge, and further let $\Lambda_n = \sum_{i=1}^n \beta_i \lambda_i$, $A_n = \sum_{i=1}^n \beta_i \lambda_i a_i$. If there exists $\kappa > 0$ such that

$$p-1 + \frac{(\beta_{n+1} - \beta_n)\Lambda_n}{\beta_{n+1}\beta_n\lambda_n} \ge \frac{p}{\kappa} \quad \text{for } n = 1, 2, 3, \dots,$$
(3)

Received June 14, 1989; revised March 5, 1990.

then

$$\sum_{n=1}^{\infty} \lambda_n (A_n / \Lambda_n)^p \leq \kappa^p \sum_{n=1}^{\infty} \lambda_n a_n^p.$$
(4)

The case $\beta_n = 1$, n = 1, 2, ... and k = p/(p-1) shows the constant in (4) to be the best possible.

Proof. Define $\alpha_n = A_n \Lambda_n^{-1}$ for n = 1, 2, 3, ... and let $\alpha_0 = \lambda_0 = \beta_0 = 1$. By making use of the elementary inequality,

$$x^p + (p-1)y^p \geq pxy^{p-1}$$

where x and y are nonnegative numbers and agree that $\Lambda_0 = 0$. We have, for n = 0, 1, 2, ...,

$$\begin{aligned} -p\lambda_{n+1}a_{n+1}\alpha_{n+1}^{p-1} &= -p\beta_{n+1}\lambda_{n+1}a_{n+1}(\alpha_{n+1}^{p-1}/\beta_{n+1}) \\ &= -p(\alpha_{n+1}\Lambda_{n+1} - \alpha_n\Lambda_n)(\alpha_{n+1}^{p-1}/\beta_{n+1}) \\ &= -p(\Lambda_{n+1}/\beta_{n+1})\alpha_{n+1}^p + p(\Lambda_n/\beta_{n+1})\alpha_n\alpha_{n+1}^{p-1} \\ &\leq -p(\Lambda_{n+1}/\beta_{n+1})\alpha_{n+1}^p + (\Lambda_n/\beta_{n+1})\alpha_n^p \\ &+ (p-1)(\Lambda_n/\beta_{n+1})\alpha_{n+1}^p. \end{aligned}$$

so that,

$$(p-1)\lambda_{n+1}\alpha_{n+1}^{p} + \frac{(\beta_{n+1} - \beta_n)\Lambda_n}{\beta_{n+1}\beta_n\lambda_n}\lambda_n\alpha_n^p - p\lambda_{n+1}a_{n+1}\alpha_{n+1}^{p-1}$$

$$\leq (p-1)\lambda_{n+1}\alpha_{n+1}^p + \frac{(\beta_{n+1} - \beta_n)\Lambda_n}{\beta_{n+1}\beta_n\lambda_n}\alpha_n^p - p(\Lambda_{n+1}/\beta_{n+1})\alpha_{n+1}^p$$

$$+ (\Lambda_n/\beta_{n+1})\alpha_n^p + (p-1)(\Lambda_n/\beta_{n+1})\alpha_{n+1}^p$$

$$= \frac{\Lambda_n\alpha_n^p}{\beta_n} - \frac{\Lambda_{n+1}\alpha_{n+1}^p}{\beta_{n+1}}.$$

By adding the inequalities for n = 0, 1, 2, 3, ..., N - 1, we have

$$\sum_{n=0}^{N-1} (p-1)\lambda_{n+1}\alpha_{n+1}^p + \sum_{n=0}^{N-1} \frac{(\beta_{n+1}-\beta_n)\Lambda_n}{\beta_{n+1}\beta_n\lambda_n}\lambda_n\alpha_n^p - p\sum_{n=0}^{N-1}\lambda_{n+1}a_{n+1}\alpha_{n+1}^{p-1}$$

$$\leq (-\Lambda_N/\beta_N)\alpha_N^p \leq 0.$$

Thus,

$$\sum_{n=1}^{N} (p-1)\lambda_n \alpha_n^p + \sum_{n=1}^{N-1} \frac{(\beta_{n+1} - \beta_n)\Lambda_n}{\beta_{n+1}\beta_n \lambda_n} \lambda_n \alpha_n^p$$

$$\leq p \sum_{n=1}^{N} \lambda_n a_n \alpha_n^{p-1}.$$

334

Using (3) and since $(p-1)\lambda_N \alpha_N^p \ge 0$, we have

$$\sum_{n=1}^{N-1} \lambda_n \alpha_n^p \leq \kappa \sum_{n=1}^N \lambda_n a_n \alpha_n^{p-1}.$$
 (5)

By let N tend to infinity in (5) and using Holder inequality with indices p and p/p-1, we have

$$\sum_{n=1}^{\infty} \lambda_n \alpha_n^p \leq \kappa \sum_{n=1}^{\infty} \lambda_n a_n \alpha_n^{p-1} = \kappa \sum_{n=1}^{\infty} \lambda_n^{1/p} a_n \lambda_n^{(p-1/p)} \alpha_n^{p-1}$$
$$\leq \kappa (\sum_{n=1}^{\infty} \lambda_n a_n^p)^{\frac{1}{p}} (\sum_{n=1}^{\infty} \lambda_n \alpha_n^p)^{\frac{p-1}{p}}.$$

Dividing the above inequality by the last factor on the right and raising the result to the *p*th power, we obtain

$$\sum_{n=1}^{\infty} \lambda_n \alpha_n^p \leq \kappa^p \sum_{n=1}^{\infty} \lambda_n a_n^p,$$

this is the desired inequality (4).

Remark 1. Theorem 1 redues to Theorem A when $\kappa = p/(p-1)$ and $\beta_n = 1$, for $n = 1, 2, 3, \ldots$

Theorem 2. Let H be a real-valued positive convex function defined on $(0, \infty)$, and let $p, \beta_n, \lambda_n, a_n, \Lambda_n, A_n$ and κ be as in Theorem 1. If $\sum_{n=1}^{\infty} \lambda_n H^p(a_n)$ converges, then

$$\sum_{n=1}^{\infty} \lambda_n H^p(A_n/\Lambda_n) \leq \kappa^p \sum_{n=1}^{\infty} \lambda_n H^p(a_n).$$
(6)

Proof. Since H is a convex function, by Jensen's inequality, we have

$$H(A_n/\Lambda_n) \leq F_n/\Lambda_n,$$

where

$$F_n = \sum_{i=1}^n \lambda_i \beta_i H(a_i).$$

Thus

$$\sum_{n=1}^{\infty} \lambda_n H^p(A_n/\Lambda_n) \leq \sum_{n=1}^{\infty} \lambda_n (F_n/\Lambda_n)^p.$$
(7)

Replace a_n by $H(a_n)$ in (4), we have

$$\sum_{n=1}^{\infty} \lambda_n (F_n / \Lambda_n)^p \leq \kappa^p \sum_{n=1}^{\infty} \lambda_n H^p(a_n).$$
(8)

The desired inequality then follows from (7) and (8).

Remark 2. The inequality (4) is the spacial case of the inequality (6) when H(u) = u, and Theorem 2 reduces to Theorem B when $\kappa = p/(p-1)$ and $\beta_n = 1$, for $n = 1, 2, 3, \ldots$ This case shows the constant in (6) to be the best possible.

The following is a discrete analogue of Theorem 3 in [2].

Theorem 3. Let $p, \beta_n, \lambda_n, a_n, \Lambda_n, A_n$ and κ be as in Theorem 1, and let $\varphi > 0$ be defined on $(0, \infty)$ so that $\varphi'' \geq 0$ and

$$\varphi\varphi'' \geq (1-1/p)(\varphi')^2. \tag{9}$$

If $\sum_{n=1}^{\infty} \lambda_n \varphi(a_n)$ converges, then

$$\sum_{n=1}^{\infty} \lambda_n \varphi(A_n / \Lambda_n) \leq \kappa^p \sum_{n=1}^{\infty} \lambda_n \varphi(a_n).$$
(10)

Proof. Let $\psi(u) = \varphi^{1/p}(u), u > 0$. Then, by (9), $\psi'' \ge 0$. Hence ψ is convex on $(0,\infty)$. Thus, by Theorem 2, we have

$$\sum_{n=1}^{\infty} \lambda_n \psi^p(A_n/\Lambda_n) \leq \kappa^p \sum_{n=1}^{\infty} \lambda_n \psi^p(a_n),$$

and therefore

$$\sum_{n=1}^{\infty} \lambda_n \varphi(A_n / \Lambda_n) \leq \kappa^p \sum_{n=1}^{\infty} \lambda_n \varphi(a_n).$$

This completes the proof.

Remark 3. Theorem 3 reduces to Theorem 2 and Theorem 1 when $\varphi(u) = H^p(u)$ and $\varphi(u) = u^p$, respectively. Also we note that the inequality (2) and (1) are the special cases of the inequality (10) when $\varphi(u) = H^p(u)$, $\kappa = p/(p-1)$ and $\beta_n = 1$, for n = 1, 2, ...,respectively.

References

- [1] E.T. Copson, "Note on a series of positive terms," J. London Math. Soc. 2(1927), 9-12.
- [2] N. Levinson, "Generalizations of an inequality of Hardy," Duck Math. J. 31 (1964), 389-394.
- B.G. Pachpatte, "A note on Copson's inequality involving series of positive terms," Tamkang J. Math. 21, 1, (1990) 13-19.

Department of Mathematics, Tamkang University, Tamsui, Taiwan 25137.

336