ON LYAPUNOV TYPE FINITE DIFFERENCE INEQUALITY

B. G. PACHPATTE

Abstract. Lyapunov type finite difference inequality is established which in the special case yields implicit lower bound on the distance between consecutive zeros of a nontrivial solution of a second order linear finite difference equation.

The classical inequality of Lyapunov [5] states that if y(t) is a nontrival solution of the second order differential equation

$$y'' + p(t)y = 0,$$
 (1)

where p(t) is real and continuous, and if y(t) has at least two zeros on the interval [a,b], then

$$(b-a)\int_{a}^{b} |p(t)| dt > 4.$$
 (2)

Inequality (2) provides an implicit lower bound on the distance between the zeros of a nontrivial solution of (1) by means of an integral measurement of p. The Lyapunov inequality has received considerable attention since its appearance and a number of papers have been appeared in the literature which deals with the various extensions, generalizations and applications of this inequality, see [1-8] and the references given therein.

The main purpose of this note is to establish a Lyapunov type inequality for the second order linear finite difference equation

$$\Delta(r(n)\Delta x(n)) + p(n)x(n) = 0, \qquad (3)$$

for $n \in I$, where $I = \{a, a + 1, a + 2, ..., b\}$, a and b = a + m, $(m \ge 2)$ integers, the operator Δ is defined by $\Delta z(n) = z(n+1) - z(n)$ for $n \in I$. It is assumed that p(n) and r(n) for $n \in I$ are real-valued functions and r(n) > 0 for $n \in I$. Here our approach is more direct and elementary and the result provides a new estimate on this type of inequality.

Our main result is established in the following theorem.

Received July 26, 1989.

Theorem. Let x(n) be a solution of equation (3) such that x(a) = x(b) = 0, $x(n) \neq 0$, for $n \in I^0 = \{a+1, a+2, \ldots, b-1\}$. Let k be a point in I^0 where |x(n)| is maximized. Then

$$4 \leq \left(\sum_{n=a}^{b-1} \frac{1}{r(n)}\right) \left(\sum_{n=a}^{b-1} |p(n)|\right).$$
 (4)

Proof. Let $M = |x(k)|, k \in I^0$. It is obvious that

$$x(k) = \sum_{n=a}^{k-1} \Delta x(n), \qquad k \in I,$$
(5)

and

$$x(k) = -\sum_{n=k}^{b-1} \Delta x(n), \qquad k \in I.$$
(6)

From (5) and (6) we observe that

$$2M \leq \sum_{n=a}^{b-1} |\Delta x(n)|.$$
(7)

Now squaring both sides of (7) and using the Schwarz inequality, the following formula of summation by parts

$$\sum_{s=0}^{n-1} u(s) \Delta v(s) = (u(n)v(n) - u(o)v(o)) - \sum_{s=0}^{n-1} v(s+1) \Delta u(s),$$
(8)

and the facts that x(a) = x(b) = 0 and equation (3) we observe that

$$4M^{2} \leq \left(\sum_{n=a}^{b-1} r^{-\frac{1}{2}}(n)r^{\frac{1}{2}}(n) | \Delta x(n) |\right)^{2}$$

$$\leq \left(\sum_{n=a}^{b-1} \frac{1}{r(n)}\right) \left(\sum_{n=a}^{b-1} (r(n)\Delta x(n))\Delta x(n)\right)$$

$$= \left(\sum_{n=a}^{b-1} \frac{1}{r(n)}\right) \left(-\sum_{n=a}^{b-1} x(n+1)\Delta (r(n)\Delta x(n))\right)$$

$$= \left(\sum_{n=a}^{b-1} \frac{1}{r(n)}\right) \left(\sum_{n=a}^{b-1} x(n+1)p(n)x(n)\right)$$

$$\leq \left(\sum_{n=a}^{b-1} \frac{1}{r(n)}\right) M^{2} \left(\sum_{n=a}^{b-1} |p(n)|\right).$$
(9)

Dividing both sides of (9) by M^2 we get the desired inequality in (4). This completes the proof of Theorem.

338

ON LYAPUNOV TYPE FINITE DIFFERENCE INEQUALITY

It is interesting to note that in the special case when r(n) = 1, the inequality established in (4) reduces to the following inequality

$$4 \leq (b-a) \sum_{n=a}^{b-1} |p(n)|.$$
 (10)

The inequality (10) yields the implicit lower bound on the distance between consecutive zeros of a nontrivial solution of equation (3).

References

- S.B. Eliason, "A Lyapunov inequality for a certain second order nonlinear differential equation", J. London Math. Soc. 2 (1970), 461-466.
- [2] A.M. Fink and D.F. St. Mary, "On an inequality of Nehari", Proc. Amer. Math. Soc. 21 (1969), 640-642.
- [3] P. Hartman, Ordinary Differential Equations, John Wiley and Sons, New York, 1964.
- [4] M.K. Kwong, "On Lyapunov's inequality for disfocality", J. Math. Anal. Appl. 83 (1981), 486-494.
- [5] A.M. Liapunov, Problème générale de la stalilité du mouvement, Annals of Mathematices Study 17, Princeton University Press, 1949.
- [6] B.G. Pachpatte, "A note on Lyapunov type inequalities", Indian J. Pure Appl. Math., 21 (1990), 45-49.
- [7] W.T. Patula, "On the distance between zeros", Proc. Amer. Math. Soc. 52 (1975), 247-251.
- [8] W.T. Reid, "A generalized Liapunov inequality", J. Differential Equations 13 (1973), 182-196.

Department of Mathematics and Statistics, Marathwada University, Aurangabad 431004 (Maharashtra), INDIA.

339