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ON LYAPUNOV TYPE FINITE DIFFERENCE INEQUALITY 

B.G.PACHPATTE 

Abstract. Lyapunov type finite difference inequality is established which in the 
special case yields implicit lower bound on the distance between consecutive zeros 
of a nontrivial solution of a second order linear finite difference equation. 

The classical inequality of Lyapunov [5] states that if y(t) is a nontrival solution of 
the second order differential equation 

ii' + p(t)y = 0, (1) 

where p(t) is real and continuous, and if y(t) has at least two zeros on the interval [a,b), 
then 

(b - a) 16 

I p(t) I dt > 4. (2) 

Inequality (2) provides an implicit lower bound on the distance between the zeros 
of a nontrivial solution of (1) by means of an integral measurement of p. The Lyapunov 
inequality has received considerable attention since its appearance and a number of 
papers have been appeared in the literature which deals with the various extensions, 
generalizations and applications of this inequality, see [1-8) and the references given 
therein. 

The main purpose of this note is to establish a Lyapunov type inequality for the 
second order linear finite difference equation 

.6(r(n).6x(n)) + p(n)x(n) = 0, (3) 

for n E J, where I = { a, a + 1, a + 2, ... , b}, a and b = a + m, ( m > 2) integers, the 
operator .6 is defined by .6.z(n) = z(n + 1) - z(n) for n E J. It is assumed that p(n) 
and r(n) for n E J are real-valued functions and r(n) > 0 for n E J. Here our approach 
is more direct and elementary and the result provides a new estimate on this type of 
inequality. 

Our main result is established in the following theorem. 
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Theorem. Let x(n) be a solution of equation (3) such that x(a) = x(b) = 0, x(n) f; 
0, Jorn E J0 =·{a+l,a+2, ... ,b-1}. Let k be a point in J0 where lx(n)I is maximized. 
Then 

b-1 b-1 

4 ::; (~ r(~)) (~ I p(n) 1). (4) 

Proof. Let M = lx(k)I, k E J0. It is obvious that 
k-1 

x(k) = L 6x(n), 
n=a 

k EI, (5) 

and 
b-1 

x(k) = - L 6x(n), 
n=k 

From (5) and (6) we observe that 

k E J. (6) 

b-1 

2M < L I 6x(n) I . (7) 
n=a 

Now squaring both sides of (7) and using the Schwarz inequality, the following formula 
of summation by parts 

n-1 L u(s)6v(s) 
s=O 

n-1 

(u(n)v(n) - u(o)v(o)) - L v(s + 1)6u(s), 
s=O 

(8) 

and the facts that x(a) = x(b) = 0 and equation (3) we observe that 
b-1 2 

4M2 < (I:r-!(n)rf(n) I 6x(n) 1) (9) 
n=a 
b-1 1 b-1 

< (~ r(n)) (~(r(n)t-.x(n))t-.x(n)) 

b-1 b-1 

(~ r(~) )(- ~ x(n + l)Ll(r(n)Llx(n))) 
b-1 1 b-1 

(~ r(n)) (~ x(n + l)p(n)x(n)) 
b-1 b-1 

< (~r(~))M
2(~lp(n)I). 

Dividing both sides of (9) by M2 we get the desired inequality in ( 4). This completes 
the proof of Theorem. 
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It is interesting to note that in the special case when r( n) = 1, the inequality 
established in ( 4) reduces to the following inequality 

b-1 

4 < ( b - a) L I p( n) I · (10) 
n=a 

The inequality (10) yields the implicit lower bound on the distance between consecutive 
zeros of a nontrivial solution of equation (3). 
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