CONVEX NULL SEQUENCE TECHNIQUE FOR
ANALYTIC AND UNIVALENT MAPPINGS
OF THE UNIT DISK

K. O. BABALOLA

Abstract. In this paper we employ a technique based on the convex null properties of certain infinite sequences to study various classes of analytic and univalent functions in the open unit disk. The technique simplifies many problems of the theory of geometric functions and our results generalize and extend many earlier ones.

1. Introduction

Let \(\Omega \) be the class of functions \(\vartheta(z) \) which are regular in the unit disk \(E = \{ z \in \mathbb{C} : |z| < 1 \} \) and satisfy \(\vartheta(0) = 0, \vartheta(z) < 1 \) for \(z \in E \). For arbitrary fixed numbers \(a, b \) such that \(a \in (-1, 1) \) and \(b \in [-1, a) \), let \(P[a, b] \) be the family of functions \(p(z) \), normalized by \(p(0) = 1 \), regular in \(E \) and such that for some \(\vartheta \in \Omega, p(z) = (1 + a\vartheta(z))/1 + b\vartheta(z) \), \(z \in E \). Equivalently \(P[a, b] \) is the family of functions \(p(z) \) which are subordinate to \(L_0(a, b : z) = (1 + az)/(1 + bz) \) in the open unit disk \(E \).

\(P[a, b] \) generalizes the well known family of Caratheodory functions and other classes of functions defined in \(E \). For example (see [5]): (i) \(P[1, -1] \equiv P \), the class of Caratheodory functions for which \(\text{Re} \, p(z) > 0 \), (ii) \(P[1 - 2\beta, -1] \equiv P_\beta \), the class of Caratheodory functions of order \(\beta, 0 \leq \beta < 1 \), that is \(\text{Re} \, p(z) > \beta \), (iii) \(P[1, 1/\beta - 1] \equiv P(\beta) \), the class of functions \(p(z) \) satisfying \(|p(z)| < \beta, \beta > 1/2 \), (iv) \(P[\beta, -\beta] \equiv P(\beta^2) \), the class of functions \(p(z) \) satisfying \(\beta \leq |p(z)| + 1, 0 < \beta \leq 1 \) and (v) \(P[\beta, 0] \equiv P(\beta) \), the class of functions \(p(z) \) satisfying \(|p(z) - 1| < \beta, 0 < \beta \leq 1 \). Furthermore it is also known that \(P[a, b] \subseteq P((1 - a)/(1 - b)) \) and \(P[a, b] \subseteq P(1/(1 + b)) \) [5].

Let \(A \) be the class of normalized analytic functions \(f(z) = z + a_2z^2 + \cdots \) in \(E \). In this article we explore a technique based on the convex null property of certain infinite sequences in the study of some analytic and univalent functions in \(E \); an infinite sequence \(c_0, c_1, \ldots, c_k, \ldots \) of nonnegative numbers is said to be a convex null sequence if \(c_k \to 0 \) as \(k \to \infty \) and \(c_0 \geq c_1 \geq c_2 \geq \cdots \geq c_k - c_{k+1} > \cdots > 0 \). To demonstrate our idea, we define new classes of functions using the derivative operators \(D^n \) and \(L_n^\sigma \) defined, on \(A \), in [2, 8] as \(D^n f(z) = z[D^{(n-1)} f(z)]' \) with \(D^0 f(z) = f(z) \), and \(L_n^\sigma f(z) = \int_0^1 L_n^\sigma \).
and univalent functions involving the well known Salagean and Rucheweyh derivatives
nontrivial members of the above classes of functions have the representations:
was introduced in [2. Some integral transformations of $P[a, b]$ and $B^n_\alpha [a, b]$ respectively if and only if
(\tau_\sigma \ast \tau_{\sigma,n}^{(-1)} \ast f)(z)\) where \ast denotes convolution and for any fixed real number σ and
\[\tau_{\sigma,n}(z) = z/(1-z)^{\sigma-(n-1)},\] $\sigma - (n-1) > 0$, $\tau_\sigma = \tau_{\sigma,0}$ and $\tau_{\sigma,n}^{(-1)}$ is such that
\[(\tau_{\sigma,n} \ast \tau_{\sigma,n}^{(-1)})(z) = z/(1-z).\] D^n is known as the Salagean derivative operator while L_α^n was introduced in [2] and includes the well know Ruscheweyh derivative (when $n = \sigma$).
Now we say:

Definition. Let $\alpha > 0$ be a real number and, n and σ have their definitions in the
operators above. Then a function $f \in A$ is said to belong to the classes $T^n_\alpha [a, b]$ and $B^n_\alpha [a, b]$ respectively if and only if
\[
(i) \quad \frac{D^n f(z)^\alpha}{\alpha^n z^\alpha} \in P[a, b], \quad (ii) \quad \frac{L_\alpha^n f(z)}{z} \in P[a, b].
\]

For suitable choices of a, b and n, quite a number of subclasses of functions can be
deduced from the above definitions.
Associated with the derivative operators are the integrals (respectively): $I_n f(z) = I(I_{n-1} f(z)) = \int_0^z t^{-1} I_{n-1} f(t) dt$ and $L_\alpha^n f(z) = (\tau_\sigma \ast \tau_{\sigma,n} \ast f)(z)$ such that $D^n(I_n f(z)) = I_n(D^n f(z)) = f(z)$ and $L_\alpha^n(I_n f(z)) = L_\alpha^n(L_\alpha^n f(z)) = f(z)$. Thus for any $p \in P[a, b]$, nontrivial members of the above classes of functions have the representations: $f(z) = \{I_n[\alpha^n z^\alpha p(z)]\}^{1/\alpha}$ and $f(z) = t_\alpha^n z p(z)$.
In the present study, convex null sequence technique is used to investigate the new
classes of functions. First, the technique is applied on some integral transformations of the
class $P[a, b]$ and this is presented in the next section. Then, our main results follow
very easily and are presented in Sections 3 and 4.

2. Some integral transformations of $P[a, b]$

In earlier works [1, 2] we have defined the following integral transformations of functions in P as follows (with changes in notations necessary only to unify our discussions): Let $p \in P$. Two nth integral transforms of $p(z), z \in E$ are given as
\[
\phi_n^j(p(z)) = \int_0^z \lambda_n^j(z, t) \phi_{n-1}^j(p(t)) dt, \quad j = 1, 2, \quad n \geq 1 \tag{1.1}
\]
where
\[
\lambda_n^1(z, t) = \frac{\alpha t^{\alpha-1}}{z^\alpha}, \quad \alpha > 0
\]
and
\[
\lambda_n^2(z, t) = (\sigma - (n-1)) \frac{t^{\sigma-n}}{z^{\sigma-(n-1)}}, \quad \sigma - (n-1) > 0
\]
with $\phi_0^1(p(z)) = p(z)$.
The transformations are iterative and closely associated with certain families analytic
and univalent functions involving the well known Salagean and Rucheweyh derivatives
These transformations preserve many geometric structures of the family P; particularly the positivity of the real parts, compactness, convexity and subordination. They have been very helpful in dealing easily with certain problems of the theory of analytic and univalent functions.

In the sequel we would apply the above transformations on the family of Janowski functions. The method is simple: replace P in the above definitions by $P[a,b]$ so that for $p \in P[a,b]$, then (1.1) are the desired integrals. We denote by $\Phi_j^n[a,b]$ the family of transformations of $\phi_j^n(z), p \in P[a,b].$ If $p(z) = 1 + c_1z + \cdots$, then $\phi_j^n(z) = 1 + \sum_{k=1}^{\infty} c_{j,k}^1 z^k$ where $c_{j,k}^1 = c_{j,n,k}^1 c_k$ and

$$c_{j,n,k}^1 = \left(\frac{\alpha}{\alpha + k} \right)^n,$$

$$c_{j,n,k}^2 = \frac{\sigma(\sigma - 1)\cdots(\sigma - (n - 1))}{(\sigma + k)(\sigma + k - 1)\cdots(\sigma + k - (n - 1))} = \frac{\sigma!}{(\sigma + k)!} \frac{(\sigma + k - n)!}{(\sigma - n)!}.$$

(see [1,2]) and it is easy to see that the transformations are analytic, normalized by $\phi_j^n(z)|_{z=0} = 1$ and $\phi_j^n(z) \neq 0$ for $z \in E$.

Throughout the paper we would adopt the notations ϕ_j^n and Φ_j^n, $j = 1,2$ where we do not require to specify the parameters n. Next we present some lemmas which will be relevant in the sequel.

Lemma 1. ([3]) Let $\{c_k\}_{k=0}^{\infty}$ be a convex null sequence. Then the function $p(z) = c_0/2 + c_1z + c_2z^2 + \cdots, z \in E,$ is analytic in E and $\text{Re } p(z) > 0$.

The next lemma can be derived from the Herglotz representation for P (see also [4]).

Lemma 2. If $p(z)$ is analytic in E, $p(0) = 1$ and $\text{Re } p(z) > 1/2, z \in E,$ then for any function $q(z)$ analytic in E, the convolution $p * q$ takes its values in the convex hull of $q(E)$.

Remark 1. If $\{c_k\}_{k=0}^{\infty}$ is a convex null sequence with $c_0 = 1$, then by Lemma 1, we have $\text{Re } p(z) > 1/2$. Hence the result of applying such sequence to an arbitrary analytic function is a function which maps the unit disk onto the convex hull of the original image. This is due to Lemma 2.

Remark 2. Since the convex hull of a set is the smallest convex set containing it, then it follows that if $q(z)$ is a convex map, then the convex hull of $q(E)$ is $q(E)$. Hence by Lemmas 1 and 2 a convex null sequence $\{c_k\}_{k=0}^{\infty}$ with $c_0 = 1$, is a subordinating factor sequence for $q(z)$ (see [9]).

Lemma 3. Let $x > 1$ be real. If $\zeta \geq 0$, then the following inequality holds

$$\left(\frac{x}{x - 1} \right)^\zeta + \left(\frac{x}{x + 1} \right)^\zeta \geq 2.$$

\textbf{Proof.} Denote the left hand side of the inequality by $h(\zeta)$. Differentiating with respect to ζ, we have

$$h'(\zeta) = \left(\frac{x}{x - 1}\right)^\zeta \log \left(\frac{x}{x - 1}\right) + \left(\frac{x}{x + 1}\right)^\zeta \log \left(\frac{x}{x + 1}\right).$$

Then we have

$$h'(\zeta) > \left(\frac{x}{x + 1}\right)^\zeta \left[\log \left(\frac{x}{x - 1}\right) + \log \left(\frac{x}{x + 1}\right)\right] = \left(\frac{x}{x + 1}\right)^\zeta \log \left(\frac{x^2}{x^2 - 1}\right) > 0.$$\n
Hence $h(\zeta)$ is an increasing function of ζ. Thus $h(\zeta) \geq h(0) = 2$ for $\zeta \geq 0$. This proves the inequality.

Next we prove:

\textbf{Theorem 1.} $\Phi^j \subset P[a, b]$. In other words every transformation ϕ^j of a $p \in P[a, b]$ is also in $P[a, b]$, that is $\phi^j(p(z)) \prec L_0(a, b : z)$.

\textbf{Proof.} Let $\phi^j \in \Phi^j$. Then for any $p \in P[a, b]$ we have to prove that $\phi^j(p(z)) \prec L_0(a, b : z)$. But $\phi^j(p(z)) = 1 + \sum_{k=1}^\infty c_{n,k}^j z^k$, where $c_{n,k}^j = c_{n,k}^j c_k$. That is $\phi^j(p(z)) = (q \ast p)(z)$ with $q(z) = 1 + \sum_{k=1}^\infty c_{n,k}^j z^k$. Thus by Lemma 2, ϕ^j maps the open unit disk onto the convex hull of the original image, $p(E)$, if Re $q(z) > 1/2$. This follows from Lemma 1 if we prove that the sequence $\{c_{n,k}^j\}_{k=0}^\infty$ is convex null for each $j, k = 0, 1, \ldots$. It is obvious that for $k = 0, 1, \ldots$, $c_{n,k}^j > 0$ and $c_{n,k}^j \to 0$ as $k \to \infty$. We need to prove that $c_{n,k}^j - 2c_{n,k+1}^j + c_{n,k+2}^j \geq 0$, $k = 0, 1, \ldots$. Equivalently, we will prove that $\Lambda_j = c_{n,k+1}^j/c_{n,k}^j + c_{n,k+2}^j/c_{n,k+1}^j \geq 2$. By simple calculations we have

$$\Lambda_1 = \left(\frac{\alpha + k + 1}{\alpha + k}\right)^n + \left(\frac{\alpha + k + 1}{\alpha + k + 2}\right)^n \geq 2.$$ \n
$$\Lambda_2 = 2 + \frac{n(n + 1)}{(\sigma + k + 1 - n)(\sigma + k + 2)} \geq 2.$$ \n
That $\Lambda_1 \geq 2$ follows from Lemma 3 by taking $x = \alpha + k + 1$. Thus the proof is complete.

\textbf{Theorem 2.} $\Phi_{n+1}^j[a, b] \subset P_{n+1}[a, b], n \in \mathbb{N}$.

\textbf{Proof.} Let $p \in P[a, b]$. We have to prove that if $\phi_{n+1}^j(p(z)) \prec L_0(a, b : z)$, then $\phi_{n+1}^j(p(z)) \prec L_0(a, b : z)$. Suppose $\phi_{n+1}^j \in \Phi_{n+1}^j[a, b]$. Then by simple calculations we find that the coefficients $c_{n,k}^j$ of $\phi_{n+1}^j(p(z))$ can be decomposed as $c_{n+1,k}^j = c_{1,k}^j c_{n,k}$.
and \(c^2_{n+1,k} = ((\sigma - n)/\sigma + k - n))c^2_{n,k}\) so that

\[
\phi^1_{n+1}(p(z)) = 1 + \sum_{k=1}^{\infty} c^1_{n+1,k}z^k
\]

\[
= \left(1 + \sum_{k=1}^{\infty} c^1_{1,k}z^k\right) \ast \left(1 + \sum_{k=1}^{\infty} c^1_{n,k}z^k\right)
\]

and

\[
\phi^2_{n+1}(p(z)) = 1 + \sum_{k=1}^{\infty} c^2_{n+1,k}z^k
\]

\[
= \left(1 + \sum_{k=1}^{\infty} \frac{\sigma - n}{\sigma - n + k} z^k\right) \ast \left(1 + \sum_{k=1}^{\infty} c^2_{n,k}z^k\right).
\]

Hence relying on the convex-nullity of sequences \(\{c^1_{1,k}\}_{k=0}^{\infty}\) and \(\{\frac{\sigma - n}{\sigma - n + k}\}_{k=0}^{\infty}\), which can be easily verified as in Theorem 1, we conclude that \(\phi^j_{n+1}(p(z)), j = 1, 2,\) maps \(E\) onto the convex hull of the image of \(E\) under \(\phi^j_n(p(z))\). That is for all \(n \in \mathbb{N}, j = 1, 2,\)

\(\phi^j_n(p(z)) \prec L_0(a, b : z)\) implies \(\phi^j_{n+1}(p(z)) \prec L_0(a, b : z)\) as required and the proof is complete.

Theorem 3. Let \(\phi^j \in \Phi^j\). Define

\[
M^j_n(a, b ; r) = 1 + (a - b)\sum_{k=1}^{\infty} (-b)^{k-1}c^j_{n,k}r^k, \quad |z| = r
\]

and

\[
m^j_n(a, b ; r) = 1 + (a - b)\sum_{k=1}^{\infty} b^{k-1}c^j_{n,k}(-r)^k, \quad |z| = r.
\]

Then \(m^j_n(a, b ; r) \leq \text{Re} \phi^j \leq M^j_n(a, b ; r)\). Lower bound equality is attained by \(\phi^j(L_0(a, b : -z))\) while equality in the upper bound is attained by \(\phi^j(L_0(a, b : z))\).

Proof. Let \(p \in P[a, b]\) and define \(z = re^{i\theta}\) and \(t = pe^{i\theta}\), \(0 < \rho \leq r < 1\). The rest of the proof is similar to that presented in [1] if we use the known inequalities, Re \(p(re^{i\theta}) \geq (1 - ar)/(1 - br)\) and \(|p(re^{i\theta})| \leq (1 + ar)/(1 + br)\).

Corollary 1. \(\phi^j \in \Phi^j\) if and only if \(\phi^j(p(z)) \prec \phi^j(L_0(a, b : z))\) where

\[
\phi^j_n(L_0(a, b : z)) = \int_0^z \lambda^j_n(z,t)\phi^j_{n-1}(L_0(a, b : t))dt, \quad j = 1, 2, \quad n \geq 1.
\]

\(\phi^j(L_0(a, b : z))\) is the best dominant.

Proof. Suppose \(\phi^j \in \Phi^j\). Then by Theorem 3, \(\phi^j(E) \subseteq \phi^j(L_0(a, b : E))\) and furthermore \(\phi^j(p(z))|_{z=0} = \phi^j(L_0(a, b : z))|_{z=0}\), which is a well known subordination condition. Thus we have \(\phi^j(p(z)) \prec \phi^j(L_0(a, b : z))\).
On the other hand, suppose that \(\phi^j(p(z)) \prec \phi^j(L_0(a, b : z)) \). Then by the convex null property of the coefficients \(c_{n,k}^j \), \(\phi^j(L_0(a, b : z)) \) maps \(E \) onto the convex hull of \(L_0(a, b : E) \) (which is \(L_0(a, b : E) \)) since \(L_0(a, b : z) \) is convex univalent in \(E \) by Remark 2. Thus \(\phi^j(L_0(a, b : z)) \prec L_0(a, b : z) \) and the conclusion follows. That \(\phi^j(L_0(a, b : z)) \) is the best dominant is a consequence of the fact that equality in Theorem 3 is attained by it.

The above corollary leads to:

Remark 3. The following statements are equivalent:

(i) \(p(z) \sim L_0(a, b : z) \)

(ii) \(p \in P[a, b] \)

(iii) \(\phi^j \in \Phi^j[a, b] \)

(iv) \(\phi^j(p(z)) \sim \phi^j(L_0(a, b : z)) \)

3. Properties of \(T^n_\alpha[a, b] \)

Let all parameters having the usual definitions. Also let \(p \in P[a, b] \), \(p(z) = 1 + c_1 z + \cdots \), then from definitions and the integral representations, we have the following lemma:

Lemma 4. Let \(f \in A \). Then the following are equivalent: (i) \(f \in T^n_\alpha[a, b] \), (ii) \((D^n f(z)^\alpha)/(\alpha^\alpha z^\alpha) \in P[a, b] \) and (iii) \(f(z)^\alpha/z^\alpha \in \Phi^1_n[a, b] \).

Theorem 4. If \(f \in T^n_\alpha[a, b] \), then \(f(z)^\alpha/z^\alpha \sim (1 + az)/(1 + bz) \).

Proof. Let \(f \in T^n_\alpha[a, b] \). Then by Lemma 4, \(f(z)^\alpha/z^\alpha \in \Phi^1_n[a, b] \). Thus by Theorem 1, we have \(f(z)^\alpha/z^\alpha \in P[a, b] \).

Theorem 5. For \(n \in \mathbb{N} \), \(T^n_{n+1}[a, b] \subset T^n_n[a, b] \).

Proof. Let \(f \in T^n_{n+1}[a, b] \). Then by Lemma 4, \(f(z)^\alpha/z^\alpha \in \Phi^1_{n+1}[a, b] \). By Theorem 2, \(f(z)^\alpha/z^\alpha \in P_{n+1}[a, b] \). By Lemma 4 again \(f \in T^n_n[a, b] \).

Corollary 2. For all \(n \geq 1 \), \(T^n_n[a, b] \) consist only of univalent functions in \(E \).

Proof. For \(n \geq 1 \), by Theorem 5 we have \(T^n_n[a, b] \subset T^n_1[a, b] \). However \(T^n_1[a, b] \) consists of functions \(f \in A \) such that \(f(z)^{\alpha-1}f'(z)/z^{\alpha-1} \in P[a, b] \subseteq P((1 - a)/(1 - b)) \). This implies that \(\text{Re } f(z)^{\alpha-1}f'(z)/z^{\alpha-1} > 0 \), which is sufficient for univalence in \(E \) (see [1]).

Using Lemma 4, we have the following growth properties of functions in \(T^n_n[a, b] \) by choosing \(\phi^j = f(z)^\alpha/z^\alpha \) in Theorem 3.

Theorem 6. Let \(f \in T^n_n[a, b] \). Then

\[
m_n^1(a, b; r) \leq \text{Re } \left| \frac{f(z)^\alpha}{z^\alpha} \right| \leq M_n^1(a, b; r).
\]
Lower bound equality is attained by \(f(z) = \{ I_n[\alpha^n z^n L_0(a, b : -z)]\}^{1/\alpha} \) while upper bound equality is realised by \(f(z) = \{ I_n[\alpha^n z^n L_0(a, b : z)]\}^{1/\alpha} \).

Theorem 7. \(f \in T_n^\alpha[a, b] \Leftrightarrow f(z)^\alpha / z^\alpha < 1 + (a - b) \sum_{k=1}^{\infty} (-b)^{k-1} c_{n,k} z^k \). The function on the right hand side of subordination is the best dominant.

Proof. By definition, \(f \in T_n^\alpha[a, b] \Leftrightarrow (D^n f(z)^\alpha) / (\alpha^n z^n) < (1 + az)/(1 + bz) \Leftrightarrow \) there exists a function \(p(z) = 1 + c_1 z + \cdots \) in \(P[a, b] \) such that \((D^n f(z)^\alpha) / (\alpha^n z^n) = 1 + c_1 z + \cdots \Leftrightarrow f(z)^\alpha / z^\alpha = 1 + \sum_{k=1}^{\infty} (\frac{\alpha}{\alpha + k})^n c_k z^k \). If we set \(\phi^i(z) = f(z)^\alpha / z^\alpha \) in Corollary 1 we have the subordination.

Next we consider two integral transforms within the classes \(T_n^\alpha[a, b] \). Let \(\alpha > 0 \), and \(\gamma \geq 0 \) be real numbers. Define \(J_\alpha^1(z) = f(z) \), \(j = 1, 2 \) and for \(\kappa > 0 \) define

\[
J_\alpha^1(f) = \left\{ \frac{\Gamma(\gamma + 1)}{z^n \Gamma(\zeta)} \int_0^\gamma \left(\frac{\zeta}{t} \right)^{\zeta - 1} t^{\gamma - 1} f(t)^\alpha dt \right\}^\frac{1}{\alpha},
\]

and

\[
J_\alpha^2(f) = \left\{ \frac{\Gamma(\gamma + 1)}{z^n \Gamma(\zeta)} \int_0^\gamma \left(1 - \frac{t}{z} \right)^{\zeta - 1} t^{\gamma - 1} f(t)^\alpha dt \right\}^\frac{1}{\alpha},
\]

where \(\zeta = 1 + \gamma \geq 0 \).

Theorem 8. The classes \(T_n^\alpha[a, b] \) are closed under \(J_\alpha^1(f) \).

Proof. Let \(f(z) = z + a_2 z^2 + \cdots \in T_n^\alpha[a, b] \). For \(\alpha > 0 \), we can write

\(f(z)^\alpha = z^\alpha + A_2(\alpha) z^{\alpha+1} + \cdots \)

where \(A_k(\alpha), k = 2, 3, \ldots, \) depends on the coefficients \(a_k \) of \(f(z) \) and the index \(\alpha \). Thus evaluating the integrals in series form, also using the Beta and Gamma functions and noting that

\[
\left(\frac{\zeta}{\gamma} \right) = \frac{\Gamma(\zeta + 1)}{\Gamma(\zeta - \gamma + 1) \Gamma(\gamma + 1)}
\]

we obtain \(J_\alpha^1(f)^\alpha = z^\alpha + \sum_{k=1}^{\infty} C_k^1 A_{k+1}(\alpha) z^{\alpha+k} \) where

\[
C_k^1 = \left(\frac{\alpha + \gamma}{\alpha + \gamma + k} \right)^\frac{\zeta}{\gamma} \quad \text{and} \quad C_k^2 = \frac{\Gamma(\alpha + \gamma + \zeta) \Gamma(\alpha + \gamma + k - 1)}{\Gamma(\alpha + \gamma) \Gamma(\alpha + \gamma + \zeta + k)}.
\]

Now we have

\[
\frac{J_\alpha^1(f)^\alpha}{z^\alpha} = 1 + \sum_{k=1}^{\infty} C_k^1 A_{k+1}(\alpha) z^k = \left(1 + \sum_{k=1}^{\infty} C_k^1 z^k \right)^* \left(1 + \sum_{k=1}^{\infty} A_{k+1}(\alpha) z^k \right) = Q(z) * \frac{f(z)^\alpha}{z^\alpha}
\]
where $Q(z) = 1 + \sum_{k=1}^{\infty} a_{k} z^{k}$. By calculations, we find that
\[
\frac{C_{k}^{1}}{C_{k+1}^{1}} + \frac{C_{k+2}^{1}}{C_{k+1}^{1}} = \left(\frac{\alpha + \gamma + k + 1}{\alpha + \gamma + k} \right)^{\zeta} + \left(\frac{\alpha + \gamma + k + 1}{\alpha + \gamma + k + 2} \right)^{\zeta} \geq 2.
\]
\[
\frac{C_{k}^{2}}{C_{k+1}^{2}} + \frac{C_{k+2}^{2}}{C_{k+1}^{2}} = 2 + \frac{\zeta(\zeta + 1)}{(\alpha + \gamma + k + 1)(\alpha + \gamma + k + 2)} \geq 2.
\]
Note that the first inequality is a consequence of Lemma 3, where $x = \alpha + \gamma + k + 1$.
Furthermore for each $k = 0, 1, \cdots$, $C_{k}^{2} > 0$ and $C_{k}^{2} \to 0$ as $k \to \infty$, hence the sequences $\{C_{k}^{2}\}_{k=0}^{\infty}$, $j = 1, 2$ are convex null. Thus $J_{1}^{+}(f) / z^{\alpha}$ maps the open unit disk E onto the convex hull of $f(z) / z^{\alpha}$ and by Theorem 7 our conclusion follows.

4. Properties of $B_{n}^{\alpha}[a, b]$

In this section, we state without proofs, the analogue of the results of the preceding section for the classes $B_{n}^{\alpha}[a, b]$. The results are consequences of the following lemma and an appropriate choice $\phi^{2} = f(z) / z$.

Lemma 5. Let $f \in A$. Then the following are equivalent: (i) $f \in B_{n}^{\alpha}[a, b]$, (ii) $(L_{n}^{\alpha} f(z)) / z \in P[a, b]$ and (iii) $f(z) / z \in \Phi_{n}^{\alpha}[a, b]$.

Theorem 9. If $f \in B_{n}^{\alpha}[a, b]$, then $f(z) / z \prec (1 + az) / (1 + bz)$.

Theorem 10. For $n \in \mathbb{N}$, $B_{n+1}^{\alpha}[a, b] \subset B_{n}^{\alpha}[a, b]$.

Corollary 3. For all $n \geq 1$, $B_{n}^{\alpha}[a, b]$ consist only of univalent functions in E.

Theorem 11. Let $f \in B_{n}^{\alpha}[a, b]$. Then
\[
m_{n}^{2}(a, b; r) \leq \Re \frac{f(z)}{z} \leq \left| \frac{f(z)}{z} \right| \leq M_{n}^{2}(a, b; r).
\]

Lower bound equality is attained by $f(z) = l_{n}^{\alpha}[z L_{0}(a, b : -z)]$ while upper bound equality is realised by $f(z) = l_{n}^{\alpha}[z L_{0}(a, b : z)]$.

Theorem 12. $f \in B_{n}^{\alpha}[a, b] \Leftrightarrow f(z) / z \prec 1 + (a - b) \sum_{k=1}^{\infty} (-b)^{k-1} c_{n,k}^{2} z^{k}$. The analytic function on the right hand side is the best dominant.

Theorem 13. The classes $B_{n}^{\alpha}[a, b]$ are closed under $J_{1}^{+}(f)$, $\alpha = 1$.

Acknowledgements

This work was carried out at the Centre for Advanced Studies in Mathematics, CASM, Lahore University of Management Sciences, Lahore, Pakistan during the author’s post-doctoral fellowship at the Centre. The author is indebted to all staff of CASM for their hospitality, most especially Prof. Ismat Beg.
References

Current Address: Centre for Advanced Studies in Mathematics, Lahore University of Management Sciences, Lahore, Pakistan.

E-mail: kobabalola@lums.edu.pk

Permanent Address: Department of Mathematics, University of Ilorin, Ilorin, Nigeria.

E-mail: khayrah.babalola@gmail.com