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CONVEX NULL SEQUENCE TECHNIQUE FOR

ANALYTIC AND UNIVALENT MAPPINGS

OF THE UNIT DISK

K. O. BABALOLA

Abstract. In this paper we employ a technique based on the convex null properties

of certain infinite sequences to study various classes of analytic and univalent func-

tions in the open unit disk. The technique simplifies many problems of the theory

of geometric functions and our results generalize and extend many earlier ones.

1. Introduction

Let Ω be the class of functions ϑ(z) which are regular in the unit disk E = {z ∈

C : |z| < 1} and satisfy ϑ(0) = 0, |ϑ(z)| < 1 for z ∈ E. For arbitrary fixed numbers

a, b such that a ∈ (−1, 1] and b ∈ [−1, a), let P [a, b] be the family of functions, p(z),

normalized by p(0) = 1, regular in E and such that for some ϑ ∈ Ω, p(z) = (1 +

aϑ(z))/(1 + bϑ(z)), z ∈ E. Equivalently P [a, b] is the family of functions p(z) which are

subordinate to L0(a, b : z) = (1 + az)/(1 + bz) in the open unit disk E.

P [a, b] generalizes the well known family of Caratheodory functions and other classes

of functions defined in E. For example (see [5]): (i) P [1,−1] ≡ P , the class of Caratheodory

functions for which Re p(z) > 0, (ii) P [1− 2β,−1] ≡ Pβ , the class of Caratheodory func-

tions of order β, 0 ≤ β < 1, that is Re p(z) > β, (iii) P [1, 1/β − 1] ≡ P (β), the class

of functions p(z) satisfying |p(z) − β| < β, β > 1/2, (iv) P [β,−β] ≡ P (β), the class of

functions p(z) satisfying |p(z) − 1| < β|p(z) + 1|, 0 < β ≤ 1 and (v) P [β, 0] ≡ P(β), the

class of functions p(z) satisfying |p(z)− 1| < β, 0 < β ≤ 1. Furthermore it is also known

that P [a, b] ⊆ P ((1 − a)/(1 − b)) and P [a, b] ⊆ P (1/(1 + b)) [5].

Let A be the class of normalized analytic functions f(z) = z + a2z
2 + · · · in E. In

this article we explore a technique based on the convex null property of certain infinite

sequences in the study of some analytic and univalent functions in E: an infinite sequence

c0, c1, . . . , ck, . . . of nonnegative numbers is said to be a convex null sequence if ck → 0

as k → ∞ and c0 − c1 ≥ c1 − c2 ≥ · · · ≥ ck − ck+1 ≥ · · · ≥ 0. To demonstrate

our idea, we define new classes of functions using the derivative operators Dn and Lσ
n

defined, on A, in [2, 8] as Dnf(z) = z[D(n−1)f(z)]′ with D0f(z) = f(z), and Lσ
nf(z) =
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(τσ ∗ τ
(−1)
σ,n ∗ f)(z) where ∗ denotes convolution and for any fixed real number σ and

n ∈ N, τσ,n(z) = z/(1 − z)σ−(n−1), σ − (n − 1) > 0, τσ = τσ,0 and τ
(−1)
σ,n is such that

(τσ,n ∗ τ
(−1)
σ,n )(z) = z/(1− z). Dn is known as the Salagean derivative operator while Lσ

n

was introduced in [2] and includes the well know Ruscheweyh derivative (when n = σ).

Now we say:

Definition. Let α > 0 be a real number and, n and σ have their definitions in the

operators above. Then a function f ∈ A is said to belong to the classes T α
n [a, b] and

Bσ
n [a, b] respectively if and only if

(i)
Dnf(z)α

αnzα
∈ P [a, b], (ii)

Lσ
nf(z)

z
∈ P [a, b].

For suitable choices of a, b and n, quite a number of subclasses of functions can be

deduced from the above definitions.

Associated with the derivative operators are the integrals (respectively): Inf(z) =

I(In−1f(z)) =
∫ z

0
t−1In−1f(t)dt and lσnf(z) = (τ

(−1)
σ ∗τσ,n∗f)(z) such that Dn(Inf(z)) =

In(Dnf(z)) = f(z) and Lσ
n(lσnf(z)) = lσn(Lσ

nf(z)) = f(z). Thus for any p ∈ P [a, b],

nontrivial members of the above classes of functions have the representations: f(z) =

{In[αnzαp(z)]}1/α and f(z) = lσn[zp(z)].

In the present study, convex null sequence technique is used to investigate the new

classes of functions. First, the technique is applied on some integral transformations of

the class P [a, b] and this is presented in the next section. Then, our main results follow

very easily and are presented in Sections 3 and 4.

2. Some integral transformations of P [a, b]

In earlier works [1, 2] we have defined the following integral transformations of func-

tions in P as follows (with changes in notations necessary only to unify our discussions):

Let p ∈ P . Two nth integral transforms of p(z), z ∈ E are given as

φj
n(p(z)) =

∫ z

0

λj
n(z, t)φj

n−1(p(t))dt, j = 1, 2, n ≥ 1 (1.1)

where

λ1
n(z, t) = α

tα−1

zα
, α > 0

and

λ2
n(z, t) = (σ − (n − 1))

tσ−n

zσ−(n−1)
, σ − (n − 1) > 0

with φj
0(p(z)) = p(z).

The transformations are iterative and closely associated with certain families analytic

and univalent functions involving the well known Salagean and Rucheweyh derivatives
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[1, 2]. These transformations preserve many geometric structures of the family P ; partic-

ularly the positivity of the real parts, compactness, convexity and subordination. They

have been very helpful in dealing easily with certain problems of the theory of analytic

and univalent functions.

In the sequel we would apply the above transformations on the family of Janowski

functions. The method is simple: replace P in the above definitions by P [a, b] so that

for p ∈ P [a, b], then (1.1) are the desired integrals. We denote by Φj
n[a, b] the family

of transformations of φj
n(p(z)), p ∈ P [a, b]. If p(z) = 1 + c1z + · · · , then φj

n(p(z)) =

1 +
∑

∞

k=1 cj
kzk where cj

k = cj
n,kck and

c1
n,k =

(

α

α + k

)n

,

c2
n,k =

σ(σ − 1) · · · (σ − (n − 1))

(σ + k)(σ + k − 1) · · · (σ + k − (n − 1))
=

σ!

(σ + k)!

(σ + k − n)!

(σ − n)!
.

(see [1, 2]) and it is easy to see that the transformations are analytic, normalized by

φj
n(p(z))|z=0 = 1 and φj

n(p(z)) 6= 0 for z ∈ E.

Throughout the paper we would adopt the notations φj and Φj , j = 1, 2 where we

do not require to specify the parameters n. Next we present some lemmas which will be

relevant in the sequel.

Lemma 1.([3]) Let {ck}
∞

k=0 be a convex null sequence. Then the function p(z) =

c0/2 + c1z + c2z
2 + · · · , z ∈ E, is analytic in E and Re p(z) > 0.

The next lemma can be derived from the Herglotz representation for P (see also [4]).

Lemma 2. If p(z) is analytic in E, p(0) = 1 and Re p(z) > 1/2, z ∈ E, then for

any function q(z) analytic in E, the convolution p ∗ q takes its values in the convex hull

of q(E).

Remark 1. If {ck}
∞

k=0 is a convex null sequence with c0 = 1, then by Lemma 1, we

have Re p(z) > 1/2. Hence the result of applying such sequence to an arbitrary analytic

function is a function which maps the unit disk onto the convex hull of the original image.

This is due to Lemma 2.

Remark 2. Since the convex hull of a set is the smallest convex set containing it,

then it follows that if q(z) is a convex map, then the convex hull of q(E) is q(E). Hence

by Lemmas 1 and 2 a convex null sequence {ck}
∞

k=0, with c0 = 1, is a subordinating

factor sequence for q(z) (see [9]).

Lemma 3. Let x > 1 be real. If ζ ≥ 0, then the following inequality holds

(

x

x − 1

)ζ

+

(

x

x + 1

)ζ

≥ 2.
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Proof. Denote the left hand side of the inequality by h(ζ). Differentiating with

respect to ζ, we have

h′(ζ) =

(

x

x − 1

)ζ

log

(

x

x − 1

)

+

(

x

x + 1

)ζ

log

(

x

x + 1

)

.

Then we have

h′(ζ) >

(

x

x + 1

)ζ [

log

(

x

x − 1

)

+ log

(

x

x + 1

)]

=

(

x

x + 1

)ζ

log

(

x2

x2 − 1

)

> 0.

Hence h(ζ) is an increasing function of ζ. Thus h(ζ) ≥ h(0) = 2 for ζ ≥ 0. This proves

the inequality.

Next we prove:

Theorem 1. Φj ⊂ P [a, b]. In other words every transformation φj of a p ∈ P [a, b]

is also in P [a, b], that is φj(p(z)) ≺ L0(a, b : z).

Proof. Let φj ∈ Φj . Then for any p ∈ P [a, b] we have to prove that φj(p(z)) ≺

L0(a, b : z). But φj(p(z)) = 1 +
∑

∞

k=1 cj
kzk, where cj

k = cj
n,kck. That is φj(p(z)) =

(q ∗ p)(z) with q(z) = 1 +
∑

∞

k=1 cj
n,kzk. Thus by Lemma 2, φj maps the open unit

disk onto the convex hull of the original image, p(E), if Re q(z) > 1/2. This follows

from Lemma 1 if we prove that the sequence {cj
n,k}

∞

k=0 is convex null for each j = 1, 2.

It is obvious that for k = 0, 1, · · · , cj
n,k > 0 and cj

n,k → 0 as k → ∞. We need to

prove that cj
n,k − 2cj

n,k+1 + cj
n,k+2 ≥ 0, k = 0, 1, · · · . Equivalently, we will prove that

Λj = cj
n,k/cj

n,k+1 + cj
n,k+2/cj

n,k+1 ≥ 2. By simple calculations we have

Λ1 =

(

α + k + 1

α + k

)n

+

(

α + k + 1

α + k + 2

)n

≥ 2.

Λ2 = 2 +
n(n + 1)

(σ + k + 1 − n)(σ + k + 2)
≥ 2.

That Λ1 ≥ 2 follows from Lemma 3 by taking x = α+k +1. Thus the proof is complete.

Theorem 2. Φj
n+1[a, b] ⊂ Φj

n[a, b], n ∈ N.

Proof. Let p ∈ P [a, b]. We have to prove that if φj
n(p(z)) ≺ L0(a, b : z), then

φj
n+1(p(z)) ≺ L0(a, b : z). Suppose φj

n+1 ∈ Φj
n+1[a, b]. Then by simple calculations we

find that the coefficients cj
n+1,k of φj

n+1(p(z)) can be decomposed as c1
n+1,k = c1

1,kc1
n,k
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and c2
n+1,k = ((σ − n)/(σ + k − n))c2

n,k so that

φ1
n+1(p(z)) = 1 +

∞
∑

k=1

c1
n+1,kzk

=

(

1 +

∞
∑

k=1

c1
1,kzk

)

∗

(

1 +

∞
∑

k=1

c1
n,kzk

)

and

φ2
n+1(p(z)) = 1 +

∞
∑

k=1

c2
n+1,kzk

=

(

1 +

∞
∑

k=1

σ − n

σ − n + k
zk

)

∗

(

1 +

∞
∑

k=1

c2
n,kzk

)

.

Hence relying on the convex-nullity of sequences {c1
1,k}

∞

k=0 and { σ−n
σ−n+k}

∞

k=0, which can

be easily verified as in Theorem 1, we conclude that φj
n+1(p(z)), j = 1, 2, maps E onto

the convex hull of the image of E under φj
n(p(z)). That is for all n ∈ N, j = 1, 2,

φj
n(p(z)) ≺ L0(a, b : z) implies φj

n+1(p(z)) ≺ L0(a, b : z) as required and the proof is
complete.

Theorem 3. Let φj ∈ Φj. Define

M j
n(a, b; r) = 1 + (a − b)

∞
∑

k=1

(−b)k−1cj
n,krk, |z| = r

and

mj
n(a, b; r) = 1 + (a − b)

∞
∑

k=1

bk−1cj
n,k(−r)k, |z| = r.

Then mj
n(a, b; r) ≤ Re φj ≤ |φj | ≤ M j

n(a, b; r). Lower bound equality is attained by

φj(L0(a, b : −z)) while equality in the upper bound is attained by φj(L0(a, b : z)).

Proof. Let p ∈ P [a, b] and define z = reiθ and t = ρeiθ, 0 < ρ ≤ r < 1. The
rest of the proof is similar to that presented in [1] if we use the known inequalities, Re
p(reiθ) ≥ (1 − ar)/(1 − br) and |p(reiθ)| ≤ (1 + ar)/(1 + br).

Corollary 1. φj ∈ Φj if and only if φj(p(z)) ≺ φj(L0(a, b : z)) where

φj
n(L0(a, b : z)) =

∫ z

0

λj
n(z, t)φj

n−1(L0(a, b : t))dt, j = 1, 2, n ≥ 1.

φj(L0(a, b : z)) is the best dominant.

Proof. Suppose φj ∈ Φj . Then by Theorem 3, φj(p(E)) ⊆ φj(L0(a, b : E)) and
furthermore φj(p(z))|z=0 = φj(L0(a, b : z))|z=0, which is a well known subordination
condition. Thus we have φj(p(z)) ≺ φj(L0(a, b : z)).
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On the other hand, suppose that φj(p(z)) ≺ φj(L0(a, b : z)). Then by the convex
null property of the coefficients cj

n,k, φj(L0(a, b : z)) maps E onto the convex hull of
L0(a, b : E) (which is L0(a, b : E) since L0(a, b : z) is convex univalent in E by Remark
2). Thus φj(L0(a, b : z)) ≺ L0(a, b : z) and the conclusion follows. That φj(L0(a, b : z))
is the best dominant is a consequence of the fact that equality in Theorem 3 is attained
by it.

The above corollary leads to:

Remark 3. The following statements are equivalent:

(i) p(z) ≺ L0(a, b : z)

(ii) p ∈ P [a, b]

(iii) φj ∈ Φj [a, b]

(iv) φj(p(z)) ≺ φj(L0(a, b : z))

3. Properties of T α

n
[a, b]

Let all parameters having the usual definitions. Also let p ∈ P [a, b], p(z) = 1 + c1z +
· · · , then from definitions and the integral representations, we have the following lemma:

Lemma 4. Let f ∈ A. Then the following are equivalent: (i) f ∈ T α
n [a, b], (ii)

(Dnf(z)α)/(αnzα) ∈ P [a, b] and (iii) f(z)α/zα ∈ Φ1
n[a, b].

Theorem 4. If f ∈ T α
n [a, b], then f(z)α/zα ≺ (1 + az)/(1 + bz).

Proof. Let f ∈ T α
n [a, b]. Then by Lemma 4, f(z)α/zα ∈ Φ1

n[a, b]. Thus by Theorem
1, we have f(z)α/zα ∈ P [a, b].

Theorem 5. For n ∈ N, T α
n+1[a, b] ⊂ T α

n [a, b].

Proof. Let f ∈ T α
n+1[a, b]. Then by Lemma 4, f(z)α/zα ∈ Φ1

n+1[a, b]. By Theorem
2, f(z)α/zα ∈ Φ1

n[a, b]. By Lemma 4 again f ∈ T α
n [a, b].

Corollary 2. For all n ≥ 1, T α
n [a, b] consist only of univalent functions in E.

Proof. For n ≥ 1, by Theorem 5 we have T α
n [a, b] ⊂ T α

1 [a, b]. However T α
1 [a, b]

consists of functions f ∈ A such that f(z)α−1f ′(z)/zα−1 ∈ P [a, b] ⊆ P ((1 − a)/(1 − b)).
This implies that Re f(z)α−1f ′(z)/zα−1 > 0, which is sufficient for univalence in E (see
[1]).

Using Lemma 4, we have the following growth properties of functions in T σ
n [a, b] by

choosing φ1 = f(z)α/zα in Theorem 3.

Theorem 6. Let f ∈ T α
n [a, b]. Then

m1
n(a, b; r) ≤ Re

f(z)α

zα
≤

∣

∣

∣

∣

f(z)α

zα

∣

∣

∣

∣

≤ M1
n(a, b; r).
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Lower bound equality is attained by f(z) = {In[αnzαL0(a, b : −z)]}1/α while upper bound

equality is realised by f(z) = {In[αnzαL0(a, b : z)]}1/α.

Theorem 7. f ∈ T α
n [a, b] ⇔ f(z)α/zα ≺ 1 + (a − b)

∑

∞

k=1(−b)k−1c1
n,kzk. The

function on the right hand side of subordination is the best dominant.

Proof. By definition, f ∈ T α
n [a, b] ⇔ (Dnf(z)α)/(αnzα) ≺ (1+az)/(1+ bz) ⇔ there

exists a function p(z) = 1+c1z+· · · in P [a, b] such that (Dnf(z)α)/(αnzα) = 1+c1z+· · ·
⇔ f(z)α/zα = 1 +

∑

∞

k=1(
α

α+k )nckzk. If we set φ1(z) = f(z)α/zα in Corollary 1 we have
the subordination.

Next we consider two integral transforms within the classes T α
n [a, b]. Let α > 0, and

γ ≥ 0 be real numbers. Define J j
0 (z) = f(z), j = 1, 2 and for ζ > 0 define

J 1
ζ (f) =

{

(α + γ)ζ

zγΓ(ζ)

∫ z

0

(

log
z

t

)ζ−1

tγ−1f(t)αdt

}

1

α

,

and

J 2
ζ (f) =

{

(

α + γ + ζ − 1

α + γ − 1

)

ζ

zγ

∫ z

0

(

1 −
t

z

)ζ−1

tγ−1f(t)αdt

}
1

α

where ζ − 1 + γ ≥ 0.
Theorem 8. The classes T α

n [a, b] are closed under J j
ζ (f).

Proof. Let f(z) = z + a2z
2 + · · · ∈ T α

n [a, b]. For α > 0, we can write

f(z)α = zα + A2(α)zα+1 + · · ·

where Ak(α), k = 2, 3, . . ., depends on the coefficients ak of f(z) and the index α. Thus
evaluating the integrals in series form, also using the Beta and Gamma functions and
noting that

(

ζ

γ

)

=
Γ(ζ + 1)

Γ(ζ − γ + 1)Γ(γ + 1)

we obtain J j
ζ (f)α = zα +

∑

∞

k=1 Cj
kAk+1(α)zα+k where

C1
k =

(

α + γ

α + γ + k

)ζ

and C2
k =

Γ(α + γ + ζ)

Γ(α + γ)

Γ(α + γ + k − 1)

Γ(α + γ + ζ + k)
.

Now we have

J j
ζ (f)α

zα
= 1 +

∞
∑

k=1

Cj
kAk+1(α)zk

=

(

1 +

∞
∑

k=1

Cj
kzk

)

∗

(

1 +

∞
∑

k=1

Ak+1(α)zk

)

= Q(z) ∗
f(z)α

zα
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where Q(z) = 1 +
∑

∞

k=1 Cj
kzk. By calculations, we find that

C1
k

C1
k+1

+
C1

k+2

C1
k+1

=

(

α + γ + k + 1

α + γ + k

)ζ

+

(

α + γ + k + 1

α + γ + k + 2

)ζ

≥ 2.

C2
k

C2
k+1

+
C2

k+2

C2
k+1

= 2 +
ζ(ζ + 1)

(α + γ + k + 1)(α + γ + ζ + k + 2)
≥ 2.

Note that the first inequality is a consequence of Lemma 3, where x = α + γ + k + 1.
Furthermore for each k = 0, 1, · · · , Cj

k > 0 and Cj
k → 0 as k → ∞, hence the sequences

{Cj
k}

∞

0 , j = 1, 2 are convex null. Thus J 1
ζ (f)α/zα maps the open unit disk E onto the

convex hull of f(z)α/zα and by Theorem 7 our conclusion follows.

4. Properties of Bσ

n
[a, b]

In this section, we state without proofs, the analogue of the results of the preceeding
section for the classes Bσ

n [a, b]. The results are consequences of the following lemma and
an appropriate choice φ2 = f(z)/z.

Lemma 5. Let f ∈ A. Then the following are equivalent: (i) f ∈ Bσ
n [a, b], (ii)

(Lσ
nf(z))/z ∈ P [a, b] and (iii) f(z)/z ∈ Φ2

n[a, b].

Theorem 9. If f ∈ Bσ
n [a, b], then f(z)/z ≺ (1 + az)/(1 + bz).

Theorem 10. For n ∈ N, Bσ
n+1[a, b] ⊂ Bσ

n [a, b].

Corollary 3. For all n ≥ 1, Bσ
n [a, b] consist only of univalent functions in E.

Theorem 11. Let f ∈ Bσ
n [a, b]. Then

m2
n(a, b; r) ≤ Re

f(z)

z
≤

∣

∣

∣

∣

f(z)

z

∣

∣

∣

∣

≤ M2
n(a, b; r).

Lower bound equality is attained by f(z) = lσn[zL0(a, b : −z)] while upper bound equality

is realised by f(z) = lσn[zL0(a, b : z)].

Theorem 12. f ∈ Bσ
n [a, b] ⇔ f(z)/z ≺ 1+(a−b)

∑

∞

k=1(−b)k−1c2
n,kzk. The analytic

function on the right hand side is the best dominant.

Theorem 13. The classes Bσ
n [a, b] are closed under J j

ζ (f), α = 1.
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