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ON QUASI *-BARRELLED SPACES 

S.G. GAYAL 

Abstract. In this paper, a new class of .ocally convex spaces, called quasi *­ 
barrelled spaces is introduced. These spaces are characterized by : A locally convex 
space Eis Quasi *-b3lTelled if every bornivorous *-barrel in Eis a neighbourhood 
of O in E. This class of spaces is a generalization of quasi-barrelled spaces and 
*-barrelled spaces (K.Anjaneyulu; Gayal : Jour. Math. Phy. Sci. Madras, 1984). 
Some properties of quasi *-barrelled spaces are sturued. Lastly one example each 
of 

(i) a quasi *-barrelled space which is not quasi-barrelled. 
(ii) a quasi *-barrelled space which is not *-barrelled. 

1s given. 

Introduction 

Let E be a locally convex space, not necessarily Hausdorff, and E' its dual space. 
Consider the following collections of subsets of E': 

A= {A A is relatively /3( E'; E)-compact} 
B = {A A is relatively u( E', E)-compact} 
C = {A A is u(E\ E)-bounded} 
V = {A A is /3(E', E)-bounded} 
p = {A A is equicontinuous} 

It is well known (2] that (i) E is barrelled if and only if the Collections C and P 
coincide (ii) Eis quasi-barrelled space if and only if the collections V and P coincide (iii) 
if the space E is quasi-complete and quasi-barrelled then it is a barrelled space. Several 
authors have considered other types of spaces such as quasi M-barrelled [5] u-barrelled 
[6] *-barrelled [1]. Neverth-less, it seems to be of interest to consider those locally convex 
spaces E, here called quasi *-barrelled, for which the collections A and P coincide. 
Section 1 deals with the definition and a characterization of quasi *-barrelled spaces. 
The class of quasi *-barrelled spaces properly include *-barrelled spaces. Properties of 
quasi *-barrelled spaces are studied in section 2. In section 3, some counter examples 
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are given. The notations and definitions used here, and in what follows, are those of (2], 
unless explicitly stated to the countrary. 

1. Quasi *-barrelled spaces: 

Definition. Let E be a locally convex space and E' its dual. A subset of E is said 
to be a bornivrous *-barrel if it is the polar of a relatively compact subset of E' for the 
topology f3(E', E). The locally convex space E is said to be quasi *-barrelled if every 
bornivorous *-barrel in Eis a neighbourhood of 0. 

Clearly, every bornivorous *-barrel in E is bornivorous barrel, it follows that every 
quasi-barrelled space is quasi *-barrelled. 

Proposition 1. A locally convex space E is quasi *-barrelled space if and only if 
every subset of E' which is relatively /3(E', E)-compact is equicontinuous. 

Proof. Suppose that E is a quasi *-barrelled space. Let M be a relatively compact 
subset of E' for the topology /3(E', E). Then its polar M0 = V (Say) is a borni-vorous 
*-barrel in E and hence a neighbourhood of 0. Since 

M C Moo = (Mo)o = vo 
It follows that M is equicontinuous. Conversely, suppose that the condition holds 

and let B be a bornivorous *-barrel in E. Then B = M0 for some relatively compact 
subset M of E' for the topology /3(E', E). By assumption, M is equicontinuous and 
hence there exists a neighbourhood V of O in E such that 

MC V0 

But then 

and so B is a neighbourhood of O in E. Thus E is quasi *-barrelled space. 

Proposition 2. Every *-barrelled space is quasi *-barrelled. 

Proof. Let E be a quasi *-barrelled space and E' its dual. Let V be a relatively 
compact subset of E' for the topology /3( E', E). Tl).en V is compact for the topology 
/3( E', E) and so is compact for the topology u( E', E). It follows that V is relatively 
compact for the topology u( E', E). Since E is a, *-barrelled space, V is equicontinuous. 
Therefore, E is a quasi *-barrelled space. · 

Proposition 3. Let E be a *-barrelled locally convex space. Then (i) E is quasi 
*-barrelled if and only if it is quasi-M barrelled. {ii) E is barrelled if and only if it is 
quasi barrelled. 

Proof. (i) is obvious by (1). 
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(ii) If E is also a barrelled space, then it is alwarys quasibarrelled. Conversely, assume 
that E is quasi-barrelled. Since every *-barrelled space is sequentially barrelled [I] E is 
sequentially barrelled, hence Eis barrelled by proposition 4.1-[7]. 

2. Further Properties 

Proposition 4. Let F be a vector space, (Ei)iEI a family of quasi *-barrelled 
Hausdroff spaces and for each i E J let Ii be a linear mapping from E into F such that 
Uli(Ei) spans F. Suppose that F equipped with finest locally convex topology for which 
all the mappings Ii are continuous is a Hausdroff space. Then F is a quasi *-barrelled 
space. 

Proof. See [I]. 

Corollary 1. Let E be a quasi *-barrelled space and M a closed subspace of E. 
Then the quotient space E / M is quasi *-barrelled. 

Corollary 2. The locally convex direct sum of a family (Ei)ieI of quasi *-barrelled 
H ausdroff spaces is a quasi *-barrelled space. 

Proposition 5. Any separable {DF)-Space E is quasi *-barrelled. 

Proof. It follows [4, corollary 4(a)] that E is quasi-barrelled. Hence E is quasi 
*-barrelled. 

3. Examples. 
(i) A quasi *-barrelled space need not be quasi-barrelled. Let F be a non reflexive 

Banach space and E = (F', T(F', F)), the Mackey dual space of F. Then E' = F. 
It is proved [4, p.195) that Eis neither quasi-barrelled nor barrelled. We show that it 
is a quasi *-barrelled space. Let V be a relatively compact set in E' for the topology 
/3(E', E). Then V is compact for the topology /3(E', E). Since (E', /J(E', E)) = F, 
a non reflexive Banach space, it is complete for the topology /J(E', E). Therefore, 
the closed absolutely convex hull, W of V is compact for the topology /J(E', E) and 
hence compact for the topology u(E', E). Since (E, T(E, E')) is a Mackey space, 
W is equicontinuous. 

Since VcVcW 

it follows that E is quasi *-barrelled. 
(ii) A quasi *-barrelled space which is not *-barrelled. Let <f>: The vector space of all 

sequences (real or complex) having only finitely many nonzero components, equipped 
with supremum norm topology. It is a normed vector space and hence quasi barrelled 
and so quasi-*-barrelled space. · But it is not *-barrelled for if it were a *-barrelled 
space, then being quasi-barrelled, it would be barrelled by proposition 3 which is 
not true by lyahen [3). 
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