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ON SOME PROJECTION METHODS FOR APPROXIMATING FIXED POINTS 
OF NONLINEAR EQUATIONS IN BANACH SPACE 

IOANNIS K. ARGYROS 

Abstract. We use a Newton-like method to approximate a fixed point of a non 
linear operator equation in a Banach space. Our iterates are computed at each 
step by solving a linear algebraic system of finite order. 

I. Introduction 

Consider the problem of approximating a fixed point x* of the operator equation 

x = T(x) (1) 

where T(x) is a nonlinear operator defined on a subset D of a Banach space E with 
values in a Banach space E. 

We study the convergence of the Newton-like methods 

n~O (2) 

and 
Yn+i = T(yn) - PT'(xo)(Yn - Yn+i), Xo = Yo, n > 0 (3) 

to x*, where T'(xn) is the Frechet derivative of T evaluated at Xn and Pis a linear 
projection operator projecting Eon its subspace Ep. If Ep is a finite-dimensional space 
with dim(Ep)=N, then the iterates (2) and (3) can be computed at each step by solving 
a system of linear algebraic equations of order at most N. The case when P = I, the 
identity operator on E, has been examined by many authors, under different assumptions 
[1], [3), [41, [5], [7]. The iterates, however, can rarely be computed in infinite dimensional 
spaces, since it may be very difficult or impossible to find the inverses of the linear 
operators I - T'(x0), n ~ 0. The case when Tis a continuous linear operator has been 
examined in [5J, [6]. We assume that Tis a nonlinear operator. Our conditions are easier 
to verify than the ones in [5], even in the linear case. 
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In this paper, we provide sufficient conditions for the convergence of iterations (2) 
and (3) to a locally unique fixed point x* of equation (1). 

Finally, we illustrate our results with an example. 

II. Convergence theorems. 

We can now formulate our main theorem concerning iteration (2). 

Theorem 1. Let T : D C E -+ E and assume 
(a) the inverse of the linear operator I - PT'(x0) exists and 

ll(I - PT'(xo))-1(xo - T(xo))II ~ 17; 

(b) the following inequalities are true for all 

(4) 

x,yEU(x0,r) = {xEEIIJx-xolJ<r} 

IJ(J - PT'(xo))-1(PT'(x) - PT'(y))II ~ Mllx - ylJ>. (5) 
and 

11(1 - PT'(xo))-1(QT(x) - QT(y))I] ~ qllx - YII>., Q = I - P, ,\ E [O, 1). (6) 

( c) The conditions 

are satisfied, where 

(TJdl < 1, 

Mr>. < 1, 

ed-I 
TJ + -1- < r -e 

e = (dr,)\ d>.-l = C 

(7) 

(8) 

(9) 

and 
1 ( 2Mr ) c( r) = c = 1 - Mr>. · 1 + ,\ + q · 

(d) The ball U(x0, r) CD. Then, equation {1) has a fixed point x* in U(x0, r) where r is 
chosen to be the minimum number r > 0 satisfying {8}-(9). Moreover, the following 
estimates are true 

en 
llxn - x*II ~ d-1-

1
-, n 2: 0 
-e (10) 

and 

(11) 



ON SOME PROJECTION METHODS FOR APPROXIMATING FIXED POINTS 353 

Furthermore, if 
(dr)>. < 1 

then x* is the unique fixed point of equation {1) in U(x0, r). 

Proof. From (2) and (3) we get the identity 

(I - PT'(xn))(xn+l - Xn) = T(xn) -T(xn-1) - PT'(xn-1)(xn - Xn-1), n ~ l. (13) 

(12) 

By the Banach lemma on invertible operators, (5) and (8), it follows that I - PT'(x) is 
invertible for all x E U(xo, r) and 

ll(J - PT'(x))-1(1 - PT'(xo))II < 1 - MIi!- xoll>. S 1 - ~r>.. (14) 

Let us assume that xo, xi, ... , Xn E U(xo, r), then from ( 4)-(6), (13) and (14) we get 

llxn+l - Xnll 
S 11(1 - PT'(xn))-1(1 - PT'(xo))II [11(1 - PT'(xo))-1(PT(xn) - PT(xn~1) 
- PT'(xn-1)(xn - Xn-1))11 + 11(1 - PT'(xo))-1(QT(xn) - QT(xn-1))11] 

:'o , ~, , [ll(I - PT'(xo)r1 J.' PT'(xn-1 + t(xn - Xn-1)) - PT'(xn-1))(xn - Xn-1)dtll 
+ qllxn - Xn-111>.] 

1 [ M ] .x 
_::; ~ ~r \ l + ,.\ llxn - Xn-111 + q llxn - Xn-111 
S cllxn - Xn-111>., which shows (11). (15) 

From (11), we get 

lfxo - Xn+1II S llx1 - xoll + ffx2 - X1 fl+···+ flxn - Xn+1 ff 
< TJ + CTJ>. + cl+>. TJ_x2 + ... + cl+>.+··+>. n-1 1]>. n 

< 1J + d-l [(dTJl + (d1Jl
2 + • • · + (dTJ)_xn] 

< TJ + d-1 [(d11l + (d17)2>. + · · · + (d11t>.] 
< 11+d-1e(l f e+e2+ ···+en-l) 

1- en l 
< 1J + d-1e S TJ + d-1e-- S r (by9). 1-e 1-e 

Hence, Xn+1 E U(xo, r). For p 2': 1, 

llxn - Xn+1pll < lfxn - Xn+1II + flxn+l - Xn+2lf + · · · + ff.xn+p-1 - Xn+pfl 
_:::; d-1(d17)_xn + d-1(d1J)>,"+l + • • • + d-1(dTJ)>,n+p 

l - eP < d-len[l + e + ... + eP-1] = d-len . 
l-e (16) 
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It now follows from that the sequence { xn} is a Cauchy sequence in a Banach space and 
as such it converges to some x* E U(x0, r). By letting p -+ oo in (16) we obtain (10), 
whereas by letting n -1- oo in (2) we get x* = T(x*). To show uniqueness let us assume 
that z* is any fixed point of Tin U(x0, r) and use the identity 

(I - PT'(xn))(xn+l - z*) = T(xn) - T(z*) - PT'(xn)(xn - z*) 
to get 

as n -1- oo from (12). Hence x* = limn-.oo Xn = z*. 
That completes the proof of the theorem. 

Note that for A = 1 the proof of the previous theorem can be repeated, but (7) 
e" becomes c < 1, (9) becomes 6 $ r, e = c, (10) becomes llxn - x*II $ l _ e 7J and (12) 

becomes c < 1. 
the proof of the following theorem concerning iteration (3) is omitted as similar to 

the proof of theorem 1. 

Theorem 2. Let T : D C E -+ E and assume 
(a) the following inequalities are true: 

II(! - PT'(xo))-1(xo - T(xo))II $ 77, 

11(1 - PT'(xo))-1(PT'(x) - PT'(y)II $ Mllx - YII>. 
and 

ll(I - PT'(xo))-1(QT(x) - QT(y)II $ qllx - YII\ 

Q = I - P, A E [O, 1), for all x, y E U(xo, R). 
(h) The conditions 

are satisfied, where 

and 

21->.M R + q. 
(c) The hall U(xo, R) CD. 
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. Then equation (1) has a fixed point x* in U(x0, R) where R is chosen to be the 
minimum number R > 0 satisfying conditions (b). Moreover, the following estimates are 
true 

and 

Furthermore if 
(d1R)>. ~ 1 

then x* is the unique fixed point of equation (1) in U(x0, R). 
Note that a remark similar to the one made after Theorem 1 for the case ,\ = 1 can 

now easily follow for Theorem 2. 
We now complete this paper with an application. 

III. Applications. 

Let us consider the following system in E = E = Rk, 

li(V1, ... ,vk), i= 1,2,···,k. (17) 

Set 
T(v) {li(v1, ... ,vk)}, i= 1,2,···,k; 

k 

T'(W)v = {Ll!j(w1, ... ,wk)vj}, i=l,2,···,k; 
j=l 

PT'( w)v == { I:J=l l[j( W1, ···,Wk )vi, 
0, 

where the symbol Jfi denotes 8 Ii/ 8vi. 
Iterations (2) and (3) can be written as 

i = 1,2, · · · ,N 
i=N+l ··· k ' ' ' 

k 

Ii( V1,n, · · ·, Vk,n) + L ffj( VI,n, .. ·, Vk,n)( Vj,n+l - Vj,n), i = 1, · · ·, N (18) 
j=l 

fi(v1,n, · · ·, Vk,n), i = N + 1, · · ·, k 
and 

k 

fi(v1,n, ... 'Vk,n) + L 1:j(v1,o, ... 'Vn,o)(vj,n+I - Vj,n), i = 1, ... ' N (19) 
j=l 

/i(v1,n, · · ·, vk,n), i = N + l, · · ·, k, 
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respectively. 
If the determinants D(xn) and D0 of (18) and (19) respectively, are nonzero, then 

we have 
'°'N D· (v )f (vn) · 

_ ~m 1 &m n m , i = 1, 2, · · · , N, 
- D(vn) 

Vi,n+l = fi(vn), i = N + l, · · · 'k 
for system (18) and 

'°'N 1 Dim(vo)f m(vo) ,; - 1 2 · · · N, ~m , •- ' , , = Do) 

fi(vn), i = N + l, · · ·, k 
for system (19). 

Here 

k k 

fm(vn)- Lf~j(vn)Vj,n + L f~j(vn)/J(vn), 
i=l i=N+I 
k k 

fm(vo) - Lf~1(vo)VJ,n + L f~1(vo)f1(vo), 
J=l i=N+l 

m = 1, 2, · · ·, k, where Dim(vn), Dim(vo) are the cofactors of the elements at the itersec 
tion of them-th row and i-th column of the determinants D(xn) and D0, respectively. 

We assume that the following conditions are satisfied on some region under consid 
eration. 

k 

l/i(vi, ... ,vk)-/i(w1, ... ,wk)IS Ltij lv1-w1 I\ i=N+l,···,k, ..\E[O,l] 
J=l 

k 

I f[1(vi, .. ·, vk) - f[j(w1, ... , wk) I _::; L bijs Iv., - w., I\ i = 1, · · ·, N, j = l, · · ·, k, 
s=l 

I Dim(v) I S aim' I D(v) I S a, 
I f[1(v) IS hiJ, i = 1, ... ,N, j = 1,2,···,k. 

For any v E E, set llvfl = sup1$i$k I Vi I, then the constants q and M appearing in 
the Theorem 1-2 can be computed by 

k k 

q < . sup Ltij and M S . sup L Cijs· 
i=N+1, ... ,k ._1 z:1,2,···,N .. _

1 J- JJ- 
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