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ON SOME PROJECTION METHODS FOR APPROXIMATING FIXED POINTS
OF NONLINEAR EQUATIONS IN BANACH SPACE

IOANNIS K. ARGYROS

Abstract. We use a Newton-like method to approximate a fixed point of a non-
linear operator equation in a Banach space. Our iterates are computed at each
step by solving a linear algebraic system of finite order.

I. Introduction

Consider the problem of approximating a fixed point z* of the operator equation
z = T(z) (1)

where T'(z) is a nonlinear operator defined on a subset D of a Banach space E with
values in a Banach space E.
We study the convergence of the Newton-like methods

Tat1 = T(z5) — PT'(z,)(z, — i1 )s n>0 (2)

and
yn-}-l - T(yn) - PT’(ZU)(yn = yn+1)a Zo = Yo, n Z 0 (3)

to z*, where T'(z,) is the Fréchet derivative of T' evaluated at zn, and P is a linear
projection operator projecting E on its subspace E,. If E, is a finite-dimensional space
with dim(E,)=N, then the iterates (2) and (3) can be computed at each step by solving
a system of linear algebraic equations of order at most N. The case when P = ], the
identity operator on E, has been examined by many authors, under different assumptions
(1], [3], [4], [5], [7]. The iterates, however, can rarely be computed in infinite dimensional
spaces, since it may be very difficult or impossible to find the inverses of the linear
operators I — T"(z,), n > 0. The case when T is a continuous linear operator has been
examined in [5], [6]. We assume that 7T is a nonlinear operator. Our conditions are easier
to verify than the ones in [5], even in the linear case.
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In this paper, we provide sufficient conditions for the convergence of iterations (2)

and (3) to a locally unique fixed point z* of equation (1).

Finally, we illustrate our results with an example.

II. Convergence theorems.

(2)

(b)

(c)

(d)

We can now formulate our main theorem concerning iteration (2).

Theorem 1. Let T : D C E — E and assume
the inverse of the linear operator I — PT'(xo) ezists and

I = PT"(20))~*(z0 — T(z0))l| < m; (4)
the following inequalities are true for all
z,y€U(zo,r) = {z€E|||lz—zo|| <7} :
I = PT'(20)) " (PT'(z) - PT'(W))l| < Ml —y|* ()
and
I = PT'(20))1(QT(2) - QTW))I| < alle—ul*, Q=I—-P, xe[0,1). (6)
The conditions

(nd)* < 1, (7)

Mr < 1, (8)
ed!

B 9)

are satisfied, where
e = (dp}, d*! = ¢

and

glr) = ¢ =

1 (2Mr @ )
1-MP\1+x T Y-
The ballU(zo,v) C D. Then, equation (1) has a fized point z* in U(zo,r) where r is

chosen to be the minimum numberr > () satisfying (8)-(9). Moreover, the following

estimates are true
n
1 €

1—e

[l2n — 2*|| < d~ 5 o4 (10)

and
lenss = 2all < cllen— 2as]]*, n > 1. (11)



ON SOME PROJECTION METHODS FOR APPROXIMATING FIXED POINTS 353
Furthermore, if
(dr)* < 1 (12)
then z* is the unique fized point of equation (1) in U(z,, r).
Proof. From (2) and (3) we get the identity
(I = PT(zn))(xn41 — 20) = T(zy) — T(za-1) = PT'(zn_1)(zn — Tp-1), n > 1. (13)
By the Banach lemma on invertible operators, (5) and (8), it follows that I — PT'(z) is
invertible for all z € U(zo,r) and

1 1

IZ = PT'(2)™(I = PT'(2o))| < 1= Mz —zo = T Mm%

(14)

Let us assume that 2o, 2, ..., z, € U(zo,r), then from (4)-(6), (13) and (14) we get

|Zn+1 — zn||
< I = PT'(z0))~H(I — PT'(=0))]| [II(I = PT'(20)) " (PT(zn) - PT(21)
= PT(2n-1)(2n = 2n-))ll + (I — PT"(20))"(QT(2n) — QT(l‘n‘—l))H]

1
= 1—-MrA

+dllen = a0

1
(112 = PT(20)) /o PT(2n_1 +t(2n — 1)) — PT(2n-1))(n — za_1)di|

1 M 5
S].—-MT‘A [1+,\”$n—~1‘n_1” + Q]”J:n —:L'n_]_”
< ¢||zn — z4-1||*, which shows (11). (15)

From (11), we get

|21 — zo|| + ||z2 — 21|+ -+ + || 2n — Zni
n+ an + CI+A'I]AQ + -4+ Cl+z\+---+A"-1n,\n
n+d7 [(dn)* + (dn)*" +--- + (dn)*"]
n+d! [(dﬂ)A + (dn)”‘ don v v s (dn)nA]
’7+d—1€(1 +_'e+ez+ "'+e""1)

[zo — Zn 44|

IN A

ININ A

- 1
n+dle 1_ee < 17-l-d_1(:1_e <r (by9).

IA

Hence, z,4; € U(zo,r). For p > 1,
lzn = Zns1pll < [lzn — Tatill + |Zn41 — Zpgol| + - + |Zn4p-1 = Zn4pl|
S A7 (d)M +d7 ()™ 4 d Y ag)

gd‘le"[1+e+...+ep-1] — g-len (16)
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It now follows from that the sequence {z,} is a Cauchy sequence in a Banach space and
as such it converges to some z* € U(zo,r). By letting p — oo in (16) we obtain (10),
whereas by letting n — oo in (2) we get z* = T'(z*). To show uniqueness let us assume
that 2* is any fixed point of T in U (zo,7) and use the identity

(I = PT'(2n))(@n41 = 2*) = T(zn) — T(+*) — PT"(20)(n — 2*)
to get
lznss =24 < ellen —2[* < o0 < @@ < d (@) = 0

as n — oo from (12). Hence z* = lim,_, o, z,, = z*.
That completes the proof of the theorem.

Note that for A = 1 the proof of the previous theorem can be repeated, but (7N
en
n and (12)

becomes ¢ < 1, (9) becomes itz <7, e=c, (10) becomes ||z, — ]| = 1
becomes ¢ < 1.

the proof of the following theorem concerning iteration (3) is omitted as similar to
the proof of theorem 1.

— €

Theorem 2. LetT : DC E — E and assume
(a) the following inequalities are true:

I(T = PT(20))~ (20 — T(0))]| <,

I( = PT'(20)) " (PT'(z) — PT'(y)|| < M|z — y|*
and
I(Z = PT'(20)) "1 (QT () - QTW)|| < qllz - y|*,

Q = I-P, X€|0,1), for all z,y € U(zo, R).

(b) The conditions
(nd1)* < 1,

Cldi-l'

* T 1—-61

< R

are satisﬁed, where
e1 = (din)*, d}™! = ¢,
and
eilr) = ¢ = P2XMER 4 q.
(c) The ball U(zo,R) C D.
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Then equation (1) has a fixed point z* in U(zo, R) where R is chosen to be the
minimum number R > 0 satisfying conditions (b). Moreover, the following estimates are

true
n
€1

llgn —2*|| < a7’ n>0

1-— €1 ’
and
”yn+1 - anI < .CIHyn = yn—l”A: n>1.

Furthermore if
(iR < 1

then z* is the unique fixed point of equation (1) in U(zo, R).

Note that a remark similar to the one made after Theorem 1 for the case A =1 can
now easily follow for Theorem 2.

We now complete this paper with an application.

III. Applications.

~

Let us consider the following system in E = E = R¥,
vy = f,-(vl,...,vk), i=1,2,---,k. (17)

Set
T(‘U) {fi(vli'-':vk)}’ i=1)2;"')k;

k
TW) = {Zfi'j(wl,...,wk)vj}, 121,92 -
=1

k ’ .
PT' - Z:‘=1f£j(w1,""wk)”j’ i=12 00 N
b {0,J N1, ek,

where the symbol ;J- denotes Of; /dv;.
Iterations (2) and (3) can be written as

k

vi1n+1 = fi(vlin,-..,vk’n)+Zf"lj(v]"n,.--,vk’n)(vj’n+]_—vj’n), i= 1’...’N(18)
j=1

Vin+1 = fi(vl,ny"'avk,n)) 1= N+ 1)”'7k

and

k
Vintt = i@, sTen) + )0 £ (10, Tn0)Tjngr = ja), i = 1,-+-, N (19)
i=1

Vintl1 = fi(Uin,  +,Ukn), i=N+1,-- k,



356 IOANNIS K. ARGYROS

respectively.
If the determinants D(z,) and Dy of (18) and (19) respectively, are nonzero, then

we have - 3
Vs - Em:l Dim(vn)fm(vn)
i,n$l — D(‘Un) s

Ving1 = fi(vn),i=N+1,--- k

i=112;"':NJ

for system (18) and

Y et Dim () (o)
Dy)

6i,n+1 7i:1)21"')N1

Fi,n-i-l =i fi(b.n); ti=N g 1) Seitrs )k
for system (19).

Here
B k k
Fm(n) = fm(va) = D fri(@n)vim+ 3 Fiaj(va) S (vn),
‘ i=1 i=N+1
B k k
Fm(@0) = fm(v0) = 3 fri(w0)vjmn+ 3 Fins(v0)f;(vo),
j=1 i=N41
m=1,2,---,k, where D;;,(v,), Dim (vo) are the cofactors of the elements at the itersec-

tion of the m-th row and i-th column of the determinants D(z,) and Dy, respectively.
We assume that the following conditions are satisfied on some region under consid-
eration.

k
|f,-(v,-,...,vk)—f,-(wl,...,wk)IS Zt,'j Ivj—wj '\, i:N+l,...’k, /\E[O,l]
j=1

k
lf,-’j(vi,...,vk)—f;j(wl,...,wk)|S Zbij, | v, — w, ,A’ i=1. N, F=1,0k,

s=1

lDtm(v)lS aim’lD(’t})lS a,
, z’j(U)IS h’-j’i=1""’N)j:1)2,'--,k.

For any v € E, set ||| = Sup;<i< | vi |, then the constants ¢ and M appearing in
the Theorem 1-2 can be computed by

k k
g <  sup Ztij and M < ~ sup Z Cis
=NHLk o =L2N G
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