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SOME CHARACTERIZATIONS OF UNCONDITIONAL SCHAUDER 
DECOMPOSITIONS OF BANACH SPACES 

P.K. JAIN AND D.P. SINHA 

1. Introduction 

In analogy with the concept of unconditional Schauder basis in Banach spaces, the 
study of unconditional Schauder decomposition was initiated in [3,5]. The concept was 
further_ studied by several authors [1,4,6,8]. The notion of Markusevic decomposition 
(M-decomposition) can be found in [2], where it has been called 'biorthogonal decompo­ 
sitions'. 

In this paper, we give several characterizations of unconditional Schauder decom­ 
positions in terms of M-decompositions. We show that an M-decomposition (Gn) of a 
Banach space E with the associated sequence of projections (vn) is an unconditional 
Schauder decomposition if for every subset S of natural numbers the set (Unesv~(E*)] 
norms [UnesGn], We also give a characterization of unconditional Schauder decompo­ 
sition of a Banach space having an M-decomposition in terms of the multipliers of the 
elements of E. 

2. Preliminaries 

Throughtout E will denote a Banach space over the field K(R or C), [] the closed 
linear span of the indicated sets and BE the closed unit ball of E. 

A pair of sequences (Gn, vn), where (Gn) is a sequece of closed linear subspaces .of 
E with Gn :f. {O} and ( vn) is a sequence of projections with vn(E) = Gn for all n, ;::; said 
to be a generalized biorthogonal system if 

ViVj = 8ijVi = 8ijVj, (i,j EN). 

The sequence (Gn) is said to be a Markusevic decomposition (M-decomposition) of E if 
[u~=l Gn] = E and vn(x) = 0, for all n, imply x = 0. The sequence (vn) is said to be the 
associated sequence of projections (a.s.p.) to the M-decomposition (Gn), For any subset 
S of N, write 

W(S) = [UnesGn] and W*(S) = [Unesv~(E*)]. 
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A closed linear subspace V of E* is said to norm E, if there is a constant C > 0 
such that 

Cllxll S sup I f(x) I · 
·. fEBv 

The greatest number which satisfies the above inequality is said to be the characteristic 
of V. 

An M-decomposition ( Gn) of E with the a.s.p. ( vn) is said to be a Schauder decom­ 
position, if for every x EE the series E~=l vn(x) converges to i. In this case W*(N)norms 
E([B], Theorem 15.7). A schauder decomposition (Gn) with the a.s.p. (vn) is said to 
be an unconditional Schauder decomposition if the series E~=l Vn (x) is unconditionally 
convergent for every x. In the sequel we shall need a result which we give in the form of 
a lemma. 

Lemma 2.1. ((7), Lemma 16.1, p.458). Let (x~) be a sequence in E. Then the 
series E:=l Xn is ·unconditionally convergent if and only if for every sequence (/3n) of 
scalars with l/3n IS 1 (n = 1, 2, · · ·), the series E:=i/3nXn is convergent; or equivalently 

n 

sup sup II L /3ixdl < +oo. 
J,811,J,821, ... ~l l~n<oo i=l 

The concept of unconditional Schauder decomposition has been studied by many 
authors. We list below some known characterizations of unconditional Schauder decom­ 
positions which we shall be using in the sequel. 

Theorem 2.2. Let (Gn) be a sequence of subspaces of a Banach space E with 
Gn f:. {O} (n = 1, 2, · · ·). Then, the following statements are equivalent : 

( a) ( Gn) is an unconditional Schauder decomposition of E 
(b) ( Grinb/uim [3]) There is a constant 1 S M < +oo, such that for any two disjoint 

finite subsets A and B of N, Xj E Gj (j E_ A) and Yi E Gj (j E B),· we have 

iEA jEB 

(c) (McArthur [5]) Every permutation (Gu(n)) of (Gn) is a Schauder decomposition. 
( d) (Lindenstrauss-Pelczynski [4]) There is a constant 1 S I( < oo' such that for any 

Xj E Gj(j = 1, 2, ... , n) and €j = ±1 (j = 1, 2, ... , n) {or equivalently I €j IS 1, j = 
1, 2, ... , n)), we have 

n n 

j=l 
(e) {Bache/is [1}) For every subset S of N, we have 

E = W(S) ffi W(N\S). 
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3. Characterization theorems. 
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Theorem 3.1. Let (Gn) be an M-decomposition of E with the a.s.p. (vn). Then 
(Gn) is an unconditional Schauder decomposition if and only if for every subset S of N, 
W*(S) norms W(S). 

Proof. Let S be an arbitrary subset of N and T be the quotient mapping of E 
onto E/W(N\S). Since W(S*) norms W(S), there is a constant K > 0 such that, for 
x E W(S), we have 

IITxll = sup I f(x) I ~ 
/EBw(N\S) 

sup I f(x) I ~ Kllxll. 
JEBw•(s) 

Therefore, T1 = T I W(S) is an isomorphism onto E/W(N\S), whence r
1
-1r is a 

projection of E onto W(S) along W(N\S). Hence 

E = W(S) EB W(N\S). 

Thus, in view of Theorem 2.l(e), (Gn) is an unconditional Schauder decomposition of E 
with the a.s.p. ( vn). 

Conversely, let (Gn) be an unconditional Schauder decomposition. Let S be an 
~rbitrary subset of N and P be a continuous linear projection of E onto W(S) along 
W(N\S). It is easy to see that 

P*(W*(N)) C W*(S). 

Since W* (N) norms E, there is a K > 0 such that 

sup I f(x) I 2: Kllxll, (x E W(S)). 
}EBw•(N) 

Hence 
sup lg(x)I~ 

gEBw•(s) 
sup l(P*f)(x)I/IIP*II 

/EBw•(N) 

sup I f(x) I /IIP* 11 
/EBw•(N) 

2: Kllxll/llP* II (x E W(S)). 
Thus W*(S) norms W(S). 

Theorem 3.2. Let (Gn) be an M-decomposition of E with the a.s.p. (vn). Then, 
(Gn) is an unconditional Schauder decomposition if and only if there is a constant C > 0 
such that for every subset S of N, we have 

dist(Bwcs), W(N\S)) > C. 

Proof. Note that, for any subset S of N, the set {I:iEAXi : Xi E Gi, i E A, A is 
finite a subset of S} is dense in W(S). Now the proof can be completed by invoking 
Theorem 2.2 (a){::} (b). 
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Theorem 3.3. Let (Gn) be an M-decomposition of E with the a.s.p. (vn), Then 
( Gn) is an unconditional Schauder decomposition if and only if for every x E E, there 
exist a sequence of scalars ('Yi) with 'Yi -+ 0 and a z E E with 

n 

. sup sup II L,Bivi(z)II < +oo, 
l.811.llhl, ... ,~l l~n<oo i=l 

such that 
vi(x) = 'Yivi(z), (j = 1, 2, · · ·). 

Proof. Let (Gn) be an unconditional Schauder decomposition of E with the a.s.p. 
(vn)- Then, for any x EE, we have 

k 

lim L vi(x) = x. 
k-+oo 

i=l 

Therefore, there exists a sequence ( mn) of positive integers such that 

11 X - u k ( x) 11 ~ 4 - l -n, ( k 2: mn , n = l, 2, · · -). 
Put 

mn 

Yn = L Vi(x), (n = 1, 2, · · ·). 
i=mn-1 +1 

Then, IIYnll ~ 2 · 4-n so that 
00 00 

n=l n=l 

Thus, the series E~=12n-lYn converges. Again, putting 
00 

z = L2n-lYn and 'Yj = 21-n, (mn-1 + 1 ~ j ~ mn; n = 1,2, · · ·), 
n=l 

we have 'Yi-+ 0 and vi(x) = 'Yivi(z), (j = 1,2, · · ·). Finally, since (Gn) is an uncondi­ 
tional Schauder decomposition, by Lemma 2.1, we have 

n 

sup sup II L,Bivi(z)II < +oo. 
I.Bd,l.821, ... ~1 l~n<oo i=l 

Conversely, under hypothesis, for any sequence (,Bi) of sca]ars with I ,Bi I::; 1 ( i = 
1 2 · · ·) we have ' ' ' 

q 

II L,Bivi(z)II 
i=p 

q i i-1 

II L 'Yi(L,Bivi(z) - L,Bivi(z))II 
i=p i=l i=l 

q-1 

< (I Ip ' + L I 'Yi - 'Yi+l I + I /q I) 
i=p 

n 
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Therefore, (Ef=i.Bivi(x)) is a Cauchy sequence and hence converges. Hence, by Lemma 
2.1, the series Ei=:1 vi(x) is unconditionally convergent in E. Now, in view of 

n 

vj(x - lim ~ vi(x)) = 0, (j = 1, 2, · · ·) 
n-+oo L....t 

i=l 

and that (vn) is total on E, it follows that for every x EE, Ei=1vi(x) is unconditionally convergent to x. 

Remark. The condition that 
n 

sup sup II Lf3ivi(z)II < +oo. 
J.Bd,J.821, ... ~l l~n<oo i=l 

in the Theorem 3.3 cannot be relaxed. Indeed, if (Gn) is a Schauder decomposition 
of E with the a.s.p. ( vn) which is not an unconditional Schauder decomposition, then 
proceeding just as in the proof of the necessary part of Theorem 3.3, for each x EE, we 
have a sequence ('Yi) of scalars with ,j - 0 and a z E E satisfying 

Vj(x) = "/jVj(z), (j = 1, 2, · · ·). 

But, since (Gn) is not an unconditional Schauder decomposition, for some x E E, the · 
series :Ei=:1 Vi(x) is not unconditionally convergent, whence by Lemma 2.1 

n 

sup sup II L.Bivi(x)II = oo. 
J,811,J,821, ... ~l l~n<oo i=l 

But, in view of (3.1), and since 'Yi - 0, we have 
n 

sup sup II L/3ivi(z)II = oo. 
I.B1LI.B2l, ... 511~n<oo i=l 
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