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1. Let f(s) = E~1ane8>.", where s = u + it (O' and t real variables), 0 < A
1 
< 

A2 < · · · , An -+ oo as n -+ oo and {an} is a sequence of nonzero complex numbers
1 
be a 

Dirichlet Series. It is well known that· if 

(1.1) lim sup ,n = D < oo, 
n-+oo An 

then f ( s) represents an analytic function in a half plane Res < a, where 

(1.2) . log I Cln 1-1 
hm sup 1 = a, -oo <a:::; oo. n-+oo n 

We denote by Der the class of all functions f(s)1 analytic in the half plane O' < a, 
-oo <a< oo. Then for f E Der, we set 

M(u) 

and N(u) 

l.u.b_oo<t<oo I f(u + it) I, 
max{n : m(u) =I an I eq).,. }. 

m(u) 

Then 1'1(u), m(u) and N(u) are called respectively the maximum modulus, maximun 
term and the rank of the maximum term of f(s). 

Nandan [1] defined the order p off E Der as 

(1.3) lim sup log log M(u) 
q-+cr log((l - eq-cr)-1) P, 0:::; p:::; 00. 

If p = oo, the analytic function/ is said to be of fast growth. For such functions, Nautiyal 
[2] introduced the concept of (/3, 8) order and lower (/3, 8) order. 

Let L
0 
be the class of all functions h satisfying the following conditions: 

(i) h(x) is defined on [a,oo), is positive, continuous, strictly increasing and h(x)-+ oo 
as X-+ oo, 

(ii) limx-+oo h[x(~(:)(x)] = 1 for every function TJ( x) -+ 0 as x -+ oo. 
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Let 6 denote the class of all functions h satisfying conditions (i) and 
( ... ) 1. h(cx) l r 0 
Bl imx-+= h(x) = 1or every c, < c < oo. 

Evidently, the class of function 6 is a proper subset of L0. 
For a function f E D a, set 

(1.4) 1. ,B(log M(u)) 1m sup 
u-+o: inf 8(1/1 - exp(u - a)) 

p(,B, 8, !) 
(,B,8,f)' 

where ,B E 6 and 8 E L0
• As mentioned above, p(,B,8,f) and ">i.(,B,8,f) are called 

(,B, 8) order and (,B, 8) lower order of f respectively. Nautiyal obtained the coefficient 
characterizations of p(,B, 8) and ).(,8, 8). We thus have 

Theorem A. (2, Theorem 1]. Let f(s) E D0 with (,B, 8) order p(,B, 8, !). Assume that 

(1.5) ,B(x/G(x, c)) ~ ,B(x) as x -+ oo, 0 < c < oo, 

where G(x,c) = 8-1(c,B(x)). Then 

(1.6) ,B().n) 
p(,B, 8, !) = }~~ sup M>in/log+(I an I exp(a).n))" 

where log+ x = max(O,logx). 
Theorem B. (2, Lemma 6]. Let J(s) E D0 with (,B, 8) - order p(,B, 8, !) > 0 and lower 
(,B, 8) order ).(,8, 8, !). Assume that {1.5) is satisfied and 

(1.7) 

(1.8) 

(1.9) 

lim inf (An - An-1) = fJ > 0, 
n-+oo 

Then 

(1.10) 

w(n) = lo~ I an/an+I I is a non-decreasing Junction of n for all n > no, 
n+l - An 

lim inf ,B().N(u)) = >i(,B, 8, !). 
u-+o: 8[1/(1 - eu-o:)] 

lim inf ,B().n-i) = >i(,B,8,f). 
n-+cx, 8(>,.n/log+(I an I exp(a).n))] 

It is evident that for two analytic functions having same (,B, 8) order, we need further 
classification to compare their growth. The authors introduced in [3] the concept of 
(,B,8,Y,p)-type and (,B,8,Y,p) lower type for analytic functions /(s) E Da. Hence if 
0 < p < oo, then we define 

(1.11) J~~ s_up ,B(log M(u)) 
mf 8 [ 1 { ,( 1 - eu-o: )JP] 

T(,B, u, 1, p, !) 
t(,8,<J",1,P,/)' 
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where /3,1 E ~ and b E L0. For simplicity, we shall denote T(/3,8,1,p,f) and 
t(/3, 8, 1, p, f) by T and t respectively. We obtained in [3] the coefficient characterizations 
of T and t. Hence we have 

Theorem C. Let f ( s) E Da be of type T and assume that 

(1.12) /3(r,1 x J "'/3(x) asx-oo, O<c<oo, x,c,p 

(1.13) T. 

Theorem D. If f(s) E D0 and t is defined by {1.11} then 

(1.14) /3(),..nk i) 
t > lim inf Ank ) JP] 

k-+oo 8 [ {,(log+ I an,. I +a>.nk 

where {nk} is any increasing sequence of positive integers, nk - oo ask - oo. 
In the present paper, we shall obtain the coefficient characterizations of p(/3, 8, f), 

>.(/3, 8, /), as defined by (1.4) and T, t as defined by (1.11), in terms of the ratio of the 
consecutive coefficients i.e. Ian/ an+1 I- 

2. We now prove 

Theorem 1. Let f(s) E D0 be of (/3, 8) order p(/3, 8, !) = p. Suppose that conditions 
(1.5) and (1.8) are satisfied. Further, let 

(2.1) d log G(t, c) 
d 1 => 0(1) as t - oo for any constarit c, 0 < c < oo. og t 

Then 

(2.2) p. 

Proof. Let us denote the right hand side of (2.2) by A and let assume that A < oo. 
Then for € > 0, there exists integer n0 such that 
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or, for all n > no, 

I / An - An - 1 ( ) 
log an an-1 I < G(An, l/(A + €)\ - a An - An-1 

where G(An, 1/(A + t:)) = c5-1[/3(An)/(A + c)]. Writing the above inequality for n = 
no+ 1, no+ 2, ... , k and adding all the inequalities thus obtained, we get 

k ~ An - An-1 L log I an/an-1 I< ~ G(An, 1/(A + € · 
+1 n=no+l n=no 

k 

a L (..\n - An_i) 
n=no+l 

or, 
k 

I ) '""" C..\n - An_i) 
log ak I +aAk < 0(1 + ~ G(An l/(A + c)). 

n=no+l ' 

To estimate the expression on the right hand side of above inequality, we define a step 
function n(t) = An, An < t :=:; An+l and let F(t) = 1/G(t, 1/(A + t:)). Now rearranging 
the summation on right hand side, we have 

k 
'""" An - An-1 

n=~+l G(An, 1/(A + c)) 
k-1 

= AkF(..\k)- L An{FC..\n+1) - F(An)} - An0-1F(..\n
0
) 

n=no+l 

Now 

1
.>.1i:-1 1.>.1i:-1 n(t) 

- >.,.o n(t) dF(t) = >.,.o G2(t) G'(t) di 

= 1.>.1i:-i n(t) . tG'(t) dt 
.x,.

0 
tG(t) G(t) ' 

where G(t) = G(t, 1/(A + t:)) and G'(t) = d~~t). Now by definition, n(t)/t < 1 · and 
F(t) = 1/G(t) is a decreasing function. Hence 

1>.,._1 tG'(t) _!!__ 
.>.,.

0 
G(t) G(t) 

1~ J>."-1 tG'(t) _!!!__ 
[ .x,.

0 
+ ~] G(t) G(t). 
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According to assumption (2.1), tg~w -+ 0(1) as t-+ oo. Hence· we have 

381 

0(1) [~ - An0] 
G(>i 1 no,-~ ) 

A+c: 

O(l)Pk-~ - ~) + 1 . 
. G(~, A+c:) 

Since G(t) -+ oo as t -+ oo, we finally get - J:1c-i n(t)dF(t) < o().k_i). Hence we have, 
no 

since { ,\k}. 

or 

1 
G(>-.k, -A ) +c: 

or, using the definition of G().k, A~t: ), we have 

1 + 0(1); 

<·A+c, · k > no. 

Now proceeding to limits as k-+ oo, we get in view of (1.6), 

(2.3) p(,B, 8, !) ~ A. 

The above inequality obviously holds if A= oo. 
To obtain the reverse inequal_ity, we use the condition (1.8). Then, for any n > no, 

n-1 

L (Ak+1 - >ik)w(k) 
.( .. · 

.•• 1 

since w(k) is a non decreasing function of k. Hence we have 
J•"· 

or 

(2.4) 
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z.e. 

Since 8 is an increasing function, hence we get 

1. /3( ).n) 1m sup 
n-+oo 8 [ + (>.n - An-1) ] 

log I an/an-1 I +a(>.n - An-1) 
i.e. A < p(/3, 8, !). 
Combining the above inequality with (2.3), we get (2.2). This completes proof of Theorem 
1. 

< lim sup /3(>.n) 
n-+oo A 8[ n 

log+ I an I +aAn] 

Next we prove 

(2.5) 

Theorem 2. Let f(s) E Dabe of lower (/3,8) order A(/3,8,f) =>..If f(s) satisfies 
{1.9} then 

, 1· . f /3(nm_i) "' = max 1m 1n 
{nm} m-+oo 6[(>.nm - Anm_1)/log+ I anm/anm-t I +a(Anm - Anm_

1
)] 

where maximum on the right hand side of (2. 5} is taken over all increasing sequences of 
natural numbers {nm} such that nm - oo as m - oo. 

Proof. Let the limit inferior on the right hand side of (2.5) be denoted by B. Clearly 
0 ~ B < oo. First let O < B < oo. Then for any€> 0 and all integers k > N, we have 

or 

I / I An,. - Ank-t ( ) 
log ank an"_1 > G(>. l/(B _ )) - a An,. - An,._1 

nk-1 l € 

where G(Ank-1' l/(B - c)) == 8-1[/3(An,._1 )/(B - c)J. 

Writing above inequality for k = N, N + l, · · ·, m and adding all the inequalities thus 
obtained, we get 

or, 

~ An,. - An,. 1 
log I anm I + O'Anm > 0(1) + k~ G(An,._1, 1/(B- - c)). 

Since l/G(t) is a decreasing function therefore 
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or 

G(Anm-IJ l/(B - c)) > l + I Anj A + o(l), 
og an"' +a nm 

On using the definition of G(An.,._1, 1/(B - t:)), and proceeding to limits, we have 

m>N. 

B < lim inf /JC..\n,,._J 
- m-+oo c5[An,,../(log+ I an"' I +a)..nm )] 
< ).. (/3, 8, f) (from Lemma 6, [2]). 

Since {nm} was any arbitrary sequence of positive integers, we get 
(2.6) 

'({J £ f) > 1. '··. f /J(Anm-1) "' , u, max 1m 1n + . 
- {nm}m-+oo 6[(Anm - Anm_J/{log I an ... /an ... _

1 
I +a(An,... - An ... _1)}] 

To prove the reverse inequality, let the range of the rank N ( u) be the sequence { nk}. 
Also, let '.V(n) denote the jump points of N(u). Then 

nk for '.V(nk) < u < '.V(nk+1), 
log I an,._Jan1, I 

An1c - Ani.-1 

Now, under the assumption {1.9) we have 

k = I, 2, · · ·, where 

>..(/3' c5J f) 

It can be easily seen that 1 - eq-er ~ a - u as u-+ a. Hence i11 view of property (ii) of 
8, we get 

A(/3, 8, /) 

Hence 

Combining the above inequality with (2.6) we get (2.5). This completes the proof of 
Theorem 2. 
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3. In this section, we shall obtain coefficient characterization of the type T and lower 
type t as defined by ( 1.11). We prove 

Theorem 3. Let f(s) E Do: be of (,B, 8, 1, !)-type T and lower (,B, 8, 1, !) type t_. 
Suppose that the condition (1.8) and (1.12) are satisfied. Then · 

(3.1) ,B( An) 
T = }in;!, sup . . An An-1 )}'] 

-+ b({,(log+ I an/an-1 I +a().n - An_i) 

Proof. Let the expression on the right hand side of (3.1) be denoted by Q. Clearly 
0 ~ Q ~ oo. First let O < Q < oo. Then for c: > 0 we have for all sufficiently large 
n > N(c:), 

or, for all n > N, 

I I I An7An-1 
log an an -1 < G(A l .. - · 

n, , 

where G(An, 1/Q + c, p) = ,-1[{b-1(PJ~:)n1/P]. 

Writing the above inequality for n = N + l, N +.2; · :-·:, k and adding we get 
k k 
~ l I / I ~ . (An - An-1) ( ) L.- og an an-1 < . , b G(An l/Q + c . ) -:-- a Ak_ - AN 

n=N+l n=N+l · ' 'p 
or, 

k 
log I ak I +a~k < 0(1) + ·L An - \n-l 

n=N+l G(An, Q + €, p) 
Let us write F(t) = G(>..,,i/Q+t: ,P) and n(t) = An for An < t ~ An+l · Then we have 
n~t) < 1. We consider 

k . An - An..:.1 
L G(An, 1/Q + €,p) n=N+l 

k-1 

AkF(Ak) ~ ANF(AN+i) - .· L . An[F(A~+i) - F(An)] 
n=N+l 

AkF().k) - ANF(AN+i) -1>..1c-i n(t)dF(t) . 
. >..N+1,. 

As in the proof of Theorem 1, we can easily show that 

1>..,._1 
- . n(t)d.F(t) = 'o(Ak...:1). 

>..N+1 
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Hence we have for all large k, 
385 

k>N, 

or, using the definition of G(Ak,l/Q +c:, p), we have 

/3(>.k) < Q + e 
6[{,(>.k/log+ I ak I +a_>.k)}P] . ' 

Now proceeding to limits as k - oo, we get in. view of (1.13), 

k>N. 

(3.2) T = ·T(/3,6,,;p,ff $.·Q. 

The above inequality obviously holds if Q = oo. ·'To prove the reverse inequality, we have 
from (2.4), . . . .. · 

+ . . ' + 
a + I log, I ~nf an-1 I $ a+ log x',a~ I -;- o(l) 

n n-1 n 
or, 

a(An - >.n-:-1) + log+ I an/an-1 I < ,log! I an I +q,>.n 
An - An-1 - An 

or, 

Therefore ·'· .. . ~ . I! 

which gives, on taking limits . 

(3.3) 

Again this inequality holds if Q = 0. Now combining (3.2) with (3.3Y, we get (3'.l): This 
completes proof of Theorem 3. 

Lastly we prove 

Theorem 4. 'Let f(~) E D~ of be ,of lower .(/3, 6; 1', p) typ'~ i(/3; 6, ~:p,f) a~(s,atisfy 
condition .(1.12). Then for any increaszng:seque~ce. {,;_k}. o)positiv~.integ~rs, u;e. havf 
(3.4) 

Proof. Let us denote_ the right hand side of (3.4) by q. Clearly O < .q $ ,oo'. First 
let O < q. Then for ali k > N, i > 0, we have . . . 
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where 

or, 

we get 
Writing the above inequality for m = N, N + 1, · · ·, k and adding all these inequalities, 

" ,\ - A 
log+ I an,. I +a,\n1, > L G(A nm 1/":

1 
) + 0(1). 

m=N nm-1, q €,p 

As in the proof of Theorem 2. we have 

or, 

G()..n,._1, 1/q --€, p) > + I )..nkl + o(l). 
log an1c +a>..n,. 

Hence proceding to limits, we get on using (1.14), 

or1 

This proves Theorem 4. 
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