ON THE COEFFICIENTS OF ANALYTIC FUNCTIONS OF FAST GROWTH REPRESENTED BY DIRICHLET SERIES

SUNITA RANI AND G.S. SRIVASTAVA

Let $f(s) = \sum_{n=1}^{\infty} a_n e^{s\lambda_n}$, where $s = \sigma + it$ (σ and t real variables), $0 \le \lambda_1 < \infty$ 1. $\lambda_2 < \cdots, \lambda_n \to \infty$ as $n \to \infty$ and $\{a_n\}$ is a sequence of nonzero complex numbers, be a Dirichlet Series. It is well known that if

(1.1)
$$\lim_{n \to \infty} \sup \frac{n}{\lambda_n} = D < \infty,$$

then f(s) represents an analytic function in a half plane $Res < \alpha$, where

(1.2)
$$\lim_{n \to \infty} \sup \frac{\log |a_n|^{-1}}{\lambda_n} = \alpha, -\infty < \alpha \le \infty.$$

We denote by D_{α} the class of all functions f(s), analytic in the half plane $\sigma < \alpha$, $-\infty < \alpha < \infty$. Then for $f \in D_{\alpha}$, we set

$$M(\sigma) = l.u.b_{-\infty < t < \infty} | f(\sigma + it) |, \qquad m(\sigma) = \max_{n \ge 1} \{ | a_n | e^{\sigma \lambda_n} \}$$

and $N(\sigma) = \max\{n : m(\sigma) = | a_n | e^{\sigma \lambda_n} \}.$

Then $M(\sigma)$, $m(\sigma)$ and $N(\sigma)$ are called respectively the maximum modulus, maximum term and the rank of the maximum term of f(s).

Nandan [1] defined the order ρ of $f \in D_{\alpha}$ as

(1.3)
$$\lim_{\sigma \to \alpha} \sup \frac{\log \log M(\sigma)}{\log[(1 - e^{\sigma - \alpha})^{-1}]} = \rho, \qquad 0 \le \rho \le \infty.$$

If $\rho = \infty$, the analytic function f is said to be of fast growth. For such functions, Nautiyal [2] introduced the concept of (β, δ) order and lower (β, δ) order.

Let L^0 be the class of all functions h satisfying the following conditions:

- (i) h(x) is defined on $[a,\infty)$, is positive, continuous, strictly increasing and $h(x) \to \infty$ as $x \to \infty$, (ii) $\lim_{x\to\infty} \frac{h[x(1+\eta(x))]}{h(x)} = 1$ for every function $\eta(x) \to 0$ as $x \to \infty$.

Received October 5, 1989.

Let Δ denote the class of all functions h satisfying conditions (i) and
(iii) lim_{x→∞} h(cx)/h(x) = 1 for every c, 0 < c < ∞.
Evidently, the class of function Δ is a proper subset of L⁰.
For a function f ∈ D_α, set

(1.4)
$$\lim_{\sigma \to \alpha} \sup_{\inf} \frac{\beta(\log M(\sigma))}{\delta(1/1 - \exp(\sigma - \alpha))} = \frac{\rho(\beta, \delta, f)}{(\beta, \delta, f)},$$

where $\beta \in \Delta$ and $\delta \in L^0$. As mentioned above, $\rho(\beta, \delta, f)$ and $\lambda(\beta, \delta, f)$ are called (β, δ) order and (β, δ) lower order of f respectively. Nautiyal obtained the coefficient characterizations of $\rho(\beta, \delta)$ and $\lambda(\beta, \delta)$. We thus have

Theorem A. [2, Theorem 1]. Let $f(s) \in D_{\alpha}$ with (β, δ) order $\rho(\beta, \delta, f)$. Assume that

(1.5)
$$\beta(x/G(x,c)) \simeq \beta(x) \text{ as } x \to \infty, \ 0 < c < \infty,$$

where $G(x,c) = \delta^{-1}(c \beta(x))$. Then

(1.6)
$$\rho(\beta, \delta, f) = \lim_{n \to \infty} \sup \frac{\beta(\lambda_n)}{\delta[\lambda_n / \log^+(|a_n| \exp(\alpha \lambda_n))]}$$

where $\log^+ x = \max(0, \log x)$.

Theorem B. [2, Lemma 6]. Let $f(s) \in D_{\alpha}$ with (β, δ) - order $\rho(\beta, \delta, f) > 0$ and lower (β, δ) order $\lambda(\beta, \delta, f)$. Assume that (1.5) is satisfied and

.

(1.7)
$$\lim_{n \to \infty} \inf \left(\lambda_n - \lambda_{n-1} \right) = \theta > 0,$$

(1.8)
$$\Psi(n) = \frac{\log |a_n/a_{n+1}|}{\lambda_{n+1} - \lambda_n} \text{ is a non-decreasing function of } n \text{ for all } n > n_0,$$

(1.9)
$$\lim_{\sigma \to \alpha} \inf \frac{\beta(\lambda_{N(\sigma)})}{\delta[1/(1-e^{\sigma-\alpha})]} = \lambda(\beta, \delta, f).$$

Then

(1.10)
$$\lim_{n \to \infty} \inf \frac{\beta(\lambda_{n-1})}{\delta[\lambda_n/\log^+(|a_n|\exp(\alpha\lambda_n))]} = \lambda(\beta, \delta, f).$$

It is evident that for two analytic functions having same (β, δ) order, we need further classification to compare their growth. The authors introduced in [3] the concept of (β, δ, Y, ρ) -type and (β, δ, Y, ρ) lower type for analytic functions $f(s) \in D_{\alpha}$. Hence if $0 < \rho < \infty$, then we define

(1.11)
$$\lim_{\sigma \to \alpha} \sup_{\inf} \frac{\beta(\log M(\sigma))}{\delta[\{\gamma(\frac{1}{1 - e^{\sigma - \alpha}})\}^{\rho}]} = \frac{T(\beta, \sigma, \gamma, \rho, f)}{t(\beta, \sigma, \gamma, \rho, f)},$$

where $\beta, \gamma \in \Delta$ and $\delta \in L^0$. For simplicity, we shall denote $T(\beta, \delta, \gamma, \rho, f)$ and $t(\beta, \delta, \gamma, \rho, f)$ by T and t respectively. We obtained in [3] the coefficient characterizations of T and t. Hence we have

Theorem C. Let $f(s) \in D_{\alpha}$ be of type T and assume that

(1.12)
$$\beta\left(\frac{x}{G(x,c,\rho)}\right) \sim \beta(x) \text{ as } x \to \infty, \ 0 < c < \infty,$$

where $G(x, c, \rho) = \gamma^{-1} \left[\{ \delta^{-1}(\frac{\beta(x)}{c}) \}^{1/\rho} \right].$

(1.13)
$$\lim_{n \to \infty} \sup \frac{\beta(\lambda_n)}{\delta\left[\left\{\gamma\left(\frac{\lambda_n}{\log^+ |a_n| + \alpha \lambda_n}\right)\right\}^{\rho}\right]} = T.$$

Theorem D. If $f(s) \in D_{\alpha}$ and t is defined by (1.11) then

(1.14)
$$t \geq \lim_{k \to \infty} \inf \frac{\beta(\lambda_{n_{k-1}})}{\delta[\{\gamma(\frac{\lambda_{n_k}}{\log^+ |a_{n_k}| + \alpha \lambda_{n_k}})\}^{\rho}]},$$

where $\{n_k\}$ is any increasing sequence of positive integers, $n_k \to \infty$ as $k \to \infty$.

In the present paper, we shall obtain the coefficient characterizations of $\rho(\beta, \delta, f)$, $\lambda(\beta, \delta, f)$, as defined by (1.4) and T, t as defined by (1.11), in terms of the ratio of the consecutive coefficients i.e. $|a_n/a_{n+1}|$.

2. We now prove

Theorem 1. Let $f(s) \in D_{\alpha}$ be of (β, δ) order $\rho(\beta, \delta, f) = \rho$. Suppose that conditions (1.5) and (1.8) are satisfied. Further, let

(2.1)
$$\frac{d \log G(t,c)}{d \log t} \Rightarrow O(1) \text{ as } t \to \infty \text{ for any constant } c, \ 0 < c < \infty.$$

Then

(2.2)
$$\lim_{n \to \infty} \sup \frac{\beta(\lambda_n)}{\delta\left[\frac{\lambda_n - \lambda_{n-1}}{\log^+ |a_n/a_{n-1}| + \alpha(\lambda_n - \lambda_{n-1})}\right]} = \rho.$$

Proof. Let us denote the right hand side of (2.2) by A and let assume that $A < \infty$. Then for $\varepsilon > 0$, there exists integer n_0 such that

$$\beta(\lambda_n) < (A+\varepsilon)\delta\left[\frac{\lambda_n - \lambda_{n-1}}{\log^+ |a_n/a_{n-1}| + \alpha(\lambda_n - \lambda_{n-1})}\right], \ n > n_0$$

or, for all $n > n_0$,

$$\log |a_n/a_{n-1}| < \frac{\lambda_n - \lambda_{n-1}}{G(\lambda_n, 1/(A+\varepsilon))} - \alpha(\lambda_n - \lambda_{n-1})$$

where $G(\lambda_n, 1/(A + \varepsilon)) = \delta^{-1}[\beta(\lambda_n)/(A + \varepsilon)]$. Writing the above inequality for $n = n_0 + 1, n_0 + 2, \ldots, k$ and adding all the inequalities thus obtained, we get

$$\sum_{n=n_{0}+1}^{k} \log |a_{n}/a_{n-1}| < \sum_{n=n_{0}+1}^{k} \frac{\lambda_{n} - \lambda_{n-1}}{G(\lambda_{n}, 1/(A+\varepsilon))} - \alpha \sum_{n=n_{0}+1}^{k} (\lambda_{n} - \lambda_{n-1})$$

or,

$$\log |a_k| + \alpha \lambda_k < O(1) + \sum_{n=n_0+1}^k \frac{(\lambda_n - \lambda_{n-1})}{G(\lambda_n, 1/(A+\varepsilon))}.$$

To estimate the expression on the right hand side of above inequality, we define a step function $n(t) = \lambda_n$, $\lambda_n < t \leq \lambda_{n+1}$ and let $F(t) = 1/G(t, 1/(A + \varepsilon))$. Now rearranging the summation on right hand side, we have

$$\sum_{n=n_0+1}^{k} \frac{\lambda_n - \lambda_{n-1}}{G(\lambda_n, 1/(A+\varepsilon))}$$

= $\lambda_k F(\lambda_k) - \sum_{n=n_0+1}^{k-1} \lambda_n \{F(\lambda_{n+1}) - F(\lambda_n)\} - \lambda_{n_0-1} F(\lambda_{n_0})$
= $\lambda_k F(\lambda_k) - \int_{\lambda_{n_0}}^{\lambda_{k-1}} n(t) dF(t) - O(1).$

Now

$$-\int_{\lambda_{n_0}}^{\lambda_{k-1}} n(t) dF(t) = \int_{\lambda_{n_0}}^{\lambda_{k-1}} \frac{n(t)}{G^2(t)} G'(t) dt$$
$$= \int_{\lambda_{n_0}}^{\lambda_{k-1}} \frac{n(t)}{tG(t)} \cdot \frac{tG'(t)}{G(t)} dt,$$

where $G(t) = G(t, 1/(A + \varepsilon))$ and $G'(t) = \frac{dG(t)}{dt}$. Now by definition, n(t)/t < 1 and F(t) = 1/G(t) is a decreasing function. Hence

$$-\int_{\lambda_{n_0}}^{\lambda_{k-1}} n(t) dF(t) < \int_{\lambda_{n_0}}^{\lambda_{k-1}} \frac{tG'(t)}{G(t)} \frac{dt}{G(t)}$$
$$= \left[\int_{\lambda_{n_0}}^{\sqrt{\lambda_{k-1}}} + \int_{\sqrt{\lambda_{k-1}}}^{\lambda_{k-1}}\right] \frac{tG'(t)}{G(t)} \frac{dt}{G(t)}$$

According to assumption (2.1), $\frac{tG'(t)}{G(t)} \to O(1)$ as $t \to \infty$. Hence we have

$$-\int_{\lambda_{n_0}}^{\lambda_{k-1}} n(t)dF(t) < O(1)\frac{\left[\sqrt{\lambda_{k-1}} - \lambda_{n_0}\right]}{G(\lambda_{n_0}, \frac{1}{A+\varepsilon})} + \frac{O(1)(\lambda_{k-1} - \sqrt{\lambda_{k-1}})}{G(\sqrt{\lambda_{k-1}}, \frac{1}{A+\varepsilon})}.$$

Since $G(t) \to \infty$ as $t \to \infty$, we finally get $-\int_{\lambda_{n_0}}^{\lambda_{k-1}} n(t) dF(t) < o(\lambda_{k-1})$. Hence we have, since $\{\lambda_k\}$.

$$\log^+ |a_k| + \alpha \lambda_k < O(1) + \lambda_k F(\lambda_k) + o(\lambda_k)$$

or

C PAR 1

$$\frac{\log^+ |a_k| + \alpha \lambda_k}{\lambda_k} < \frac{1}{G(\lambda_k, \frac{1}{A + \varepsilon})} + o(1), \qquad k > n_0$$

or, using the definition of $G(\lambda_k, \frac{1}{A+\epsilon})$, we have

$$\frac{\beta(\lambda_k)}{\delta\left[\frac{\lambda_k}{\log^+ |a_k| + \alpha \lambda_k}\right]} < A + \varepsilon, \qquad k > n_0.$$

Now proceeding to limits as $k \to \infty$, we get in view of (1.6),

$$(2.3) \qquad \qquad \rho(\beta,\delta,f) \leq A.$$

The above inequality obviously holds if $A = \infty$.

To obtain the reverse inequality, we use the condition (1.8). Then, for any $n > n_0$,

$$\log |a_{n_0}/a_n| = \log |\frac{a_{n_0}}{a_{n_0+1}} \cdots \frac{a_{n-1}}{a_n}|$$
$$= \sum_{k=n_0}^{n-1} (\lambda_{k+1} - \lambda_k) \Psi(k)$$
$$\leq \Psi(n-1) \cdot (\lambda_n - \lambda_{n_0})$$

since $\Psi(k)$ is a non decreasing function of k. Hence we have

$$\log^+ |a_n| \ge O(1) + \frac{\lambda_n - \lambda_{n_0}}{\lambda_n - \lambda_{n-1}} \log^+ |a_n/a_{n-1}|$$

or

(2.4)
$$\alpha + \frac{\log^+ |a_n/a_{n-1}|}{\lambda_n - \lambda_{n-1}} \leq \alpha + \frac{\log^+ |a_n|}{\lambda_n} - o(1)$$

7.00

)

SUNITA RANI AND G.S. SRIVASTAVA

i.e.
$$\frac{\lambda_n}{\alpha\lambda_n + \log^+ |a_n|} \leq \frac{\lambda_n - \lambda_{n-1}}{\alpha(\lambda_n - \lambda_{n-1}) + \log^+ |a_n/a_{n-1}|}$$

Since δ is an increasing function, hence we get

$$\lim_{n \to \infty} \sup \frac{\beta(\lambda_n)}{\delta[\frac{(\lambda_n - \lambda_{n-1})}{\log^+ |a_n/a_{n-1}| + \alpha(\lambda_n - \lambda_{n-1})}]} \leq \lim_{n \to \infty} \sup \frac{\beta(\lambda_n)}{\delta[\frac{\lambda_n}{\log^+ |a_n| + \alpha\lambda_n]}}$$

i.e. $A \leq \rho(\beta, \delta, f)$.

Combining the above inequality with (2.3), we get (2.2). This completes proof of Theorem 1.

Next we prove

Theorem 2. Let $f(s) \in D_{\alpha}$ be of lower (β, δ) order $\lambda(\beta, \delta, f) = \lambda$. If f(s) satisfies (1.9) then

(2.5)
$$\lambda = \max_{\{n_m\}} \lim_{m \to \infty} \inf \frac{\beta(n_{m-1})}{\delta[(\lambda_{n_m} - \lambda_{n_{m-1}})/\log^+ |a_{n_m}/a_{n_{m-1}}| + \alpha(\lambda_{n_m} - \lambda_{n_{m-1}})]}$$

where maximum on the right hand side of (2.5) is taken over all increasing sequences of natural numbers $\{n_m\}$ such that $n_m \to \infty$ as $m \to \infty$.

Proof. Let the limit inferior on the right hand side of (2.5) be denoted by B. Clearly $0 \le B \le \infty$. First let $0 < B < \infty$. Then for any $\varepsilon > 0$ and all integers k > N, we have

$$\beta(\lambda_{n_{k-1}}) > (B-\varepsilon)\delta\left[\frac{\lambda_{n_k}-\lambda_{n_{k-1}}}{\log^+|a_{n_k}/a_{n_{k-1}}|+\alpha(\lambda_{n_k}-\lambda_{n_{k-1}})}\right]$$

or

$$\log |a_{n_k}/a_{n_{k-1}}| > \frac{\lambda_{n_k} - \lambda_{n_{k-1}}}{G(\lambda_{n_{k-1}}, 1/(B-\varepsilon))} - \alpha(\lambda_{n_k} - \lambda_{n_{k-1}})$$

where $G(\lambda_{n_{k-1}}, 1/(B-\varepsilon)) = \delta^{-1}[\beta(\lambda_{n_{k-1}})/(B-\varepsilon)].$

Writing above inequality for $k = N, N + 1, \dots, m$ and adding all the inequalities thus obtained, we get

$$\sum_{k=N}^{m} \log |a_{n_k}/a_{n_{k-1}}| > \sum_{k=N}^{m} \frac{\lambda_{n_k} - \lambda_{n_{k-1}}}{G(\lambda_{n_{k-1}}, 1/(B-\varepsilon))} - \alpha(\lambda_{n_m} - \lambda_{n_{N-1}})$$

or,

$$\log |a_{n_m}| + \alpha \lambda_{n_m} > O(1) + \sum_{k=N}^m \frac{\lambda_{n_k} - \lambda_{n_{k-1}}}{G(\lambda_{n_{k-1}}, 1/(B-\varepsilon))}.$$

Since 1/G(t) is a decreasing function therefore

$$\log^+ |a_{n_m}| + \alpha \lambda_{n_m} > O(1) + \frac{\lambda_{n_m} - \lambda_{n_{N-1}}}{G(\lambda_{n_{m-1}}, 1/(B-\varepsilon))}$$

$$G(\lambda_{n_{m-1}}, 1/(B-\varepsilon)) > \frac{\lambda_{n_m}}{\log^+ |a_{n_m}| + \alpha \lambda_{n_m}} + o(1), \qquad m > N.$$

On using the definition of $G(\lambda_{n_{m-1}}, 1/(B-\varepsilon))$, and proceeding to limits, we have

$$B \leq \lim_{m \to \infty} \inf \frac{\beta(\lambda_{n_{m-1}})}{\delta[\lambda_{n_m}/(\log^+ |a_{n_m}| + \alpha \lambda_{n_m})]} \leq \lambda(\beta, \delta, f) \quad (\text{from Lemma 6, [2]}).$$

Since $\{n_m\}$ was any arbitrary sequence of positive integers, we get (2.6)

$$\lambda(\beta,\delta,f) \geq \max_{\{n_m\}} \lim_{m \to \infty} \inf \frac{\beta(\lambda_{n_{m-1}})}{\delta[(\lambda_{n_m} - \lambda_{n_{m-1}})/\{\log^+ |a_{n_m}/a_{n_{m-1}}| + \alpha(\lambda_{n_m} - \lambda_{n_{m-1}})\}]}$$

To prove the reverse inequality, let the range of the rank $N(\sigma)$ be the sequence $\{n_k\}$. Also, let $\Psi(n)$ denote the jump points of $N(\sigma)$. Then

$$N(\sigma) = n_k \text{ for } \Psi(n_k) \le \sigma < \Psi(n_{k+1}), \qquad k = 1, 2, \cdots, \text{ where}$$
$$\Psi(n_k) = \frac{\log |a_{n_{k-1}}/a_{n_k}|}{\lambda_{n_k} - \lambda_{n_{k-1}}}.$$

Now, under the assumption (1.9) we have

$$\lambda(\beta, \delta, f) = \lim_{\sigma \to \alpha} \inf \frac{\beta(\lambda_{N(\sigma)})}{\delta\{(1 - e^{\sigma - \alpha})^{-1}\}}$$
$$= \lim_{k \to \infty} \inf \frac{\beta(\lambda_{n_k})}{\delta[\{1 - \exp(\Psi(n_{k+1}) - \alpha)\}^{-1}]}.$$

It can be easily seen that $1 - e^{\sigma - \alpha} \simeq \alpha - \sigma$ as $\sigma \to \alpha$. Hence in view of property (ii) of δ , we get

$$\begin{aligned} \lambda(\beta,\delta,f) &= \lim_{k \to \infty} \inf \frac{\beta(\lambda_{n_{k-1}})}{\delta[\{\alpha - \Psi(n_k)\}^{-1}]} \\ &= \lim_{k \to \infty} \inf \frac{\beta(\lambda_{n_{k-1}})}{\delta[(\lambda_{n_k} - \lambda_{n_{k-1}})/\{\log^+ |a_{n_k}/a_{n_{k-1}}| + \alpha(\lambda_{n_k} - \lambda_{n_{k-1}})\}]}. \end{aligned}$$

Hence

$$\lambda(\beta,\delta,f) \leq \max_{\{n_m\}} \lim_{m \to \infty} \inf \frac{\beta(\lambda_{n_{m-1}})}{\delta[\lambda_{n_m} - \lambda_{n_{m-1}})/\{\log^+ |a_{n_m}| + \alpha(\lambda_{n_m} - \lambda_{n_{m-1}})\}]}.$$

Combining the above inequality with (2.6) we get (2.5). This completes the proof of Theorem 2.

In this section, we shall obtain coefficient characterization of the type T and lower 3. type t as defined by (1.11). We prove

Theorem 3. Let $f(s) \in D_{\alpha}$ be of $(\beta, \delta, \gamma, f)$ -type T and lower $(\beta, \delta, \gamma, f)$ type t. Suppose that the condition (1.8) and (1.12) are satisfied. Then

(3.1)
$$T = \lim_{n \to \infty} \sup \frac{\beta(\lambda_n)}{\delta[\{\gamma(\frac{\lambda_n - \lambda_{n-1}}{\log^+ |a_n/a_{n-1}| + \alpha(\lambda_n - \lambda_{n-1})})\}^{\rho}]}$$

Proof. Let the expression on the right hand side of (3.1) be denoted by Q. Clearly $0 \leq Q \leq \infty$. First let $0 < Q < \infty$. Then for $\varepsilon > 0$ we have for all sufficiently large $n > N(\varepsilon),$

$$\beta(\lambda_n) < (Q+\varepsilon)\delta\left[\left\{\gamma\left(\frac{\lambda_n - \lambda_{n-1}}{\log^+ |a_n/a_{n-1}| + \alpha(\lambda_n - \lambda_{n-1})}\right)\right\}^{\rho}\right]$$

e e esta d'alle a ser se presente

or, for all n > N,

$$\log |a_n/a_{n-1}| < \frac{\lambda_n - \lambda_{n-1}}{G(\lambda_n, 1/(Q+\varepsilon), \rho)} - \alpha(\lambda_n - \lambda_{n-1}),$$

where $G(\lambda_n, 1/Q + \varepsilon, \rho) = \gamma^{-1} [\{\delta^{-1}(\frac{\beta(\lambda_n)}{Q + \varepsilon})\}^{1/\rho}].$ Writing the above inequality for $n = N + 1, N + 2, \dots, k$ and adding we get

$$\sum_{n=N+1}^{n} \log |a_n/a_{n-1}| < \sum_{n=N+1}^{n} \frac{(\lambda_n - \lambda_{n-1})}{G(\lambda_n, 1/Q + \varepsilon, \rho)} - \alpha(\lambda_k - \lambda_N)$$

or,

$$\log |a_k| + \alpha \lambda_k < O(1) + \sum_{n=N+1}^k \frac{\lambda_n - \lambda_{n-1}}{G(\lambda_n, \frac{1}{Q+\varepsilon}, \rho)}.$$

Let us write $F(t) = \frac{1}{G(\lambda_i, 1/Q + \varepsilon, \rho)}$ and $n(t) = \lambda_n$ for $\lambda_n < t \leq \lambda_{n+1}$. Then we have $\frac{n(t)}{t} < 1$. We consider

$$\sum_{n=N+1}^{k} \frac{\lambda_n - \lambda_{n-1}}{G(\lambda_n, 1/Q + \varepsilon, \rho)} = \lambda_k F(\lambda_k) - \lambda_N F(\lambda_{N+1}) - \sum_{n=N+1}^{k-1} \lambda_n [F(\lambda_{n+1}) - F(\lambda_n)]$$
$$= \lambda_k F(\lambda_k) - \lambda_N F(\lambda_{N+1}) - \int_{\lambda_{N+1}}^{\lambda_{k-1}} n(t) dF(t).$$
As in the proof of Theorem 1, we can easily show that

As in the proof of Theorem 1, we can easily show that

$$-\int_{\lambda_{N+1}}^{\lambda_{k-1}} n(t)dF(t) = o(\lambda_{k-1}).$$

Hence we have for all large k,

$$\log^+ |a_k| + \alpha \lambda_k < \frac{\lambda_k}{G(\lambda_k, 1/Q + \varepsilon, \rho)} (1 + o(1)), \qquad k > N,$$

or, using the definition of $G(\lambda_k, 1/Q + \varepsilon, \rho)$, we have

$$\frac{\beta(\lambda_k)}{\delta[\{\gamma(\lambda_k/\log^+ |a_k| + \alpha\lambda_k)\}^{\rho}]} < Q + \varepsilon, \qquad k > N.$$

Now proceeding to limits as $k \to \infty$, we get in view of (1.13),

$$(3.2) T = T(\beta, \delta, \gamma, \rho, f) \leq Q.$$

The above inequality obviously holds if $Q = \infty$. To prove the reverse inequality, we have from (2.4), and the second second

$$\alpha + \left|\frac{\log^{+} |a_n/a_{n-1}|}{\lambda_n - \lambda_{n-1}}\right| \leq \alpha + \frac{\log^{+} |a_n|}{\lambda_n} - o(1)$$

OF,

$$\frac{\alpha(\lambda_n - \lambda_{n-1}) + \log^+ |a_n/a_{n-1}|}{\lambda_n - \lambda_{n-1}} \le \frac{\log^+ |a_n| + \alpha \lambda_n}{\lambda_n}$$

or,

$$\delta\left[\left\{\gamma\left(\frac{\lambda_n - \lambda_{n-1}}{\alpha(\lambda_n - \lambda_{n-1}) + \log^+ |a_n/a_{n-1}|}\right)\right\}^{\rho}\right] \geq \delta\left[\left\{\gamma\left(\frac{\lambda_n}{\log^+ |a_n| + \alpha\lambda_n}\right)\right\}^{\rho}\right].$$
ore

Therefore

$$\frac{\beta(\lambda_n)}{\delta[\{\gamma(\frac{\lambda_n}{\log^+ |a_n| + \alpha\lambda_n})\}^{\rho}]} \geq \frac{\beta(\lambda_n)}{\delta[\{\gamma(\frac{\lambda_n - \lambda_{n-1}}{\log^+ |a_n/a_{n-1}| + \alpha(\lambda_n - \lambda_{n-1})})\}^{\rho}]}$$

which gives, on taking limits

T > Qter general sector (3.3)

Again this inequality holds if Q = 0. Now combining (3.2) with (3.3), we get (3.1). This completes proof of Theorem 3. a characterization of the second

Lastly we prove

Theorem 4. Let $f(s) \in D_{\alpha}$ of be of lower $(\beta, \delta, \gamma, \rho)$ type $t(\beta, \delta, \gamma, \rho, f)$ and satisfy condition (1.12). Then for any increasing sequence $\{n_k\}$ of positive integers, we have

(3.4)
$$t \geq \lim_{k \to \infty} \inf \frac{\beta(\lambda_{n_{k-1}})}{\delta\left[\left\{\gamma\left(\frac{\lambda_{n_k} - \lambda_{n_{k-1}}}{\log^+ |a_{n_k}/a_{n_{k-1}}| + \alpha(\lambda_{n_k} - \lambda_{n_{k-1}})}\right)\right\}^{\rho}\right]}$$

Proof. Let us denote the right hand side of (3.4) by q. Clearly $0 \le q \le \infty$. First let 0 < q. Then for all k > N, $\varepsilon > 0$, we have

$$G(\lambda_{n_{k-1}}, \frac{1}{q-\varepsilon}, \rho) > \frac{\lambda_{n_k} - \lambda_{n_{k-1}}}{\log^+ |a_{n_k}/a_{n_{k-1}}| + \alpha(\lambda_{n_k} - \lambda_{n_{k-1}})}$$

where

$$G(\lambda_{n_{k-1}}, \frac{1}{q-\varepsilon}, \rho) = \gamma^{-1} \left[\left\{ \delta^{-1} \left(\frac{\beta(\lambda_{n_{k-1}})}{q-\varepsilon} \right) \right\}^{1/\rho} \right]$$

or,

$$\log^{+} |a_{n_{k}}/a_{n_{k-1}}| > \frac{\lambda_{n_{k}} - \lambda_{n_{k-1}}}{G(\lambda_{n_{k-1}}, 1/q - \varepsilon, \rho)} - \alpha(\lambda_{n_{k}} - \lambda_{n_{k-1}}).$$

Writing the above inequality for $m = N, N + 1, \dots, k$ and adding all these inequalities, we get

$$\log^+ |a_{n_k}| + \alpha \lambda_{n_k} > \sum_{m=N}^k \frac{\lambda_{n_m} - \lambda_{n_{m-1}}}{G(\lambda_{n_{m-1}}, 1/q - \varepsilon, \rho)} + O(1).$$

As in the proof of Theorem 2. we have

$$\log^+ |a_{n_k}| + \alpha \lambda_{n_k} > \frac{\lambda_{n_k} - \lambda_{n_{N-1}}}{G(\lambda_{n_{k-1}}, 1/q - \varepsilon, \rho)} + O(1)$$

or,

$$G(\lambda_{n_{k-1}}, 1/q - \varepsilon, \rho) > \frac{\lambda_{n_k}}{\log^+ |a_{n_k}| + \alpha \lambda_{n_k}} + o(1).$$

Hence proceeding to limits, we get on using (1.14),

$$q \leq \lim_{k \to \infty} \inf \frac{\beta(\lambda_{n_{k-1}})}{\delta[\{\gamma(\lambda_{n_k}/\log^+ |a_{n_k}| + \alpha \lambda_{n_k})\}^{\rho}]}$$

or,

$$t \geq \lim_{k \to \infty} \inf \frac{\beta(\lambda_{n_{k-1}})}{\delta\left[\{\gamma(\lambda_{n_k} - \lambda_{n_{k-1}}/(\log^+ |a_{n_k}/a_{n_{k-1}}| + \alpha(\lambda_{n_k} - \lambda_{n_{k-1}}))\}^{\rho}\right]}$$

This proves Theorem 4.

References

- K. Nandan, "On the maximum term and maximum modulus of analytic functions represented by Dirichlet series," Ann. Polon Math. 28 (1973), 213-222.
- [2] A. Nautiyal, "On the coefficients of analytic Dirichlet series of fast growth," Indian J. pure appl. Math. 15(10) (1984), 1102-14.
- [3] G.S. Srivastava and Sunita Rani, Coefficients of analytic functions of fast growth represented by Dirichlet series, Communicated for publication.

Department of mathematics, University of Roorkee, ROORKEE, 247667, India.