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A FIXED POINT THEOREM FOR SOME NON-SELF-MAPPINGS 

N ADIM A. ASSAD 

Abstract. A fixed point theorem is proved for continuous mappings from a 
nonempty closed subset K, of a Banach space X, into X, and which satisfies 
contractive definition definition (3) and property (a) below. 

The Main Theorem. 

The following result was established in [5]: Let X be a Banach space, K a nonempty 
closed subset of X. Let T : K -+ X satisfy the following contractive condition on K: 

There exists a constant h, 0 < h < l such that, for each x, y E K, 

(1) d(Tx,Ty) ~ h max.{d(x,y)/2, d(x,Tx), d(y, Ty), [d(x, Ty)+ d(y, Tx)]/q}, 

where q is any real number satisfying q 2:: 1 + 2h. Suppose that T has the additional 
property: 
(a) for each x E 8K, the boundary of K,Tx EK, then T has a unique fixed point. 

In proving his theorem [5], Rhoades constructed two sequences { Xn} and { x~} as 
follows: 

Definition. Let x0 E K. Define x~ = Tx0• If x~ E J(, set x1 = x~. If x~ ¢ K, 
choose X1 E BK so that d(xo, x1) + d(x1, xD = d(xo, xD. Set x; = Tx1. If x2 E J(, set 
x2 = x;. If not, choose x2 E {)J( so that d(x1, x2) + d(x2, x;) = d(x1, x~). Continuing in 
this manner, we obtain {xn}, {x~} satisfying: 
(i) x~+l = Txn, 
("") I "f I },,. d 11 Xn = Xn l xn E \ , an 
(iii) Xn E {)I{ and d(xn-1, Xn) + d(xn, x~) = d(xn-1, x~) if x~ ¢ J{. 

Let p = {xi E {xn} : Xi = xD and Q = {xi E {xn} : Xi ¢ xa. The sequence {xn} 
will be referred to as the general orbit of T at x0. 

Rhoades [5], proceeded in his proof by showing that for any x0 E J{, the general 
orbit of T at x0 is a Cauchy sequence that converges to the unique fixed point of T. On 
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the other hand, in [3], the author has shown that if we require T to be continuous and 
K compact then we may replace condition (1) on T by the following weaker condition: 

For all . x, y E K, x # y, 

(2) d(Tx, Ty) < max.{ d(x, y)/2, 'd(x; Ty), d(y, Ty), [d(x, Ty)+ d(y, Tx )]/q} 

where q > 3 and still conclude that T has a unique fixed point. 
In this paper, we prove a fixed point theorem for the mapping T satisfying (a) and 

.the following condition: . . . . . . . . 
Let R+ denote the set of non-negative real numbers and let h : R+\{O} -+ (0, 1) 

be a decreasing function. Suppose that for all x f:. y, x, y E K: 

(3) d(Tx, Ty) ~ h(d(x, y))·max .{d(x,y)/2, d(x, Tx), d(y, Ty), [d(x, Ty)+d(y; Tx)]/q}, 

~here q is any real number satisfying q ~ 1 + 2h(d(x, y)).Observe that the above three 
conditions. o~ T. are related· as follows : (1) => (3) => (2).0ur results show. that g~neral 
orbit for the mapping T satisfying ( a) and (3) at any point x0 E K is a Cauchy sequence. 
Moreover, un,der the additional assumption that Tis continuous we may conclude that 
this Cauchy sequence converges to a unique fixed point of T. 

Theorem. Let X be a Banach space, I{ a nonempty closed subset of X, T : I{ -+ X 
a continuous mapping satisfying (3) on !{. If T has property ( a) then T has a unique 
fixed point in K. 

Proof. We will use the following'notation: Tn = d(xn, Xn+1) and Sn = d(xn, Xn+2). 
It is easy to see that Sn > 0 for each n. Moreover, following the proof of (Theorem 
3.1,[2]) we may assume that Tn > 0 for each n . 

. Step I: We first wish to estimate d(xn, Xn+1). 
Case I. Xn, Xn+i E P. 

(Al) 

d(xn, Xn+1) = d(Txn-1, Txn) 
< h(d(xn-1, Xn)) · max .{d(xn-1, Xn)/2, d(xn-I, Txn-1), 

d(xn, Txn), [d(xn-1, Txn) + d(x~, Txn-:-1)]/q} 
h(rn_i) · Tn-1· 

Xn E P, Xn+l E Q. 
' ' ' 

Case II. 

(A2) 
d(xn, Xn+1) ::; d(xn, X~+i) . d(Txn-1, Txn) 

', . 
< h( Tn-i) · .rn-1· 

Case III. Xn E Q, Xn+i E P. Since Xn E Q and is a convex combination of Xn-1 and 
x~, it follows that d(xn, Xn+i) ::; max.{ d(xn-1, Xn+1), d(x~, Xn+1)}. If d(xn-1, Xn+1) < 
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d(;r;~,.Xn+1); then d(xn, Xn+1) < d(x~, Xn+1) = .d(Txn-1, Txn) < h(Tn·-1) · max .{Tn-i/2, 
d(xn-1, Txn-1), d(xn, Txn), [d(xn-1, Txn) + d(xn, Txn-1)]/q} = h(rn...:i) · max .{d(xn-l, 
x~), [d(xn-1, Xn+d + d(xn·, x~)]/q}. 

· So, in the case where d(xn-l, x~) is the maximum, we get: 

(A3) 
d(xn, Xn+1) < h(rn_i) · d(xn-1, x~) 

< h( Tn-1 · h( Tn-2) · Tn-2· 

(by Case II, since Xn E Q implies that Xn-i E P).. On the other hand, if [d(xn-1, Xn-t-1) + 
d(xn, x~)]/q is the maximum,·we get: 

d(xn, Xn+1) < h( Tn-1) · [d(xn-1, Xn+1) + d(xn, x~)]/q 
< h(rn-1) · [rn-1 + Tn + d(xn, x~)]/q 

h(rn-1) · [d(xn-1, x~) + Tn]/q 
Therefore, [1- h(rn-1)/q] · Tn < [h(rn-1)/q] · d(xn-1, x~) 

and thus 

h(rn-1) ( , ) Tn < h( ) · d Xn-1, Xn q - Tn-1 
< h(rn-1) · d(xn-1, x~). 

Again, we conclude that: 

(A4) 

Finally, we considew the p<;:>ssibility that d(x~, Xn+1) < d(xn-1, Xn+1), here we have, 

Tn :::; d(xn-1, Xn+1) = d(Txn-2, Txn) 
< h(sn-2) ·max.{ Sn-2/2, d(xn-2, Txn-2), 

d(xn, Txn), [d(xn-2, Txn) + d(xn, Txn-2)]/q}. 
Note that 

Sn-2/2 <. [d(xn~2, Xn-1) + d(xn-1, Xn)]/2 
< max.{ Tn-2., Tn-d 

So, we may conclude either, 

(A5) 

or, in case the maximum of the right hand side of(*) is [d(xn-2, Xn+1) + d(xn-1, xn)]/q, 
it follows that d(xn-1, Xn+i):::; h(sn-2) · [d(xn-2, Xn-1) + d(xn-1, Xn+1) +d(xn, Xn+1)]/q, 
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i.e., [q-h(sn-2)] ·d(xn-1, Xn+I) < h(sn-2) · [l+h( Tn-2)] ·d(xn-2, Xn-1) (since d(xn, Xn-1) 
~ d(xn-1, x~) < h( Tn-2) · Tn-2). 
Therefore, d(xn-1, Xn+d < [l!~c::~~)] . [1 + h( Tn-2)] . Tn-2 and thus, Tn ~ [l!~c::~~)J 
[1 + h(rn-2)] · Tn-2· Now, if Sn-2 2:: Tn-2, then h(sn-2) ~ h(rn-2) and consequently, 
h(°'n-2) < h(Tn-2) Jt r: }} 
l+h(.,,.-2) - l+h(Tn-2) • lO OWS: 

(A6) 

On the other hand, if Sn-2 < Tn-2, then h(sn-2) > h(rn-2) and thus 1 + h(sn-2) > 
1 + h( Tn-2), or ([1 + h( Tn-2)]/[l + h(sn-2)]) < I and thus we get, 
(A7) 

Finally, using the seven conclusions (Al)-(A7), we may conclude that for n = 2, 3, 4, ... , 
we have 

Tn < Tn-1 
or 

(A) Tn < Tn-2· 

Step II. We will prove that the sequence { Tn}:=o converges to 0. To do that, we 
consider two cases. In the first one we assume that {xn} has a subsequence {xn(k)} with 
the property that Xn(k)+l and Xn(k)+2 E P. Here we consider the sequence Tn(k)· By 
(A) we observe that Tn(k) < Tn(k-1)+1 or Tn(k) < Tn(k-1)+2· Noting that Xn(k-l)+I and 
Xn(k-1)+2 E P, it follows that Tn(k-1)+2 < Tn(k-1)+1 < Tn(k-1)· So, we may conclude 
that for k > 2, Tn(k) < Tn(k-1) and thus Tn(k) -+ r. We show that r = 0. Observe that 
fork= I, 2, 3, ... , we have, 

and thus limk-+oo d(x~(k)+l' x~(k)+2) = T. If T > 0, then d(x~(k)+l' x~(k)+2) < h( Tn(k)) 
Tn(k) and ask-+ (X) we obtain T < h(r)·r < T. Contradiction. Moreover, for j sufficiently 
large, 3k = k(j) such that n(k) < j ~ n(k + 1) and thus O < Tj < Tn(k)· Since Tn(k) - 0, 
we conclude that limj-+oo Tj = 0. In the second case, we assume that eventually the 
sequence {xn} cannot have two consecutive points that are in P, ie., 3 a positive integer 
N such that for every n > N, if Xn E P then Xn+i E Q, Assume that Xn ( i) E Q for 
i = 1, 2, 3, ... , where n(i) + 2 = n(i+ 1) and n(i)-2 = n(i-1), and consider the sequence 
{ Tn(i)}. Note that Tn(i) is convergent, and 8Uppose that Tn(i) - T. By (Observation 2.1, 
[2]), we may assume that 3 a subsequence of {xn(i)} denoted by Xn(t) such that either, 

(B) fort = l, 2, 3, , Tn(t) < d(xn(t)+l, x~(t)), or 
(C) for t = · 1, 2, 3, , Tn(t) < d(xn(t)+I, Xn(t)-1). 

If Case (B) occurs, then by (A3) and (A4) we have: 
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(D) Tn(t) < d(xn(t)-I, x~(t)) < Tn(t)-2, it follows that lim Tn(t) = limd(x~(t)-l' x~(t)) = 
T = 0, and limrn = 0. 

Finally, we consider the possibility that (C) occurs. Then by (A5), (A6) and (A7), 
we may assume that fort= l, 2, 3, ... , we have, 

(El) Tn(t) < h( Tn(t)-2) · Tn(t)-2, 

or 

(E2) 

In the case (El) occurs, as t-+ oo, we.get r < h(r) · r < r, which is absurd, and thus we 
conclude that r = 0. On the other hand if (E2) occurs, without loss of generality, and 
since { sn(t)-2} is bounded, we may assume that sn(t)-2 -+ p. If p > 0, then as t -+ oo, 
we get r ~ h(p/2) · r < r. Contradiction. To show that r = 0, we note that: 

Tn(t)-2 - d(xn(t)-2, Xn(t)) ~ d(xn(t)-I, Xn(t)) < d(xn(t)-1, X~(t)) < Tn(t)-2· 

Hence limd(x~(t)-l> x~(t)) =rand we may conclude as we did in the previous two cases 
that limn-+oo Tn = 0. So we have: 

(F) lim Tn = 0. n-+oo 

Step III. We prove that { xn} is a Cauchy sequence. For if it is not Cauchy, then by 
well-ordering principle there exists f. > 0 and two subsequences {p( n)}, { /( n)} such 
that for every n = 0,1,2,3, ... , we find that p(n) > l(n) > n,d(xp(n),Xt(n)) ~ f. and 
d(xp(n)-1> X1(n)) < f.. Put 9n = d(xp(n), Xt(n))- For each n > 0, we have: 

€ ~ 9n ~ d(xp(n)-1, Xp(n)) + d(xp(n)-1, Xl(n)) 

< Tp(n)-1 + €. 
Since Tn -+ 0, it follows that 9n -+ €. It has been shown in details in Assad [1] that (F) 
allows us to conclude that: 

limd(xp(n)+l, xl(n)-1) = Iimd(xp(n)-1, xl(n)+i) 

limd(xp(n)+l, Xl(n)+i) = limd(xp(n)+1, Xl(n)) 

limd(xp(n), Xl(n)-1) = limd(xp(n)-1, XL(n)-1) 

limd(xp(n), XL(n)+1) = limd(xp(~)-1, Xl(n)) = €. 

Next, we consider the following four possibilites : 

(Gl) Xp(n)+l, E P and xl(n)+l E P, then 
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d(Txp(n), Txl(n)) 
< h(gn) · max .{gn/2, Tp(n), Tt(n), 

[d(xp(n), Txl(n)) + d(xt(n), Txp(n))]/q}. 
(G2) Xp(n)+l E P and Xt(n)+l E Q, then Xt(n) E P and 

d(Xp(n)+1, Xt(n)) = d(Txp(n), TXt(n)-1) 

:::; h( d(xp(n), Xt(n)-1)) ·max.{ d(xp(n), Xt(n)-1)/2, Tp(n), Tt(n)-1, 
[gn + d(xt(n)-1, Xp(n)+i)]/1 + 2h(d(xp(n), Xt(n)-1))}. 

(G3) Xp(n)+l E Q and Xt(n)+l E P, then Xp(n) E P and 

d(xp(n), Xt(n)+1) = d(Txp(n)-1, TXt(n)) 

< h(d(xp(n)-1, Xt(n))) · max .{d(xp(n)-1, Xt(n))/2, Tp(n)-1, Tt(n), 
[gn + d(xp(n)-1, Xt(n)+1)J/l + 2h(d(xp(n)-1, Xt(n)))}. 

(G4) Xp(n)+l E Q and Xt(n)+l E Q, then Xp(n) and Xt(n) E P and, 
d(xp(n), Xt(n)) = d(Txp(n)-1, Txl(n)-1) 

:::; h(d(xp(n)-1, Xt(n)-1)) ·max.{ d(xp(n)-1, Xt(n)-1)/2, Tp(n)-1, Tt(n)-1, 
[d(xp(n)-1, Xt(n)) + d(xl(n)-1, Xp(n))]/1 + 2h(d(xp(n)-1, Xt(n)-1))}. 

Each of these four Cases: (G 1), (G2), (G3) and (G4) leads to the conclusion that 
c :::; 1!~~(~%) · c < c as n - oo, which is absurd. Therefore, we conclude that the 
sequence { Xn} is a Cauchy sequence, and by completeness of X, we conclude that the 
sequence converges to a point in J{. Let limn-+oo Xn = z. 

Finally, we will show that z is the unique fixed point of T. Choose a subse 
quence { Xb(n)}~=O of { Xn}~=O such that Xb(n)+l E P for ail n = 0, l, 2, · · · Observe that 
limn-+oo Xb(n)+l = limn-+oo Xn = z and by continuity of T we also have limn-+oo Xb(n)+l = 
limn--+oo Txb(n) = Tz. Therefore we obtain that z = Tz. If T has two distinct fixed points 
x, y EK, then 

d(x, y) = d(Tx, Ty) 
:::; h(d(x,y)) ·max.{d(x,y)/2,d(x,Tx),d(y,Ty), 

[d(x, Ty)+ d(y, Tx)]/l + 2h(d(x, y))}, 
and thus d(x, y) :::; 1!~1~~~y.~))) · d(x, y) < d(x, y), a contradiction. Thus the proof is 
completed. 

The following result follows immediately from the Theorem. 

Corollary. Let X be a Banach space, ]{ a nonempty closed subset of X, T : J{-+ X 
a continuous mapping satisfying the condition on I{, 
(H) for all x =p y,x, y E J{: 

d(Tx,Ty) :::; h(d(x,y)) ·max.{d(x,Tx),d(y,Ty)}. 

If T has property (a), then T has a unique fixed point. 
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