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A FIXED POINT THEOREM FOR SOME NON-SELF-MAPPINGS

NADIM A. ASSAD

Abstract. A fixed point theorem is proved for continuous mappings from a
nonempty closed subset K, of a Banach space X, into X, and which satisfies
contractive definition definition (3) and property (a) below.

The Main Theorem.

The following result was established in [6]: Let X be a Banach space, K a nonempty
closed subset of X. Let T: K — X satisfy the following contractive condition on K:
There exists a constant h, 0 < h < 1 such that, for each z,y € K,

(1) d(Te,Ty) < h max{d(z,y)/2, d(z,Tz),d(y, Ty), [d(z, Ty) + d(y, Tz)] /q},

where ¢ is any real number satisfying ¢ > 1+ 2h. Suppose that T has the additional
property:
(a) for each z € 0K, the boundary of K,Tz € K, then T has a unique fixed point.

In proving his theorem [5], Rhoades constructed two sequences {z,} and {z} as
follows:

Definition. Let o € K. Define 2, = Tzo. If ) € K,set z; = 2. If 2} ¢ K,
choose z; € 0K so that d(z¢, ;) + d(z1, 1) = d(2o,2}). Set 24 = Tz;. If z, € K, set
23 = z5. If not, choose z5 € K so that d(z;, z2) + d(z2, 23) = d(z1, 25). Continuing in
this manner, we obtain {z,}, {z/} satisfying:

(i) 254, = Tza,
(i) z, =z}, if 2, € K, and
(i) z, € 0K and d(z,-1,2,) + d(zn, zn) =d(zn_y,z)) if 2!, ¢ K.

Let P = {z; € {zp} :zi =z} and Q = {z; € {zn} : z; & 2!}. The sequence {zn}
will be referred to as the general orbit of T at z,.

Rhoades [5], proceeded in his proof by showing that for any zo € K, the general
orbit of T at z is a Cauchy sequence that converges to the unique fixed point of 7. On
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the other hand, in [3], the author has shown that if we require T" to be continuous and
K compact then we may replace condition (1) on T by the following weaker condition:

Forall . z,y€eK, z+#y,

(2)  d(Tz,Ty) < max.{d(z,y)/2, d(z,Ty), d(y, Ty),[d(z,Ty) + d(y,Tz)]/q}

where ¢ > 3 and still conclude that T has a unique fixed point.

In this paper, we prove a ﬁxed point theorem for the mapping T satisfying (a) and
the following condition:

Let Rt denote the set of non- negatlve real numbers and let h R*™\{0} — (0,1)
be a decreasing function. Suppose that forall z # y, z,y € K:

(3) d(T=z,Ty) < h(d(z,y)) -max.{d(z, y)/2 d(z,Tz), d(y, Ty), [d(z, Ty)+d(y, Tx)]/q}

where ¢ is any real number satisfying ¢ > 1 -+ 2h(d(:c y)).Observe that the above three
conditions on T are related as follows : (1) = (3) = (2).Our results show that general
orbit for the mapping T satisfying (a) and (3) at any point zo € K is a Cauchy sequence.
Moreover, under the additional assumption that T is continuous we may conclude that
this Cauchy sequence converges to a unique fixed point of 7.

Theorem. Let X be a Banach space, K a nonempty closed subset of X, T : K= X
a conlinuous mapping satisfying (3) on K. IfT has property (a) then T has a unigue
fized point in K. :

Proof. We will use the following notation: 7,, = d(a; Baga) and 5= d(xn,xn+2)
It is easy to see that s, > 0 for each n. Moreover, following the proof of (Theorem
3.1,[2]) we may assume that 7,, > 0 for each n. :

Step I: We first wish to estimate d(:c,,, Tni1)-
Case I. Zn,Tny1 € P.

d(zn,Zn41) = d(Tzp-1,Tz,)
< h(d(zn-1,2,)) - max {d(zn-1,2,)/2,d(zn_1, Tzn-1),
d(zp, Tzy), [d(2n-1,Tzn) + d(zn, T2n_1)]/q}
(A1) = h(ra-1) - Tmo1.

Case I1. Zn € P,zny; €Q.

d(xmzn+1) & d(zn:z:;+1) — d(Txn—lsTxn)
5

(42) h(Tn-1) - Ta-1.

Case III. Zn €Q, £,41 € P. Since :cn € @ and is a convex combination of z,_; and
I

Zp, 1t follows that d(zp, Za41) < max.{d(z,—1,Zn41), d(z, nt1)} I d(zpn-1,2n41) <



A FIXED POINT THEOREM FOR SOME NON-SELF-MAPPINGS 389

d(I;; :-xn+1)> then d(xm xn+l) e d(l',,-., $n+1) = .d(Txn—lg T:cn) < h(rn~1) .max -{Tn—1/2,
(2n-1,T2n-1), d(@n, T2n), [d(Tn—1,T2n) +d(2n, T2n-1))/a} = h(7n-1) -max .{d(zn_1,
z,), [d(2n-1,Tn41) + d(zn,2)]/q}. . , | .

'So, in the case where d(z,_1,z),) is the maximum, we get:

d(xm zn+1) = h(Tn—-l) . d(xn—ly x;;)
(A3) S h(Tn—l : h(Tn_g) *Th—-2.

(by Case II, since z,, € Q implies that z,,_; € P). On the other hand, if [d(z,_1, Zni1)+
d(zn, z;,)]/q is the maximum, we get: - ;' ,

< h(ma-1) - [d(zn-1, Znt1) + d(2n, 2,,)]/q
< h(Tn—l) . [Tn—l s d(l?n, x:;)]/q
h(Tn-1) - [d(zn-1, z,) + Tal/q

Therefore, [1 — h(1m-1)/q] - Tn < [A(Tn-1)/q] - d(zp_1, z;)
and thus

d(Im $n+1)

h(Th-1)
T oq- h(Tn—l)

TS cd(zp-1,z))
< Blrn-i) Hzna,2l)
Again, we conclude that:

(A4) sty 5 Bl h(Ta—3) - Tn—s.

Finally, we‘consi‘dew the possibility that d(z/,,zn41) <‘d(xn._1, Tn41), here we have,
™ < d(zn—h zn+1) = d(Txn—Z,Txn)

(*) S h(sn_z) . max.{s,,_z/?, d(z‘n_z, T:Bn_z),

d(rm Txn); [d(xﬂ—% T:Bn) . 3 d(.‘l:n, T.’tn..g)]/q}.

Note that
$n-2/2 < [d(Tn-2,2n-1) + d(zpn_1,2,)]/2
< max {%—g, -1} '
= Tph-2. :
So, we may conclude either,
(A5) | Tn < h(sn-2) Tn_2

or, in case the maximum of the right hand side of (*) is [d(z 3, Znt1) +d(2zn-1,2,)]/q,
it follows that d(z,-1,2n41) < h(sn-2)-[d(zn-2,2n_1)+d(z,_1, Tni1)+d(z,, Znt1)]/q,
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ie, [q_h(sn—2)]'d(xn—1, 3n+1) = h(sn—2)‘[1+h(rn—2)]'d(zn—2: rﬂ—l) (Since d(zm zn—l)
< d(xn—ls "B;;) < h(Tn—2) * Tp—2)- i

Therefore, d(z,-1,Zn41) < [—l—_i_"—s:(';—:i)m -[1 4+ h(mh-2)] - Tn—2 and thus, 7, < [14_';;(—:% .
[1 + h(Ta-2)] - Tho2. Now, if s,_5 > 7,_2, then h(s,_3) < h(mn-2) and consequently,

h(sn—-2) A(Tn—2) }
1+h(s,:_2) < 1+h‘r(,nf2)- It follows:

(A6) ™ < h(Tn—2) *Th—2-

On the other hand, if s,_2 < 7,_3, then h(s,—2) > h(7,-2) and thus 1 + h(sn-2) >
1+ h(ma-2), or ([1+ h(mn=2)]/[1 + h(sn—2)]) < 1 and thus we get,

(A7) Tn < h(sn—2) - Th-2.

Finally, using the seven conclusions (A1)-(A7), we may conclude that for n = 2,3,4,...,
we have

or

Step II. We will prove that the sequence {r,}5%, converges to 0. To do that, we
consider two cases. In the first one we assume that {z,} has a subsequence {Zn(r)} with
the property that Tn(k)+1 and Z,p)42 € P. Here we consider the sequence Ta(k)- BY
(A) we observe that Ta(k) < Tn(k=1)+1 OF Tu(k) < Tr(k—1)42- Noting that Tn(k-1)+1 and
Tpk-1)4+2 € P, it follows that Ta(k-1)+2 < Ta(k-1)+1 < Tn(k-1)- S0, we may conclude
that for k > 2, 7,3y < Ta(k—1) and thus 7,;y — 7. We show that 7 = 0. Observe that
for k=1,2,3,..., we have,

Ta(k+1) < d(Znk)41 Tnky42) < Tagr)

and thus limg_, d(x:‘(k)ﬂ,:c;(k)“) =7. If 7> 0, then d(x:z(k)+1’z;z(k)+2) < h(Ta))-
Ta(x) @and as k — oo we obtain 7 < h(7)-r < 7. Contradiction. Moreover, for J sufficiently
large, 3k = k(j) such that n(k) < j < n(k+1) and thus 0 < 7j < Ta(k)- Since T,y — 0,
we conclude that limj .o 7; = 0. In the second case, we assume that eventually the
sequence {z,} cannot have two consecutive points that are in P , le., 3 a positive integer
N such that for every n > N, if z,, € P then Tnt+1 € Q, Assume that z,(i) € Q for
t=1,2,3,..., where n(¢)+2 = n(i+1) and n(i) =2 = n(i— 1), and consider the sequence
{Tn(,-)}. Note that Ta(i) 1S convergent, and suppose that Ta(i) — 7. By (Observation 2.1,
[2]), we may assume that 3 a subsequence of {Zn(i)} denoted by Zn(1) such that either,
(B) fort = 1,2,8, - Ta(t) < d(Zn(r)41, z;(t)), or
(C) fort =1,2,3, s Ta) < d(-'cn(t)+1, Tn(t)-1)-
If Case (B) occurs, then by (A3) and (A4) we have:
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’

(D) T < d(l'n(t)-bl';,(,)) < Ta(t)-2, it follows that lim7,,) = limd(zn(t)_l,z;(t)) =
7 =0, and limr, = 0.

Finally, we consider the possibility that (C) occurs. Then by (A5), (A6) and (A7),
we may assume that for t = 1,2,3, ..., we have,

(E1) Ta(t) < h(Ta(1)-2) - Tn()-2,
or
(£2) Ta(t) < R(Sn(y-2) - Tn(t)—2-

In the case (E1) occurs, ast — oo, we get 7 < h(7) -7 < 7, which is absurd, and thus we
conclude that 7 = 0. On the other hand if (E2) occurs, without loss of generality, and
since {s,(;)-2} is bounded, we may assume that Sp(t)—-2 — p- If p > 0, then as t — oo,
we get 7 < h(p/2) - 7 < 7. Contradiction. To show that 7 = 0, we note that:

Ta(t)-2 = d(Zn()-2:Zn(s)) < d(Tn(y=1,Zn@) < d(Zn(t)-1) Zn(sy) < Tn()—2-

Hence lim d(x;(t)_l, 1':;(:)) = 7 and we may conclude as we did in the previous two cases
that lim,, .o, 7, = 0. So we have:

(F) lim 7, = 0.

Step III. We prove that {zn} is a Cauchy sequence. For if it is not Cauchy, then by
well-ordering principle there exists ¢ > 0 and two subsequences {p(n)}, {I(n)} such
that for every n = 0,1,2,3,..., we find that p(n) > l(n) > n,d(Zp(n), Ti(n)) > € and
d(zp(ny-1, ZTi(n)) < €. Put g, = d(zp(n), Zi(n))- For each n > 0, we have:

€ < gn £ d(Zp(n)-1,2p(n)) + AZp(n)-1, Ze(n))
< Tp(n)-1 + E.

Since 7, — 0, it follows that g, — €. It has been shown in details in Assad [1] that (F)
allows us to conclude that:
limd(:cp(,,)_,_l,m[(,,)_l) = limd(xp(n)—17zl(n)+1)
= lim d(:l:p(n)+1, xt(n)+1) = lim d(zp(n)+1; xt(n))
= limd(zp(n), Z4(n)-1) = lim d(Zp(n)-1, Te(n)-1)

= limd(zyn), Ty(n)41) = limd(zp(n)-1,Ze(n)) = e.

Next, we consider the following four possibilites :

(G1) Zp(n)+1,€ P and zy(n)4; € P, then
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d(Zp(ny+1> Tetny+1) = d(TZp(n), T2y(n))
< h(gn) - max.{g./2, Tp(n), Te(n),
[d(zp(n)s T2e(n)) + d(Ze(n), TZpn))]/a}-
(G2) Tp(n)+1 € P and zy(n)41 € @, then x4,y € P and
d(Zp(n)+1:26(n)) = AT Zp(n), TTe(n)-1)
< h(d(zp(n), Te(n)-1)) - max {d(Zp(n), Ze(n)-1)/2, To(n)» Te(n)-1,
[9n + d(2e(n)-15 Zp(n)+1)]/ 1 + 2h(d(Zp(n), Ze(n)-1))}-
(G3) Tp(n)+1 € @ and Typ)41 € P, then Tp(n) € P and
d(2p(n)s Zen)41) = A(TTp(n)-1,TZ4(n))
< h(d(zp(n)-1, Te(ny)) - max . {d(zp(n)-1, Ze(n))/2: To(n)—1, Te(n)>
[9n + d(Zp(n)-1, Te(n)+1)]/1 + 2R(d(Zp(n)-1, Ze(n))) }-
(G4) Zp(n)+1 € Q and zy(n)41 € @, then z,¢,) and Ty(n) € P and,
d(Zp(n)s Te(n) = d(TTp(n)-1, TTe(n)-1)
< h(d(Zp(n)-1, Te(n)-1)) - max {d(Zp(n)-1, Te(n)-1)/2; Tp(n)=1, Te(n)—1,

[d(Zp(n)-1, Ze(n)) + A(Zen)=1, Zp(n))]/1 + 2R(d(Zp(n)-1, Te(ny-1))}-

Each of these four Cases: (G1), (G2), (G3) and (G4) leads to the conclusion that
g % Ti%zi(s%)z—) € < € as n — oo, which is absurd. Therefore, we conclude that the
sequence {z,} is a Cauchy sequence, and by completeness of X , we conclude that the
sequence converges to a point in K. Let lim,_ o z, = z. .

Finally, we will show that z is the unique fixed point of 7. Choose a subse-
quence {Zp(n)}no Of {Zn}o%o such that zy(ny41 € P for all m = 0,1,2,--- Observe that
limy— 00 Z(n)+1 = liMp 0o £, = z and by continuity of 7" we also have limy 0 Zp(n)41 =
lim, .00 T'Z3(n) = T'z. Therefore we obtain that z = T'z. If T has two distinct fixed points
z,y € K, then

d(z,y) = d(Tz,Ty)
< h(d(z,y)) - max {d(z,y)/2,d(z, Tz),d(y, Ty),
[d(=,Ty) + d(y, Tz)]/1 + 2h(d(z,y))},

and thus d(z,y) < %ﬁ%ﬁg)—) -d(z,y) < d(z,y), a contradiction. Thus the proof is
completed.

The following result follows immediately from the Theorem.

Corollary. Let X be a Banach space, K a nonempty closed subset of X, T : K —- X
¢ conlinuous mapping salisfying the condition on K,
(H) for allz £ y,z,y€ K :

d(Tz,Ty) < h(d(z,y)) - max {d(z,Tz),d(y, Ty)}.
If T has property (a), then T has a unique fized point.
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