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A NOTE ON LATTICE OPERATIONS OF RIESZ SPACES 
OF ORDER BOUNDED OPERATORS 

BORIS LAVRIC 

Abstract. Let L, M be Archimedean Riesz spaces with M Dedekind complete, 
and let Cb(L, M) be the Riesz space of order bounded linear operators from L into 
M. A theorem of Abramovic [I] on lattice operations of £b(L, M) is generalized on 
Riesz spaces Lin which a weak form of Freudenthal's spectral theorem [4] holds. 

Introduction 

For terminology concerning Riesz spaces we refer the reader to [3], [5] and [8]. Let 
L and M be two Archimedean Riesz spaces. A linear operator T : L - M is said to 
be order bounded whenever T carries order bounded subsets of L onto order bounded 
subsets of M. The vector space of all order bounded operators from L into M is denoted 
by £b(L, M). When M is Dedekind complete, by a fundamental theorem of Kantorovic 
Cb(L, M) is likewise a Dedekind complete Riesz space (ordered by the cone of positive 
operators). Its lattice operations satisfy 

(SA T)x 
(SV T)x 

inf{Sy + Tz : y + z = x, y, z 2:: O} 
sup{Sy+Tz: y+z=x, y,z2::0} 

for all S,T E £b(L,M) and each x EL+. 
In many applications it is useful to express (under some additional conditions on L) 

the lattice operations of Cb( L, M) in terms of disjoint components of x. When L has the 
principal projection property , Ju.A. Abramovic [I] have shown that 

(S AT)x 
(S VT)x 

inf{Sy+Tz: y+z=x, y/\z=O} 
sup{Sy + Tz : y + z = x, y I\ z = O} 

holds for all S, TE £b(L, M) and each x EL+. 
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It is the purpose of our note to show that the same formulae are valid for a wider class 
of Riesz spaces which will be called WF-spaces. To see that WF-spaces are appropriately 
chosen for the generalization, we present also a partial converse of the main result. 

Let L be an Archimedean Riesz space. Given the element u E L + ,Mu denotes the 
Riesz subspace of L generated by the Boolean algebra Bu= {v EL : v A (u - v) = O} 
of all components of u. We shall say (see[4)) that L is a WF-space (a weak form of 
Freudenthal's spectral theorem holds in L), if for each u E L+ the subspace Mu is u­ 
uniformly dense in the principal ideal Au generated by u. Recall that the well known 
Freudenthal's spectral theorem states that a Riesz space with the principal projection 
property is a WF-space. 

By characterizations of WF-spaces given in [4],[7], an Archimedean Riesz space L 
is a WF-space if and only if the Kakutani representational space I<u of every principal 
ideal Au, u EL, is totally disconnected. Moreover, if L is an AM-space with unite, and 
Ke its representational space, then by (7, 2.7] Lis a WF-space if and only if Ke is totally 
disconnected. 

Results 

Theorem 1. Let L be a WF-space and M a Dedekind complete Riesz space. Then 

(S AT)x = inf{Sy+Tz: yl\z = 0, y+z = x} 
holds for all S, TE £b(L, M) and each x EL+. An analogous formula holds for S VT. 

Proof. Considering the identity (S - SAT) A (T - SAT) = 0 we can assume 
without loss of generality that SAT= 0. 

Fix x EL+, and take. an arbitrary y E [O,x]. Put 

u = (4y- x)+, v = x A (2x - 4y)+ 
and note that u + v ~ x. Since L is a WF-space, by [4, Lemma 2,5] there exists a 
decomposition x = X1 + X2, X1 A x2 = 0, such that X1 E Au and X2 E Av. It follows from 
X1 E Au that x1 A ( 4y - x )- = 0, and consequently 

By observing that v = (x-(4y-x)+)+ and x2A(x-(4y-x)+)- = 0 we get in asimilar 
manner the estimate 

X2 $ 4(x- y) 

Combined with the preceding inequality this shows that 

Sx1 + Tx2 $ 4(Sy + T(x - y)) 
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and by this the proof is complete. 
Our next result describes the lattice operations of £b(L,M) in terms of directed 

systems involving components and generalizes [6, Theorem 2.2]. Its proof goes in the 
same way as the proof of Corollary 1.3 of (3]. 

Theorem 2. Let L be a WF-space and M a Dedekind complete Riesz space. Then 
n n 

i=l i=l 

holds for all S, TE £b(L, M) and each x E £+. An analogous formula holds for S /\ T. 
A partial converse of Theorem 1 will be established for AM-spaces with unit. The 

details follow. 

Proposition. Let L be an AM-space with unite, and let M be a Dedekind complete 
Riesz space. If 

r+ X = sup{Ty : y /\ (x - y) = O} 
holds for all TE £b(L, M) and each x E L + 1 then L is a WF-space. 

Proof. Identify in a natural way L with C(Ke)- It is enough to show that Ke is 
totally disconnected. To this end take t E Ke and denote by Dt the functional 6t(x) = x(t), 
x EL. Ifs E Ke\{t}, set <p = Dt - 63 EL"", and observe that <p+ = Dt. Choose now a 
function x E L + such that 

x(t) = 2, x(s) = 1 and x 2: e 
and note that the components of x are the functions of form x · ew, where ew is the 
characteristic function of an open and closed subset W of Ke. 

Next, take an element u > 0 in M, denote by j : R-+ M the injective normal Riesz 
homomorphism rt--+ ru, and let T = j o <p. Since 

2u = j(x(t)) = j(<p+(x)) = T+x = sup{Ty : y /\ (x - y) = O} 
= sup{j<py : y /\ (x - y) = O} = j(sup{<p(y) : y /\ (x - y) = O}) 
= sup{<p(y) : y /\ (x - y) = O} u 

it follows easily that t E W and s ¢. W for some open and closed subset W of ]{ e. 
Therefore Ke is totally disconnected as we claimed. 

Remarks. An Archimedean Riesz space L will be called an SF-space if any two 
disjoint elements of L lie in two disjoint projection bands of L. If L is an SF-space and 
M a Dedekind complete Riesz space, the formulae from Theorem 1 can be improved as 
follows: 

(S /\ T)x = inf{(SP + T(I - P))x : P a band projection of L}, x E £+ and 
analogously for S V T. 

SF-spaces are introduced and characterized in [4]. Every SF-space is a WF-space, 
while the Riesz space c of all real convergent sequences is a WF-space which is not an 
SF-space. The quotient Riesz space 1!.00/co is an example of an SF-space without the 
principal projection property. 
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