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EQUICONTINUITY OF ITERATBS OF AN INTERVAL MAP 

A.M. BRUCKNER1 AND THAKYIN HU2 

Abstract. The purpose of this paper is to determine conditions under which 
equicontinuity of the family of iterates {fn} of a continuous function that maps 
a compact interval / into itself does occur. We shall see that this happens ouly 
under exceptional circumstances. 

1. Introduction 

Let f be a continuous function mapping an interval I into itself. For n = I, 2, · · ·, 
let /n+l = f o fn. Research in the social, biological and physical sciences often leads to 
a study of the sequence {fn} of iterates [6], [5], [8]. Of importance to the researcher is 
the question, "if Ix - YI is small, will 1/n( x) - /n(Y)I be small for all n?". F)r_ exa:rople, 
if xo denotes the actual initial population of a species of insect and y0 the population as 
estimated by the researcher, one would hope that 1/n( x0)- fn(y0)1, the error in estimating 
the population of the nth generation, would be small if the initial estimate were good. 
In mathematical language, one would like the family {fn} to be equicontinuous. 

Practical problems, however, don't usually lead to equicontinuity of {fn}. In fact, 
one often finds chaotic behavior of various sorts. Theoretically, there could be almost 
certainly that chaos will arise [3]. In precise language, there is a continuous function f 
mapping [O, 1] into itself and a set S of Lebesque measure 1 such that for x, y E S, ( x f. y) 

Thus, with this function f, one can be almost sure that both the true initial value x0 
and the estimate y0 will be in S, and using fn(y0) to predict fn(x0) is of no value. The 
function f can be chosen arbitrarily close (uniformly) to the function g(x) = 4x(l - x), 
a function in the logistic family often arising in practice [6), [7]. We should mention that 
in practice chaotic situations do arise, but situations in which satisfactory prediction is 
possible for xo and y0 in some set large in measure or category also arise [7]. 
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The purpose of this article is to determine conditions under which the ideal situation, 
equicontinuity of the family of iterates, does occur. We shall see that this happens only 
under exceptional circumstances. Our main results are summarized in Theorem 11. 

2. Main Results 

We begin with the following lemma. 
Lemma 1. Let f : I ---+ I be a continuous mapping of a compact interval I into 

itself. Suppose the fixed point set off is [a, b] with a < b. Then ( i) x < a implies f(x) > x 
and (ii) x > b implies f(x) < x. 

Proof. By hypothesis, if x <t. [a,b], then /(x) :j; x. Assume (i) is not true, then 
there exists x < a with / ( x) :S x. On the other hand f ( 0) > 0. It follows then from the 
Intermediate Value Theorem that there exists some c E (0, x) with /(c) = c which is a 
contradiction. Hence (i) is true. Similarly, (ii) is proved. 

Lemma 2. Let f : I ---+ I be a continuous mapping of a compact interval I into I 
with fixed point set (a, b], where a < b. Then there exists some interval (a, /3) containing 
[a,b] such that for each x E (a,/3) n I, the sequence of iterates {f"(x)} converges to a 
fixed point off. 

Proof. For the positive number£ = b-a, we may use the continuity of/ and the fact 
that f(a) = a to get 6 > 0 such that x E (a_:6, a+b) implies lf(x)-f(a)I = lf(x)-al < £, 
i.e. f(x) E (a - £,a+ c) = (a - £, b). Now either f(x) E [a,b) or f(x) E (a - £, a). If 
f(x) E [a, b), we are done. If f(x) E (a - £, a), then Lemma 1 implies f(x) > x which 
implies f(x) E (a - 6, a+ 6) and which in turn implies /2(x) E (a - £, b). Inductively, 
either there exists some N such that either JN(x) E [a,b) (in this case we are done) 
or fn(x) < a for all n with x < f(x) < f2(x) < · · ·. In the latter case, {/n(x)} is 
an increasing sequence of real numbers bounded above and hence limn-= fn(x) exists. 
Clearly this limit is a fixed point of/, in fact, the limit is a. Thus, we have shown that 
for all x E (a - 6, a+ 6), the sequence of iterates {fn(3;)} converges to a fixed point off. 
Similarly, we may prove that there exists some 6' > 0 such that for all x E ( b - 6', b + 6'), 
the sequence of iterates {fn(x)} converges to a fixed point off. 

We shall also make use of the following lemma which is provable by the same tech 
niques as above. 

Lemma 3. Let f : I ---+ I be a con_tinuous mapping of a compact interval I into itself 
with fixed point set [a, b], where a < b. Then for any£ > 0, there exists 6 with O < 6 < £ 
such that IY - al < 6 implies lfn(y) - al < £ for all n. 

Our next result provides some sufficient conditions for {fn} to be equi-continuous. 

Proposition 4. Let f : I---+ I be a continuous mapping such that its fixed point set 
is a non-degenerate interval. Suppose that for each x in I, {fn(x)} converges to a fixed 
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point off. Then {!"} is equi-continuous. 

Proof. Let the fixed_ point set of f be [a, b] with a.< b and let x E J be given. 
Since {fn( x)} converges to a fixed point of f, we need to consider the following three 
cases: (i) there exists so~e N such that JN(x) E (a,b), (ii) fn(x) (/_ (a,b) for any n 
with limn-+oo fn(x) = a, and (iii) /0(x) (/. (a, b) for any n with limn_,00 fn(x) = b. In 
case (i), for£= min{IJN(x) - al, l!N(x) - bl} > 0, we may use the equi-continuity of 
{J1, /2, • · ·, JN} to get a fJ > 0 such that IY - xi < 8 implies IJi(y) - Ji(x)I < € for 
i = 1, 2, · · ·, N. Observe that JN (y) E (a, b). Consequently IJ0(y) - f0(x )I = IJN (y) - 
JN(x)I <€for n ~ N. Thus {fn}~=l is equicontinuous at x. In case (ii), suppose c: > 0 
is given. First we apply Lemma 3 to get some €1 with O < €1 < ~ such that 

I Y-:-- a I< c' implies for all n. (1) 

Next, limn-oo f"(x) = a yields an N such that n ~ N implies lfn(x) - al < c:' /2. 
Also, we may use the equi-continuity of {/, /2, · · · JN} at x to get a 6 > 0 such that 
IY - xi < 6 implies IJi(y) - Ji(x)I < €1 /2 for i = 1, 2, · · ·, N. In particular, jy - xi < fJ 

implies IJN(x) - JN(y)I < £'/2. Thus IJN(y)- al~ IJN(y) - JN(x)I + IJN(x) - al< 
£
1 /2+£'/2 = €1• It follows now from (1) that lfn(y)-al < c/2 for all n ~ N. Consequently 
for n ~ N, we get 

I fn(y) - f0(x) I ~I fn(y) - a I+ I a - f0(x) I 
€ £' € € < - + - < - + - = €. 2 2 2 2 

Thus, we have shown that for any£ > 0, there exists 6 > 0 such that jy - xi < 8 implies 
lfn(y) - fn(x)I <€for all n, i.e., {fn} is equi-continuous at x. 

Conversely, we have the following result: 

Proposition 5. Let f : I -+ I be a mapping such that {fn} is equicontinuous. 
Suppose f has more than one fixed point. Then for each x in I, {fn(x)} converges to a 
fixed point off. 

Proof. Equicontinuity of {fn} implies that the fixed point set F off is connected 
and closed. Since Fis not a singleton, F must be a non-degenerate interval, say F = [a, ,B] 
with a < ,B. Assume O < a < ,B < 1, we claim that there exists a 1, ,81 with [a, ,B] ~ 
(a1, ,Bi) such that x E (a1, ,BI) implies f"(x) converges to a fixed point off. Note that, by 
Lemma 1, x < a implies that f(x) > x. We then use the continuity off and the fact that 
f(a) = a to get a 8 with O < 6 < (,B- a) such that x E (o -6, a+ 6) implies fn(x) < ,B. 
Let a1 = a-6. Then it is easy to see that x E (o:1,,B] implies fn(x) converges to a fixed 
point of/. Similarly, we may find a ,81 > ,B such that x E [a,,81) implies that {fn(x)} 
converges to a fixed point off and the claim is proved. Next, let I< = {x E I : f"(x) 
converges to a fixed point off}. Firstly, I< =J 0 since K 2 [o,,B]. Secondly, we show that 
K is open. For that purpose, let x E K and a positive number £ < min(0-;01, ¥) 
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be given. Since fn(x) converges to a fixed point of/, there exists an integer N such 
that n ~ N implies that fn(x) E (a - €, (J + t). Also equicontinuity of {/n} implies 
that there exists a neighborhood U(x) such that y E U(x) implies lfn(y) - fn(x)I < €. 
Thus y E U(x) implies JN(y) E (a1,(Ji). It follows now from our earlier claim that 
fn(y) converges to a fixed point of/. Thirdly, we show that I< is also closed. For that 
purpose, use equi-continuity of {/n} on I to find a 6 > 0 such that Ix - YI < 6 implies 
lfn(x)-fn(y)I < € < min(a-2a1,¥) for all n. Now suppose limn_.00Xn = x with 
Xn E K. Choose m large enough such that lxm - xi < 6. For this Xm, we may choose N 
such that JN(xm) E (a - E,(J + €).·Thus IJN(x) - JN(xm)I <€which in turn implies 
that JN(x) E (a1,f31) and consequently fn(x) converges to a fixed point off and the 
proof is complete. 

It was convenient to state Propositions 4 and 5 as converses, but this required the 
condition that the fixed point set for f be a nondegenerate interval. That the fixed 
point set for f be connected is clearly necessary for equi-continuity of the set {fn}. (If 
f(a) =a< b = f(b) but f(x) > x (or f(x) < x) for all x E (a,b), then (fn)-1(05b) 
contains points arbitrarily close to a ( or to b) ). 

We turn to a brief discussion of what can happen when the fixed point set is a 
degenerate interval {c}. Observe first that the function f(x) = 1 - x satisfies f2(x) = x 
for all x. Thus {fn} is equi-continuous but {fn(x)} does not con~erge unless x = i, the 
fixed point. Thus Proposition 5 fails without the nondegeneracy assumption. On the 
other harid, Proposition 4 remains valid when f has a single fixed point. 

Proposition 6. Let f be a continuous function mapping I0 into Io. If for each 
n = 1, 2, · · ·, c is the only fixed point for fn, then {fn} is equicontinuous. In particular, 
this occurs if fn ( x) -,. c for all x, where c is the unique fixed point off. 

Proof. It follows readily from the assumption that c is the only fixed point for each 
fn that for all n, 

and 
fn(x) > x for all x E [O, c) 
fn(x) < x forall xE(c,l]. 

We use these facts to show that if J is any interval in Io such that f(J) C J, then 
f(J) C Int(J). This in turn, will imply that the sequence {fn} converges uniformly to 
c, from which equicontinuity of {fn} will follow from Ascoli's Theorem. 

Suppose J = [a, b] and f(J) C J. It is clear from(*) that c E Int(J). Choose x1 E J 
such that f(x1) =a.Then x1 > c because of(*). Inductively, obtain a sequence {xn}1 
such that J(xn+1) = Xn. Then Xn > Xn-1 for all n = 1, 2, · · ·. To see this, observe that 
if for some n, Xn+i < Xn, then Xn < c by (*). But then Jn+1(xn+1) = a, which is 
impossible, again by (*). Thus Xn increases to an element x00 and f(x00) = x00• This 
is impossible since c is the only fixed point of/. Thus a ~ f(J). Similarly, b ~ f(J). 
Consequently f(J) ~ Int(J). 
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Next, let Ii = f(Io) and for each n = 2, 3, ···,let In+l = f(In)· Write In = [an, bn]. 
It is clear that either In = { c} for some n or that In+l C Int(In) for all n so that {an} 
is an increasing sequence and { bn} is a decreasing sequence. Let a = limn-= an, b = 
limn ...... = bn. Then /([a, b]) = [a, b]. But this implies a = b = c. It follows that for each 
£ > 0, there exists a positive integer n such that fn(/0) C (c - £, c + c); in other words, 
f" ---+ c uniformly. The equicontinuity of {/"} is now an immediate consequence of 
Ascoli 's Theorem. 

For a mapping of an interval I onto itself, there is a particularly si_mple necessary 
and sufficient condition for equi-continuity of the sequence {/n} : namely that /2 be 
the identity. That the condition is sufficient is obvious. The necessity will follow as a 
corollary to the following proposition. 

Proposition 7. Let (X; d) be a compact metric space and f : X ---+ X be a surjective 
mapping whose sequence of iterates {fn} is equi-continuous. Then for any two points 
x,y in X, the two sequences of iterates {fn(x)}, {fn(y)} have convergent subsequences 
of the same indices {Jn;(x)}, {fni(y)} such that f"i(x)---+ x, fn;(y)---+ y as i---+ oo. 

Proof. Let xo, y0 be two arbitrary points of X. Define Xn, Yn by f(xn+1) = 
Xn, f(Yn+1) = Yn for n = 0,1,2,···. We may assume without loss of generality that 
{xn}, {Yn} have convergent subsequences with the same subscripts, say {xn,J, {Ynk} 
such that Xnk ---+ x=, Ynk ---+ Yoo ask---+ oo. Uniform equi-continuity of {fn} yields a 6 > 0 
such that d(x, y) < 6 implies d(fn(x ), (f"(y)) < 1 for all n. For this 6 > 0, we may choose 
an N such that k > N implies d(xnk, Xn(k+i)) < 6, d(ynk, Yn(k+i)) < 6 for i = 1, 2, · · ·. Fix 
k 2:: N and define Pi = n(k+i)-nk for i = 1, 2, ···.Thus P1 < P2 < ... , and Pi ---+ oo as i---+ 
oo. Now d(xnk+p;,Xnk) < 6 implies d(xo,/Pi(x)) = d(fnk":Pi(xnk+PJ,fnk+P;(xnJ) < 1 
for all Pi. Similarly, d(yo, f p; (yo)) < 1 for all P.i. Let one such Pi be called m1 amd 
we have d(xo,fm1(xo)) < l,d(yo,fm1(yo)) < 1. By the same procedure there exist 
{fq;(xo)}, {fqi(yo)} such that 

d(xo, r· (xo)) < ~, d(yo, ri (yo)) < ~ for i = 1, 2, · · ·, 

where qi ---+ oo as i ---+ oo. Thuf:i we may choose some qi > m1 and call it m2. Inductively, 
we get {/mi(xo)}, {Jmi(yo)} such that 

Hence fm1(xo)---+ xo, fmi(yo)---+ Yo- 

Corollary 8. Let (X, d) be a compact metric space and f : X ---+ X be a surjfctive 
mapping whose sequence of iterates {fn} is equicontinuous. Then f is a homeomorphism. 
( This corollary has also been obtained by Young [9] in connection with work of a different 
nature). 
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Proof. It suffices to show that f is injective, a fact that follows immediately from 
the previous result. 

Corollary 9. Let J = [a, b] be an interval. If f maps J onto J and {!"} is 
equicontinuous, then /2 is the identity. 

Proof. The function f is a homeomorphism of J onto J. If f(a) = a, then f(b) = b. 
Since the fixed point set off must be connected, f is the identity. If /(a) = b, then 
f(b) = a. Thus /2(a) = a, f2(b) =band since the fixed point set for /2 is connected, /2 
is the identity. 

Corollary 10. If f maps Io into 10 and {fn} is eqni-continuous, then there exists 
an interval E = [a, b] such that J2 is the identity on E. Furthermore for x (/_ E, J20(x) 
converges to some point of E. The interval E will be nondegenerate unless f0 has a 
unique fixed point for all n. 

Proof. Let E = U~=l En, where En is the fixed point set for /" .Then each En 
is connected. Suppose En is nondegenerate for some n, Then E is connected. In fact, 
if x, y E E, then there exist m, n such that x E Em, y E En so x and y are in Enm 
and [x,y] ~ E. Let [a,b] be the smallest interval containing E. Since E consists of the 
periodic points off, f maps E onto E and consequently f maps [a, b] onto [a, b]. It 
follows from Corollary 9 that /2 is the identity on [a,b]. If x (/. E, then by Proposition 
5, /2"(x) converges to some point of E. 

Remark. We cannot conclude that /"(x) converges to some point of E, but fn(x) 
is attracted to E in the sense that dist(!"( x ), E) -+ 0 as n-+ oo. The function 

1 1 3 
if O :'S X '.S :t -2(x-4)+4, 

J(x) = ~ 1-x if l<x<~ 4 - - 4 

1 3 1 !~x~l --(x--)+- if 
2 4 4 

furnishes an example, as straightforward computations show. 

Finally, we summarize the results of this section as the following theorem. 

Theorem 11. Let f : I-+ I be a continuous mapping of a compact interval I into 
itself 

(1) If the fixed point set off is connected and for each x, {f"(x)} converges to a 
fixed point off, then {!"} is equicontinuous. 

(2) If{!"} is equicontinuous, then for each x in I, dist(fn(x), E) -+ 0 as n-+ oo, 
where E is the fixed point set of J2. Furthermore, if f has more than one fixed point, 
then for each x in I, {fn( x)} converges to a fixed point off. 

(3) If {fn} is equicontinuous and f is surjective, then f is a homeomorphism and 
/2 is the identity mapping. 
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3. Additional Remarks. 

We close with some simple remarks related to the work of the previous section. 

Corollary 12. Let f : I -+ I be a continuous mapping. Then {fn} is equicontinuous 
if and only if nC:=1/n(I) = F2, where F2 is the fixed point set of /2. 

Proof. First, observe that f : n':::1/n(I) -+ n':=1/n(J) is onto and n~=1/.n(I) 
is an interval. It follows then from the equicontinuity of {fn} and Corollary 8 that 
nC:=1fn(I) = F2. Conversely, since F2 = n~=1/n(I) is connected, it follows from a result 
of W. Boyce [1] that {fn} is equicontinuous. 

The following result due to J. Cano [4] also follows immediately from Proposition 
5. 

Corollary 13. Let f : I -+ I be a mapping such that {fn} is equicontinuous. If the 
fixed point set off is non-degenerate, then the set of periodic points off coincides with 
the fixed point set off. 

Combining Corollaries 12 and 13, we see that when {/n} is equicontinuous, there 
can be periodic points of order one or two, but of no other orders. This may sometimes 
provide. a quick proof that a particular family is not equicontinuous. For reference, we 
state this as a corollary. 

Corollary 14. Let f : I -+ I be a continuous mapping. If f possesses a point of 
minimal period n > 2, then {fn} cannot be equicontinuous. 

Remark. A continuous mapping f : I -+ I is said to be expanding if I can 
be divided into finitely many subintervals Ii, I2, ... , In. Such that there exists ,\ > 1 
with lf(x) - J(y)I ~,\Ix - YI for all x,y belonging to the same subinterval Ij. These 
mappings have been studied by Byers [2] and Zhang [10]. They proved that such a 
mapping possesses a periodic point whose period is not an integral power of 2. It follows 
[2] that f is chaotic. One might suspect that the expanding constant ,\ > 1 can be relaxed 
to 1 on some subinterval h. We give the following easy example to show it cannot. 

Example. Let [a,b] ~ (0, 1) ~ [O, 1] = I. We may define a piecewise linear mapping 
/ : I -+ I in the following manner. If x E [a, b], define f(x) = x; if O :'.S x < a, define 
f ( x) in a rather arbitrary manner except that x < f ( x) < b and the slopes of the line 
segments of its graph is larger in absolute value than some given ,\ > 1; if b < x :'.S 1, 
define f(x) such that a < f(x) < x with the corresponding slopes larger than ,\_ Then 
it is easy to see that for each x in I, fn( x) converges to a fixed point of f and hence f 
does not possess any periodic points other than the fixed points. 
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