NORMS ON CARTESIAN PRODUCT OF LINEAR SPACES

CHI-KWONG LI AND NAM-KIU TSING

Abstract. Let X_i $(i=1,\dots,n)$ be real or complex linear spaces, each equipped with a norm $\|\cdot\|_i$. Standard ways of constructing norms $\|\cdot\|$ on the Cartestian product $X = X_1 \times \dots \times X_n$ are to define

$$||(x_1, \dots, x_n)|| = \varphi(||x_1||_1, \dots, ||x_n||_n)$$

via some functions φ on \mathbb{R}^n . Common examples of φ in standard texbooks are norms on \mathbb{R}^n . This may mislead peoples to think that any norm φ on \mathbb{R}^n can induce a norm on the product space X in the above way. In this note we show that this is actually false and characterize the functions φ that can give rise to norms on X in the above manner. It turns out that a necessary and sufficient condition on φ is:

for any $a_1, \dots, a_n, b_1, \dots, b_n \geq 0$,

- (I) $\varphi(a_1,\dots,a_n) > 0 \text{ if } (a_1,\dots,a_n) \neq (0,\dots,0);$
- (II) $\varphi(\alpha(a_1,\dots,a_n)) = \alpha\varphi(a_1,\dots,a_n)$ if $\alpha \geq 0$;
- (III) $\varphi(c_1,\dots,c_n) \leq \varphi(a_1,\dots,a_n) + \varphi(b_1,\dots,b_n)$ if $(c_1,\dots,c_n) = (a_1,\dots,a_n) + (b_1,\dots,b_n)$;
- (IV) $\varphi(a_1, \dots, a_n) \leq \varphi(b_1, \dots, b_n)$ if $a_i \leq b_i$ for all i. Several interesting consequences of the result are discussed.

Results and proofs

Let X be a finite or infinite dimensional linear space over \mathbb{F} , where \mathbb{F} is the field of all real or complex numbers. A *norm* on X is a function $\|\cdot\|: X \to \mathbb{R}$ that satisfies

- (N1) ||x|| > 0 for all nonzero $x \in X$;
- (N2) $\|\alpha x\| = |\alpha| \|x\|$ for all $\alpha \in F$, $x \in X$;
- (N3) $||x+y|| \le ||x|| + ||y||$ for all $x, y \in X$.

A simple example is to take $X = \mathbb{F}$ and ||x|| = |x| for all x in X. As the concept of the norm is of crucial importance in the study of mathematical analysis, it is introduced in the beginning chapters of most analysis textbooks.

Let $X_i (i = 1, \dots, n)$ be linear spaces over the same field, each equipped with a norm $\|\cdot\|_i$. Standard ways of constructing norms $\|\cdot\|$ on the Cartestian product X = 1

Received December 29, 1988, revised April 13, 1989.

AMS subject classification: 15A60

*Keywords: norm, cartesian product, linear spaces

 $X_1 \times \cdots \times X_n$ are to define

$$||(x_1,\dots,x_n)|| = \varphi(||x_1||_1,\dots,||x_n||_n)$$

via some functions φ on \mathbb{R}^n . Common examples of φ in standard textbooks of functional analysis (for example see [2,p.49], [4,p.41] or [5, p.142]) are

$$\varphi_p(a_1, \dots, a_n) = (a_1^p + \dots + a_n^p)^{1/p} \qquad (1 \le p \le \infty).$$
 (1)

The corresponding norms $||\cdot||_{(p)}$ on X will then be

$$||x||_{(p)} = (||x_1||_1^p + \dots + ||x_n||_n^p)^{1/p} \qquad (1 \le p \le \infty).$$
 (2)

In general, we say that a function $\varphi : \mathbb{R}^n \to \mathbb{R}$ induces a norm $\|\cdot\|$ on the Cartesian product $X = X_1 \times \cdots \times X_n$ if the function $\|\cdot\| : X \to \mathbb{R}$ defined by

$$||(x_1,\cdots,x_n)|| = \varphi(||x_1||_1,\cdots,||x_n||_n)$$

is a norm on X. A closed look of the problem shows that the domain of definition of φ can be confined to

$$\mathbb{R}^n_+ = \{(a_1, \dots, a_n) \in \mathbb{R}^n : a_1, \dots, a_n \ge 0\}.$$

In view of the functions φ_p $(1 \le p \le \infty)$ in the above examples, one may be tempted to conjecture that any norm $\varphi: \mathbb{R}^n \to \mathbb{R}$ can induce a norm on X. In fact, the subtlety of the situations is so easily overlooked that some authors even state this conjecture, which is not true in general, as a fact (see [3, p.39] for example). To see that the conjecture is not true, one may consider the following counter-example.

Define $\varphi: \mathbb{R}^2 \to \mathbb{R}$ by

$$\varphi(\alpha_1, \alpha_2) = \max\{|\alpha_1 + \alpha_2|, 2 |\alpha_1 - \alpha_2|\},\$$

which is a norm. Take $X_1 = X_2 = \mathbb{R}$ and $\|\cdot\|_1 = \|\cdot\|_2 = |\cdot|$. Then the function induced by φ is $\|\cdot\|: \mathbb{R}^2 \to \mathbb{R}$ where

$$\begin{aligned} ||(\alpha_1, \alpha_2)|| &= \varphi(|\alpha_1|, |\alpha_2|) \\ &= \max\{||\alpha_1| + |\alpha_2||, 2 ||\alpha_1| - |\alpha_2||\}. \end{aligned}$$

By direct computation, we get

$$||(3,1)|| = ||(3,-1)|| = 4;$$
 $||(3,1) + (3,-1)|| = ||(6,0)|| = 12.$

Hence $||\cdot||$ does not satisfy (N3) and cannot be a norm.

In the following theorem and Corollary 3, we characterize the functions $\varphi : \mathbb{R}^n_+ \to \mathbb{R}$ and $\varphi : \mathbb{R}^n \to \mathbb{R}$, respectively, that can induce norms on X. We shall assume without loss of generality that all component spaces X_i $(1 \le i \le n)$ are nontrivial (that is, $X_i \ne 0$), for if $X_i = 0$ then we can delete X_i from the Cartesian product $X_i = X_1 \times \cdots \times X_n$ without affecting the structure of X_i . Our main result is

Theorem. Let X_1, \dots, X_n be linear spaces over the same field \mathbb{F} and $\|\cdot\|_1, \dots, \|\cdot\|_n$ be norms on X_1, \dots, X_n respectively. Then a function $\varphi : \mathbb{R}^n_+ \to \mathbb{R}$ will induce a norm on $X = X_1 \times \dots \times X_n$ if and only if φ satisfies

- (I) $\varphi(a_1, \dots, a_n) > 0 \text{ if } (a_1, \dots, a_n) \neq (0, \dots, 0);$
- (II) $\varphi(\alpha(a_1,\dots,a_n)) = \alpha\varphi(a_1,\dots,a_n)$ if $\alpha > 0$;
- (III) $\varphi(c_1,\dots,c_n) \leq \varphi(a_1,\dots,a_n) + \varphi(b_1,\dots,b_n)$ $if(c_1,\dots,c_n) = (a_1,\dots,a_n) + (b_1,\dots,b_n);$
- (IV) $\varphi(a_1, \dots, a_n) \leq \varphi(b_1, \dots, b_n)$ if $a_i \leq b_i$ for all i.

Proof. Let $\varphi: \mathbb{R}^n_+ \to \mathbb{R}$ be given and $\|\cdot\|: X \to \mathbb{R}$ be induced by φ , that is,

$$||(x_1,\cdots,x_n)|| = \varphi(||x_1||_1,\cdots,||x_n||_n)$$

for all $(x_1, \dots, x_n) \in X$. Suppose φ satisfies (I) through (IV). By (I) and (II). one easily shows that $||\cdot||$ satisfies (N1) and (N2).

Now if $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in X$, then

$$||x+y|| = ||(x_1+y_1,\dots,x_n+y_n)||$$

= $\varphi(||x_1+y_1||_1,\dots,||x_n+y_n||_n).$ (3)

Since $||x_i + y_i||_i \le ||x_i||_i + ||y_i||_i$ for all i and φ satisfies (IV), the expression in (3) cannot be greater than

$$\varphi(||x_1||_1 + ||y_1||_1, \dots, ||x_n||_n + ||y_n||_n)
= \varphi((||x_1||_1, \dots, ||x_n||_n) + (||y_1||_1, \dots, ||y_n||_n))
\le \varphi(||x_1||_1, \dots, ||x_n||_n) + \varphi(||y_1||_1, \dots, ||y_n||_n)
\le ||(x_1, \dots, x_n)|| + ||(y_1, \dots, y_n)||
= ||x|| + ||y||.$$
(by(III))

Hence $||\cdot||$ satisfies (N3) also and is a norm then.

Conversely, suppose $||\cdot||$ satisfies (N1) through (N3). Since each x_i is nontrivial, we can find nonzero $x_i \in X_i$ such that $||x_i||_i = 1$. Then for any $(a_1, \dots, a_n) \in \mathbb{R}^n_+$,

$$||a_i x_i||_i = a_i$$
 for all i

and hence

$$\varphi(a_1,\dots,a_n) = \varphi(||a_1x_1||_1,\dots,||a_nx_n||_n) = ||(a_1x_1,\dots,a_nx_n)||.$$

Using this relation and the fact that $\|\cdot\|$ is a norm, one can prove that φ satisfies (I) and (II) readily. The condition (III) is also satisfied because for any (a_1, \dots, a_n) , $(b_1, \dots, b_n) \in \mathbb{R}^n_+$,

$$\varphi((a_1, \dots, a_n) + (b_1, \dots, b_n))
= \varphi(a_1 + b_1, \dots, a_n + b_n)
= ||(a_1x_1 + b_1x_1, \dots, a_nx_n + b_nx_n)||
= ||(a_1x_1, \dots, a_nx_n) + (b_1x_1, \dots, b_nx_n)||
\leq ||(a_1x_1, \dots, a_nx_n)|| + ||(b_1x_1, \dots, b_nx_n)||
= \varphi(a_1, \dots, a_n) + \varphi(b_1, \dots, b_n).$$

Finally, for any i with $0 \le a_i \le b_i$, we can find t such that $1/2 \le t \le 1$ and $a_i = (2t-1)b_i = tb_i + (1-t)(-b_i)$. As a result,

$$\varphi(a_{1}, \dots, a_{n})
= ||(a_{1}x_{1}, \dots, a_{n}x_{n})||
= ||t(a_{1}x_{1}, \dots, a_{i-1}x_{i-1}, b_{i}x_{i}, a_{i+1}x_{i+1}, \dots, a_{n}x_{n})
+ (1-t)(a_{1}x_{1}, \dots, a_{i-1}x_{i-1}, -b_{i}x_{i}, a_{i+1}x_{i+1}, \dots, a_{n}x_{n})||
\leq t||(a_{1}x_{1}, \dots, a_{i-1}x_{i-1}, b_{i}x_{i}, a_{i+1}x_{i+1}, \dots, a_{n}x_{n})||
+ (1-t)||(a_{1}x_{1}, \dots, a_{i-1}x_{i-1}, -b_{i}x_{i}, a_{i+1}x_{i+1}, \dots, a_{n}x_{n})||
= t\varphi(a_{1}, \dots, a_{i-1}, b_{i}, a_{i+1}, \dots, a_{n})
+ (1-t)\varphi(a_{1}, \dots, a_{i-1}, b_{i}, a_{i+1}, \dots, a_{n})
= \varphi(a_{1}, \dots, a_{i-1}, b_{i}, a_{i+1}, \dots, a_{n}).$$

Since this is true for all i, we have

$$\varphi(a_1, \dots, a_n) \leq \varphi(b_1, a_2, \dots, a_n)$$

$$\leq \varphi(b_1, b_2, a_3, \dots, a_n) \leq \dots \leq (b_1, \dots, b_n)$$

if $0 \le a_i \le b_i$ for all i. Hence (IV) is satisfied.

A particular application of the above theorem gives

Corollary 1. Suppose $\Phi: \mathbb{F}^n \to \mathbb{R}$ is a function that satisfies

$$\Phi(\alpha_1, \dots, \alpha_n) = \Phi(|\alpha_1|, \dots, |\alpha_n|) \text{ for all } (\alpha_1, \dots, \alpha_n) \in \mathbb{F}^n.$$
 (V)

Let φ denote the restriction on Φ on \mathbb{R}^n_+ . Then Φ is a norm if and only if φ satisfies (I) through (IV).

Proof. We look at each component space F in the Cartesian product \mathbb{F}^n as equipped with the norm $|\cdot|$. Then Φ is induced by its restriction on \mathbb{R}^n_+ . Applying the theorem, we get the result.

Another interpretation of Corollary 1 is the following. Let $\varphi : \mathbb{R}^n_+ \to \mathbb{R}$ be a given function. We extend the domain of φ to \mathbb{F}^n by defining

$$\varphi(\alpha_1, \dots, \alpha_n) = \varphi(|\alpha_1|, \dots, |\alpha_n|) \quad \text{for } (\alpha_1, \dots, \alpha_n) \in \mathbb{F}^n.$$

Then Corollary 1 says that φ can be extended to a norm on \mathbb{F}^n in the above way if and only if φ satisfies (I) through (IV).

A norm on \mathbb{F}^n satisfies (V) is known as an absolute norm. A norm $\|\cdot\|$ on \mathbb{F}^n is said to be monotone if for $x=(x_1,\dots,x_n)$ and $y=(y_1,\dots,y_n)$ in \mathbb{F}^n , $|x_i|\leq |y_i|$ for all $i=1,\dots,n$, will imply $||x||\leq ||y||$. By Corollary 1, we easily deduce the following well-known result (see [1, p.285]).

Corollary 2. A norm on \mathbb{F}^n is monotone if and only if it is absolute.

Now we let Φ be a norm on F^n . Recall that Φ is said to induce a norm on $X = X_1 \times \cdots \times X_n$ if the function $\|\cdot\|: X \to \mathbb{R}$ defined by

$$||(x_1,\cdots,x_n)|| = \Phi(||x_1||_1,\cdots,||x_n||_n)$$

is a norm on X. As the above definition relies solely on the restriction of Φ on \mathbb{R}^n_+ , we see that Φ will induce a norm on X if and only if its restriction on \mathbb{R}^n_+ does so. By Corollary 1 and our Theorem, we have

Corollary 3. Let Φ be a norm on \mathbb{F}^n that satisfies (V). Then Φ induces a norm on $X = X_1 \times \cdots \times X_n$.

By Corollary 3, one sees why the functions $\varphi_p(\cdot)$ defined in (1) can induce norms in (2) on $X = X_1 \times \cdots \times X_n$.

References

- [1] R. A. Horn and C.R. Johnson, Matrix Analysis, Combridge Univ. Press, New York, 1985.
- [2] A.A. Kirillov and A. D. Gvishiani, Theorems and Problems in Functional Analysis, Springer-Varlag, New York, 1982.
- [3] J.R. Leigh, Functional Analysis and Linear Control Theory, Academic Press, London, 1980.
- [4] B.V. Limaye, Functional Analysis, Wiley Eastern Ltd., New Delhi, 1981.
- [5] R. D. Milne, Applied Functional Analysis An introductory Treatment, Pitman Publishing Inc., Massachusetts, 1980.

Chi-Kwong Li

Department of Mathematics, The College of William and Mary, Williamsburg, VA 23185.

Nam-Kiu Tsing

Systems Research Center and Electrical Engineering Department, University of Maryland, College Park, MD 20742.