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TWO RESULTS ON C-CONGRUENCE NUMERICAL RADII 

CHE-MAN CHENG 

Abstract. Let Mn denote the set of n X n complex matrices. For A and C in Mn, 
define the C-congruence numerical radius of A by 

Pc(A) = max{I tr(CUAUt) j: U is unitary}. 

First, we show that pc is a norm on Mn if and only if C is neither symmetric nor 
skew-symmetric. Secondly, we use pc to characterize two matrices A and Bin Mn 
to be unitarily congruent (i.e. A= UBUt for some unitary U). 

1. Introduction. 

Let Mn denote the set of all n x n complex matrices and Un the subset consisting of 
all n x n unitary matrices. Denote by tr A, At and A* the trace, transpose and conjugate 
transpose of A( E l\,fn) respectively. For A and C in Mn, the C-numerical range of A and 
the C-numerical radius of A defined by 

Wc(A) = {tr(CU AU*) : U E Un} 

and 
rc(A) = max{! z I: z E Wc(A)} 

respectively have been studied extensively. In particular, Goldberg and Straus [2) showed 
that re is a norm on Mn if and only if C is nonscalar and tr Cf:. 0 (for other proofs, see 
[6] and [8]). Li and Tsing [5] showed that A = o:U BU* with o E C and I o: I= 1 if and 
only if r A" (A) = r A· (B) and rB• (A) = TB• (B). 

Parallel to the C-numerical range, Thompson [10] introduced the C-congruence nu 
merical range of A defined by 

Rc(A) = {tr(CU AUt) : U E Un}- 

Various results have also been obtained, see [1] and [9]. 
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It is natural to define the C-congruence numerical ·radius of A by 

pc(A) = max{I z l: z E Rc(A)}. 
By taking C to be any symmetric matrix (i.e. C = Ct) and A to be any skew-symmetric 
matrix (i.e. A= -At), or vice versa, we can easily check that pc(A) = 0. So, pc is not 
a norm of Mn if C is symmetric or skew symmetric. We shall prove, for other cases of 
C, pc is a norm on Mn. 

Two matrices A and B are said to be unitarily congruent (resp. unitarily similar) 
if A = U BUt (resp. A = U BU*) for some U E Un. Hong and Horn [3] gave a charac 
terization for two matrices to be unitarily congruent in terms of unitary similarities. As 
an application of pc, we shall prove that A and B are unitarily congruent if and only if 
PA•(A) = PA•(B) and PB•(A) = PB·(B). 

In what follows, we shall assume n > I so as to avoid trivial modifications. 

2. Two results on C-congruence numerical radii. 
Since the relation < A, B >= tr(AB*) is an inner product on Mn, the following 

lemma is obvious. 

Lemma 1. Let CE Mn. Then the following two statements are equivalent: 

(i) For any A E Mn, if pc(A) = 0, then A= O; 
(ii) span{UtCU: U E Un}= Mn, where span{UtCU: U E Un} is the linear subspace of 

Mn spanned by the set {UtCU: U E Un}- 

Let Sn (resp. Kn) denote the set of all n x n symmetric (resp. skew-symmetric) 
matrices. Let diag(s1, · · ·, sn) denote the diagonal matrix with the ith diagonal entry 
being Si. The direct sum of two square matrices A and B is written as A EB B. The 
following two lemmas are due to Takagi [7] and Youla[ll] respectively. 

Lemma 2. Let C E Sn. Then there exists U E Un such that Ut CU = 
diag(si, · · ·, sn), where Si, i = 1, · · ·, n are non-negative real numbers and Si 2: Si+l, i = 
1,···,n-1. 

Lemma 3. Let C E Kn. Then there exists U E Un such that 

where Si, i = I, · · ·, m are positive real numbers and Si 2: si+1, i = 1, ·, m - 1. 

Let Eij denote the matrix in Mn with 1 at its (i, j) entry and zero elsewhere. If u 
is a permutation of { 1, · · · , n}, then P( u) denotes the corresponding permutation matrix 
(i.e. P(u) = (6i,<7(i))). We also use the standard notation (i1,···,ir) to denote the 
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permutation (in fact, a cycle) u for which u(i1) = i1+i for I= l, · · ·, r-1, u(ir) = i1 and 
u(i) = i otherwise. As usual, u1u2 denotes the composition of u1 and u2. 

Tam[8] showed that if A is nonscalar and tr A f. 0, then span { U AU* : U E Un} = 
Mn. The following Theorem gives a parallel result. 

Theorem 1. Let C(f. 0) E Mn. Then 

if CE Sn 
if CE Kn 
otherwise. 

Proof. Case 1. C E Sn, then the inclusion span{UtCU : U E Un} c Snis trival. 
Since span{UtCU : U E Un} is invariant under unitary congruence of C, by Lemma 2, 
we may assume C = diag(s1, · · ·, sn). 

Firstly, suppose that C = E11. Let 

where In-2 is the (n - 2) x (n - 2) identity matrix. Then 

where On-2 is the ( n - 2) x ( n - 2) zero matrix. Direct computations yield 

Pt((lj))C P((lj)) = Ejj, j = l, · · ·, n; 

1 . 
pt ((lr)(2l))(VtCV)P((lr)(2/)) = 2(Err + Er1 + E1r +Eu) : 1 ~ r < I~ n. 

As the multiplication of permutation matrices in this way preserves unitary congruence, 
we have shown that { Ejj : j = 1, · · · , n} U ! ( Err + Erl + E1r + Eu) : 1 ~ r < l ~ n} C 
{UtCU: U E Un}- Since they also form a basis of Sn, we are done if C = E11. 

For the general case C = diag(s1, • · ·, sn) with s1 f. 0 (else C = 0) let W = 
diag(l, i, · · ·, i) E Un, where i2 = -1. Then 

Hence, we have 

and so Case 1 is settled. 
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Case 2. C E Kn. The proof is similar to case 1 and we give only a sketch. We apply 

Lemma 3, if C = ( ~l ~) (El On-2, then 

{Pt((lr)(2l))CP((lr)(2l)): 1 ~ r <I~ n} { ( Erl - E1r) : 1 ~ r < I ~ n} 

and is a basis of Kn. For the general case, we let 

if n is even 

if n is odd. 

Then 2!1 (WtCW + C) = ( ~l ~) $ On-2· Hence our result follows. 
Case 3. C is neither symmetric nor skew-symmetric. 
Claim: there exist Ai EC and Ui E Un, i = l, ···,I such that Ef=iAiUfCUi = Ct. 

Proof. Since C + Ct is symmetric and non-zero, by case 1, we can find Vi,· · · , Vm E 
Un, where m = 1 + · · · + n = dim Sn, such that 

is a basis of Sn. Since dim Sn > dim Kn, 

must be linearly dependent. Let /3i E C, i = 1, · · ·, m be such that not all of them are 
zero and t /3i vni<c - ct)]Vi = 0. 

i=l 

Then, as C = !(C +ct)+ !(C - Ct), 

£: /3i v? CVi = £: /3d1i' [ ~ ( c + ct) J Vi 
i=l i=l 

is symmetric and nonzero. By case 1 again, there exists O:j EC and Uj E Un,j = 1, · · ·, r 
such that 

r m 

L O:jUJ (z:= /3i V:'CVi)Uj =. C + ct 
j=l i=l 

Hence the claim is valid. 
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Now, for any A E Mn, A= !(A+ At)+ !(A -At). 
With ~~=l >iiU/CUi =ct, by Case I and Case 2 respectively, we conclude that 

t(A + At), t(A - At) E span{UtCU: U E Un}. 

Hence A E span{UtCU : U E Un} and the proof is completed. 
By Lemma 1 and Theorem 1, we readily have: 

Theorem 2. For n > 1, pc is a norm on Mn if and only if C is neither symmetric 
nor skew-symmetric. 

From Theorem 1 and results similar to Lemma 1, we see that if C(/) is symmetric 
(resp. skew-symmetric), Pc is a norm on Sn (resp. Kn). 

The idea of the proof of the following theorem was given by Li and Tsing [5]. How 
ever, since the proof is short and for the sake of completeness, we reproduce the proof. 

Theorem 3. Let A, BE Mn. Then A and B are unitarily congruent if and only if • 
PA•(A) = PA•(B) and PB•(A) = PB•(B). 

Proof. ( =>) Since Pc (A) is invariant under unitary congruence of A, the result 
follows. ( <=) Let 11 · Jl denote the norm on Mn induced by the inner product < A, B >= 
tr(AB*) on Mn. 

For any A, C E Mn, by Cauchy-Schwarz inequality, 

Pc(A) = max{!< utcu, A* >I: u E Un} 
I 

max{!< A, U*C*U* >I: U E Un} 
< IIAll · IIC*II, 

with the equality holds if and only if there exists a E C and U E Un such that A = 
o:UC*Ut. By the above inequality and given assumption, we have 

PA· (A) PA· (B) :S IIAll · IIBII 
and 

11n112 = Pn· (B) = Pn· (A) :S JIAII IIBII- 
So IIAJI = IIBII and hence Pn•(A) = IIAll · IIBII. Since the equality holds, A= aU BUt for 
some unitary U and complex number o:. As IIAII = IIBII, we can assume I a I= 1. Then 
A= (a112U)B(o:112U)t and o:112U E Un. 
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