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TWO RESULTS ON C-CONGRUENCE NUMERICAL RADII

CHE-MAN CHENG

Abstract. Let M, denote the set of n X n complex matrices. For A and C in My,
define the C-congruence numerical radius of A by

pc(A) = max{|tr(CUAU") |: U is unitary}.

First, we show that pc is a norm on M, if and only if C is neither symmetric nor
skew-symmetric. Secondly, we use pc to characterize two matrices A and B in M,
to be unitarily congruent (i.e. A = UBU! for some unitary U).

1. Introduction.

Let M, denote the set of all n x n complex matrices and ¥, the subset consisting of
all n x n unitary matrices. Denote by tr A, A* and A* the trace, transpose and conjugate
transpose of A(€ M) respectively. For A and C in M, the C-numerical range of A and
the C-numerical radius of A defined by

Wc(A) = {tr(CUAU™): U €lU,}
and
rc(A) = max{|z|:z € Wc(4)}

respectively have been studied extensively. In particular, Goldberg and Straus [2] showed
that r¢ is a norm on M, if and only if C is nonscalar and ¢r C # 0 (for other proofs, see
(6] and [8]). Li and Tsing [5] showed that A = aUBU* with a € C and | a |= 1 if and
only if r4«(A) = r4-(B) and rg-(A) = rg-(B).

Parallel to the C-numerical range, Thompson [10] introduced the C-congruence nu-
merical range of A defined by

Rc(A) = {tr(CUAUY) : U € U,}.

Various results have also been obtained, see [1] and [9].
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It is natural to define the C-congruence numerical radius of A by

pc(A) = max{|z|: z € Rc(4)}.

By taking C to be any symmetric matrix (i.e. C = C*) and A to be any skew-symmetric
matrix (i.e. A = —A?), or vice versa, we can easily check that pc(A) = 0. So, pc is not
a norm of M, if C is symmetric or skew symmetric. We shall prove, for other cases of
C, pc is a norm on M,.

Two matrices A and B are said to be unitarily congruent (resp. unitarily similar)
if A= UBU! (resp. A = UBU*) for some U € U,. Hong and Horn [3] gave a charac-
terization for two matrices to be unitarily congruent in terms of unitary similarities. As
an application of pc, we shall prove that A and B are unitarily congruent if and only if
pa-(A) = pa-(B) and pp-(4) = pp-(B).

In what follows, we shall assume n > 1 so as to avoid trivial modifications.

2. Two results on C-congruence numerical radii.
Since the relation < A, B >= tr(AB*) is an inner product on My, the following
lemma is obvious.

Lemma 1. Let C € M,. Then the following two statements are equivalent:

(i) For any A € My, if pc(A) =0, then A = 0;
(i) span{U'CU :U € U,} = M,,, where span{U*CU : U € Uy} is the linear subspace of
M,, spanned by the set {U'CU :U €U,}. |

Let S, (resp. K,) denote the set of all n x n symmetric (resp. skew-symmetric)
matrices. Let diag(s;,---,$s,) denote the diagonal matrix with the i'* diagonal entry
being s;. The direct sum of two square matrices A and B is written as A @ B. The
following two lemmas are due to Takagi [7] and Youla[11] respectively.

Lemma 2. Let C € S,. Then there exists U € U, such that U'CU =
diag(si, -+, Sn), where s;,i =1,---,n are non-negative real numbers and s; > s;41,1 =
fonis s B,

Lemma 3. Let C € K,,. Then there ezists U € U,, such that

UtCU:<_081 ‘B‘) @0 ( ‘ s(,),,) ® [0 @& [0]

—Sm

where s;,t = 1,---,m are positive real numbers and s; > s;41,1=1,-,m — 1.

Let F;; denote the matrix in M, with 1 at its (7, j) entry and zero elsewhere. If o
is a permutation of {1,---,n}, then P(o) denotes the corresponding permutation matrix
(i.e. P(o) = (é;,0(:))).- We also use the standard notation (iy,---,%-) to denote the
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permutation (in fact, a cycle) o for which o(%;) = 4143 forl =1,---,r—1, 0(i;) = i; and
o(i) = © otherwise. As usual, 0;05 denotes the composition of o and o5.

Tam[8] showed that if A is nonscalar and ¢trA # 0, then span{UAU* : U € U,} =
M,,. The following Theorem gives a parallel result.

Theorem 1. Let C(# 0) € M,,. Then

S, ifCesS,
span{U'CU : U € Up} = {ICn ifCek,

M, otherwise.

Proof. Case 1. C € S, then the inclusion span{U'CU : U € U,} C Syis trival.
Since span{U'CU : U € U,} is invariant under unitary congruence of C, by Lemma 2,
we may assume C = diag(s1, -+, 5n).

Firstly, suppose that C = F;. Let

L ("%(} _11)) ® In-2 €Up,

where I,,_5 is the (n — 2) X (n — 2) identity matrix. Then

viey = (%(} })) ® On_z

where Oy, _3 is the (n — 2) x (n — 2) zero matrix. Direct computations yield

P'((15))CP((15)) = Ejj, §=1,-+-,n;

PH((Ar)@D))(VICV)P((1r)(21)) = %(Err + Bt Bt Epf:lew<cizn,

As the multiplication of permutation matrices in this way preserves unitary congruence,
we have shown that {Ej; :j =1, ,n}U(Err + En+ Er + Ey):1<r<i<n}C
{U'CU : U € U,}. Since they also form a basis of S,,, we are done if C = E;.
For the general case C = diag(s;,---,s,) with s; # 0 (else C = 0) let W =
diag(1,i,---,1) € Uy, where i> = —1. Then
1

Sm—— t —
25 (W'OW +C) = Bn.

Hence, we have
span{U*'CU : U € Up} D span{U'E,,U :U €U,} = S,

and so Case 1 is settled.
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Case 2. C € K,,. The proof is similar to case 1 and we give only a sketch. We apply

Lemma 3, if C = (_01 (1)) ® Oy, —2, then

{P(QAr)2D))CP((1r)(2)):1<r<i<n} = {(En—Ey):1<r<1<n}

and is a basis of K. For the general case, we let

L& 01 D---D 4 1 if n is even
10 10
e = 0 1 01 .
1269(1 0) ea---ea(l 0)@[1] if n is odd.

Then 7 (W'CW + C) = (_01 -

Case 3. C is neither symmetric nor skew-symmetric.
Claim: there exist A\; € C and U; € Uy, i = 1,---,1 such that T!_, \,U}CU; = C.

) @ O,,_o. Hence our result follows.

Proof. Since C+C" is symmetric and non-zero, by case 1, we can find V;,---,V,, €
U,, where m=1+4+---4+n =dim S,, such that

VEC+CWiti=1,m)
is a basis of S,,. Since dim S, > dim K,,,
{V:[%(C ~CViti=1,. -, m}

must be linearly dependent. Let 8; € C, i = 1,---,m be such that not all of them are
zero and :

Y BVIS(C - OO = 0.
1=1

Then, as C = %(C+ C) + %(C =),
m m 1
VIOV = VEH=(C + CHVi
Zﬂ }:ﬂ 5(C+CY)]

is symmetric and nonzero. By case 1 again, there exists aj€Cand U; €lUp,j=1,---,r
such that

D Ui Qo AVICVU; = C+Ct
j=1

i=1

Hence the claim is valid.



TWO RESULTS ON C-CONGRUENCE NUMERICAL RADII 63

Now, for any A € M,, A= $(A+ A*) + (A - AY).
With Z_, \;UfCU; = C?, by Case 1 and Case 2 respectively, we conclude that

%(A+At), %(A—A‘) € span{U'CU : U € U,}.

Hence A € span{U*CU : U € U,} and the proof is completed.
By Lemma 1 and Theorem 1, we readily have:

Theorem 2. Forn > 1, pc is a norm on M, if and only if C is neither symmetric
nor skew-symmeiric.

From Theorem 1 and results similar to Lemma 1, we see that if C(#) is symmetric
(resp. skew-symmetric), pc is a norm on S, (resp. K,,).

The idea of the proof of the following theorem was given by Li and Tsing [5]. How-
ever, since the proof is short and for the sake of completeness, we reproduce the proof.

Theorem 3. Let A, B € M,. Then A and B are unitarily congruent if and only if

Proof. (=) Since pc(A) is invariant under unitary congruence of A, the result
follows. (<) Let || - || denote the norm on M, induced by the inner product < A, B >=
tr(AB*) on M,.

For any A,C € My, by Cauchy-Schwarz inequality,
pc(A) = max{|< U'CU,A* >|: U € U,)
= max{|< A, U*C*U* >|:U €U}
< 1Al et
with the equality holds if and only if there exists & € C and U € I, such that A =

aUC*U*. By the above inequality and given assumption, we have

IAII* = pa-(4) = pa-(B) < ||A|l-||B]|

and

IBIP = pp-(B) = ps-(4) < [|A]l||B]|
So ||A|| = ||B|| and hence pp-(A) = ||A]|-||B]|. Since the equality holds, 4 = o/ BU® for
some unitary U and complex number a. As ||A|| = ||B||, we can assume | o |= 1. Then
A = (}?U)B(a'?U) and o/2U € U,.
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