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ON NONNEGATIVE MATRICES WITH 
A FULLY CYCLIC PERIPHERAL SPECTRUM 

Bit-Shun Tam 

Abstract. Let A be a square complex matrix. We denote by p(A) the spectral 
radius of A. The set of eigenvalues of A with modulus p(A) is called the peripheral 
spectrum of A. The latter set is said to to be fully cyclic if whenever p(A)ox = Ax, 
x #: 0, I a I= 1, then Ix I (sgn x)k is an eigenvector of A corresponding to p(A)ok 
for all integers k. In this paper we give some necessary conditions and a set 
of sufficient conditions for a nonnegative matrix to have a fully cyclic peripheral 
spectrum. Our conditions are given in terms of the reduced graph of a nonnegative 
matrix. 

1. Introduction and Definitions 
The graph-theoretic properties of a (entrywise, square) nonnegative matrix and its 

algebraic (spectral) properties are intimately connected, as most notably illustrated by 
the Perron-Frobenius theorem. Indeed, the important class of irreducible nonnegative 
matrices consists of exactly those nonnegative matrices with a strongly connected asso 
ciated directed graph. For an excellent survey article on the subject, see Schneider [5]. 
In this paper we shall investigate the relation between the graph of a nonnegative matrix 
and the property of having a fully cyclic peripheral spectrum. We shall obtain some 
necessary conditions and a set of sufficient conditions for a nonnegative matrix to have 
a fully cyclic peripheral spectrum. This direction of research appears to be new. 

vVe assume elementary knowledge on nonnegative matrices that can be found in 
many textbooks (see, for instance, Berman and Plemmons [1] or Horn and Johnson [3]). 
To fix our notation and terminology, we give some definitions. 

We denote the spectrum and the spectral radius of a matrix P respectively by <r(P) 
and p(P). According to the famous Perron-Frobenius theorem, if P is a nonnegative 
matrix then p(P) E u(P). The set of eigenvalues of P with modulus p(P) is called the 
peripheral spectrum of P. The latter set is said to be cyclic if p(P)o: E <r(P) and I a I= 1 
imply that p( P)ak E u( P) for all integers k. Note that then a is necessarily a root of 
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unity (unless Pis nilpotent). If x = (f.1, · · · ,E.nf E en, we denote by Ix I the real vector 
(l.e1 I, ... ' I en If. And if also y = (111, ... '11nf E en, then we denote by xy the vector 
(f.1771, · · · ,en11nf. In particular, we use xk to denote the vector ((f, · · · ,(~f. Also we 
use sgn x to denote the vector (sgn f.1, · · ·, sgn E.nf, where sgn 8 = 8/ I 8 I if 8 f. 0 
and for 8 = 0 define sgn 8 = 1. The peripheral spectrum of an n x n matrix P is said 
to be fully cyclic if whenever p(P)ax = Px, 0 f. x E en, I a I= 1, then Ix I (sgn x)k 
is an eigenvectoc of P corresponding to p(P)ak for all integers k. We shall denote a 
nonnegative (resp. strictly positive) vector x by x ~ 0 (resp.x > 0). 

We now collect the necessary graph-theoretic definitions. For reference, see Schneider 
[5]. 

Denote by < n > the set { 1, · · · , n}. As usual, we define the associated directed 
graph of an n x n complex matrix P = (Pii) to be the graph G( P) with vertex set < n > 
where ( i, j) is an arc if and only if Pij f. 0. The strongly connected components of G(P) 
are called simply classes of P, and are denoted by Greek letters a, /3, etc. For any two 
classes a and (J, we say a has access to (J or (J has access from a, and we write a >= /3 
or B =< a, if there is a path in G(P) from a vertex in a to some (and hence every) 
vertex in (J. We write a >- /3 or /3--< a if a >= (J and a f. /3. We also say a vertex i 
has access to a class a if there is a path in G(P) from i to some vertex in a. A class a is 
said to initial (resp. final), if there is no class /3 such that /3 >- a (resp. a >- (J). By 
the reduced graph of P, we mean the directed graph with classes of P as vertices, where 
(a, (J) is an arc if and only if a f. (J and P013 f. 0, where P013 denotes the submatrix of P 
with row indices from a and column indices from (J. 

Let x = (6, ... , en? E en. By the support of x we mean the set supp(x) = { i E 
< n >: (i f. 0}. For any class a of P, we denote by x o: E cl o:I the corresponding sub vector 
of x. A class a is said to be in supp(x) if x0 f. O; a is said to be final in supp(x) if a is 
in supp( x) and there is no class /3 in supp( x) such that a >- (J. 

Let P be an n x n nonnegative matrix. A class a ( of P) is distinguished if p( P o:o:) > 
p(P1313) for any class /3 >- a. A class a is said to be basic if p(P00) = p(P). Clearly 
basic classes and initial classes are all distinguished classes. 

A real matrix A is called a singular M-matrix if A = p(P)I -P for some nonnegative 
matrix P. Note that then A and P have the same classes. We call a class a of a singular 
M-matrix basic (resp. distinguished) if and only if a is a basic (resp. distinguished) class 
of an associated nonnegative matrix. 

2. Results and Proofs 
It is known that the peripheral spectrum of every nonnegative matrix is cyclic (see 

Schaefer[4, Theorem 2.7, Chap I]). Also it follows from Schaefer[4, Lemma 2.6, Chapter I] 
(where the proof is elementary and computational in nature) that we have the following 
useful equivalent condition for a nonnegative matrix to have a fully cyclic peripheral 
spectrum. 
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Lemma 2.1. Let P be a nonnegative matrix. Then the peripheral spectrum of P is 
fully cyclic if and only if P satisfies the following: if Px = .Xx, x # 0, I.-\ I= p(P), then 
P Ix I= p(P) I x 1. 

The following sufficient condition for a nonnegative matrix to have a fully cyclic 
peripheral spectrum is also known (see Schaefer [4, Prop.2.8, Chapter I]). From this suf 
ficient condition it follows that the peripheral spectrum of every irreducible nonnegative 
matrix is fully cyclic. 

Theorem 2.2. Let P be a nonnegative matrix. If there exists y0 > > 0 satisfying 
pT y0 :$ p(P)y0, then the peripheral spectrum of P is fully cyclic. 

The proof given by Schaefer [4] for the preceding result is analytic in nature, and 
depends on the concept of a P-invariant ideal. Here"~we give an alternative elementary 
proof that makes use of the reduced graph of a nonnegative matrix. 

Proof. First, note that P and pT have the same basic classes, and that the initial 
classes of Pare exactly the final classes of pT. By Schneider [5, Theorem 4.1] (where the 
result is stated in terms of a singular M-ma:trix), the given condition on P is equivalent 
to the condition that every basic class of P is initial. 

Now let P be n x n, and let O # x E en,.,\ EC, with I.-\ I= p(P) such that Px = .-\x. 
Then PI x 12:I Px I= p(P) Ix 1- Since every basic class of Pis initial, by Tam and Wu 
[6, Theorem 4.7], it follows that PI x I= p(P) Ix j. By Lemma 2.1, this proves that the 
peripheral spectrum of P is fully cyclic. 

We shall need the following result. 

Lemma 2.3. Let P be a nonnegative matrix. Let x be an eigenvector of P corre 
spowding to an eigenvalue .,\ with modulus p( P). If a is a class of P final in supp( x), 
then a is a basic class, and Xa is an eigenvector of P00 corresponding to .,\. 

Proof. Our assertion follows from .-\x0 = (Px)0 = P0ax0+"£a>-{3P013x13 = PaaXcr, 
where the last equality holds as a is final in supp(x). 

We can now give our main results: 

Theorem 2.4. Let P be a nonnegative matrix with a fully cyclic peripheral spec 
trum. Then each of the following conditions holds: 

( a) The eigenspace of P corresponding to p( P) has a basis consisted of nonnegative 
vectors. 

(b) There does not exist a nonbasic class {of P) which has access to two different 
distinguished basic classes. 

( c) If.,\ is in the peripheral spectrum of P00 for some basic class a which is not 
distinguishe_d then .,\ is also in the peripheral spectrum of P1313 for some distinguished 
basic class j3 which has access to a. 
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Proof. For convenience, denote by E(P) the eigenspace of P corresponding to p(P) 
and by E'"'(P) the subspace of E(P) which is spanned by its nonnegative vectors. 

(a) By the results of Cooper [2, Lemmas 4,5 and 6) (but reformulated in our language) 
or of Schneider (5, Theorems 3.1 and 7.1], we have, 

span{eC0) : o is a distinguished basic class} 
{x E E(P): for each class o final in supp(x), 
a is a distinguished basic class}, 

where for each distinguished basic class o, e(a) denotes the unique (up to multiples) 
nonnegative eigenvector of P corresponding to p(P) with the property that e~a) >> 0 if 
{3 >= a and is zero vector, otherwise. So if E(P) # E*(P), there would exist a vector 
x E E(P) with a class o final in supp(x ), and hence a basic class by Lemma 2.3, which 
is not distinguished. Since the· peripheral spectrum of P is fully cyclic, by definition 
the vector I x I belongs to E'"' (P). But supp(x) = supp(I x I), so a is a class final in 
supp(I x I). This contradicts the above-mentioned second characterization of vectors in. 
E'"'(P). 

(b) Suppose that there exists a nonbasic class {3 which has access to two different 
distinguished basic classes a1 and 0:2. Let e<01) and eC02) be respectively the Perron 
vectors corresponding to the classes 01 and 02 as mentioned in the proof for part( a). 
Since the peripheral spectrum of P is fully cyclic, the vector I eC01) - e<02) I belongs to 
E'"' ( P) and hence must be a linear combination of the Perron vectors of P corresponding 
to distinguished basic classes. It is not difficult to see that then I e(ai) - e<02) I= 
a1e(ai) + a2e<02) for some scalars a1 and a2. By considering the o1- and o-2-subvector of 
I e(ai) - eC02) I, we deduce that a1 = a2 = 1. But this leads to a contradiction, because 
I e(a1) _ e(a2) l.a=I e~a1) _ e~a2) I # e~a1) + e~a2), as e~ai), e~a2) >> O. 

(c) Suppose that A is in the peripheral spectrum of Paa for some basic class a 
which is not distinguished, and that for each distinguished basic class {3 >- a, A is not 
an eigenvalue of ?1313. Replacing a by some suitable non-distinguished basic class having 
access to it, if necessary, we may assume that A is not an eigenvalue of P1313 for every basic 
class {3 >- a. We now construct an eigenvector x of P corresponding to the eigenvalue 
A. Set x13 = 0 for all classes {3 having no access to o. Choose Xa to be an eigenvector 
of Paa corresponding to A and for each class {3 >- o, define x13 inductively by "tracing 
down" the reduced graph of P : if x1 has been defined for all ; -< {3, define x13 to be 
(Al - P1313 )-1 (I:,f3>--rPf3-yX-y ), where the matrix Al - P1313 is nonsingular as A is not an 
eigenvalue of P1313. Then (Px)13 = P1313x13+Llf3>--yPf3-yX-y = Ax13. Hence xis an eigenvector 
of P corresponding to A. Since the peripheral spectrum of Pis fully cyclic, Ix IE E'"'(P). 
But by our construction, the class o is final in supp(x) and hence in supp(I x I). As a is 
not a distinguished basic class, we have arrived at a contradiction. 

The following result is an improvement of Theorem 2.2. 

E'"'(P) 

Theorem 2.5. Let P be a nonnegative matrix. Then the peripheral spectrum of P 
is fully cyclic if the following conditions are all satisfied: 
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( a) The eigenspace of P corresponding to p( P) contains a basis consisted of nonneg 
ative vectors. 

{b) Each distinguished basic class of P is initial. 
and ( c) Each principal submatrix of P associated with a basic class which is not distin 
guished is primitive. 

. Proof. Let P be n x·n. Let Of. x E en,..\ Ee with I..\ I= p(P) such that Px = ..\x. 
By Lemma 2.1 it suffi.cies to show that then P Ix I= p(P) I x I- First, consider the case 
when..\= p(P). Then by (a) x E E(P) = E*(P), where E(P) and E*(P) have the same 
meanings as in the proof of Theorem 2.4, and hence by the previous description of the 
set E*(P), x can be expressed in the form Ek=l ake<o:k), where e(o:i), · · ·, e(a,,.) are the 
(unique) Perron vectors corresponding to the distinguished basic classes 01, ···,Om of 
P. But by (b) the classes a1, · · · , am are all initial, hence the supports of the vectors 
e(o:i), · · ·, e(o:,,.) are pairwise disjoint. Thus Ix I= Ek=l I ak II e(ak) I = Ek=l I ak I e<o:k), 
and hence P Ix I= p(P) I x 1- 

Next, suppose that ..\ f. p(P). If a is a class final in supp(x) then by Lemma 2.3, 
a is a.basic class and Xa is an eigenvector of Pao: corresponding to..\. Since I..\ I= p(P) 
and ..\ f. p( P), in view of ( c), this implies that a is a distinguished basic class. And by 
(b) it follows that for any class a in supp(x), a is a basic, initial class. Thus, if a is in 
supp(x), then Po:o:Xo: = (Px)o: = ..\x0• Since Paa is irreducible, Paa I Xcr I= p(P) Ix la, 
and hence (PI x 1)0 = Pao: I Xo: I= p(P) Ix la· On the other hand, if a is not in supp(x), 
we also obtain, (P I x 1)0 = 0 = p(P) I x lo:· We have shown that P I x I= p(P) I x I 
The proof is complete. 

Note that Theorems 2.4 and 2.5 have the same condition (a). See Cooper (2, Theorem 
3] for a condition which infers this condition. Also, as can be readily seen, conditions (b) 
and (c) of Theorem 2.5 imply the respective conditions of Theorem 2.4. Below we give 
some examples which show that conditions (b) and ( c) of Theorem 2.5 are not necessary 
for a nonnegative matrix to have a fully cyclic peripheral spectrum. 

(
0 1 0) 

Example 2.6. Let P be the matrix 1 0 0 , where a, b are nonnegative numbers 
a b 0 

with at least one positive. Then P has two classes, namely, a1 = {1, 2} and 02 = {3}. 
0 O! 

1 
The reduced graph of P is O o: , where we represent a basic class by an O and a non- 

2 
basic class by an 0- The peripheral spectrum of P is { -1, 1}. Up to scalar multiples, 
there is only one eigenvector of P corresponding to 1, namely, ( 1, 1, a + bf, and one 
corresponding to -1, namely (-1, l,a- bf. Thus the peripheral spectrum of Pis fully 
cyclic if and only if I (-1, 1, a - bf I= (1, 1, a+ bf if and only if either a> 0 and b = 0 
or a = 0 and b > 0. This example shows that condition (b) of Theorem 2.5 is not a 
necessary condition for a nonnegative matrix to have a fully cyclic peripheral spectrum. 
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Example 2. 7. Let Pi = G 1 
0 
1 
0 

0 
0 
0 
1 

1 
0 
1 
0 

0 
0 
0 
1 D· Then the 

0 . reduced graph of P1 and P2 are both equal to J, . However, the peripheral spectrum 
0 

of P1 is fully cyclic, whereas that of P2 is not. Note also that the irreducible blocks of 
P1 and P2 are all imprimitive matrices. So condition (c) of Theorem 2.5 is also not a 
necessary condition for a nonnegative matrix to have a fully cyclic peripheral spectrum. 
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