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ON ABSOLUTE NORLUND SUMMABILITY OF FOURIER SERIES
AND THE DERIVED FOURIER SERIES

W.T. SULAIMAN

Abstract. In this paper two new theorem concerning | N, pn |x summability of
Fourier series and its derived series have been proved.

1. Introduction.
Let Za, be a given infinite series with sequence of partial sums {s,}. Let {p,} be
a sequence of constants real or complex, and let us write

n
P, = Zptn_ Py, =py =0
v=0 ‘
The sequence to sequence transformation
n
th = Pglzpn—vsu (Pn #0)
=0

defines the sequence {t,} of Nérlund mean of {s,} generated by the sequence of coef-
ficients {pn}. The series Xa,, or the sequence {s,}, is said to be absolutely summable
(N,pn), or summable | N,p, |, if the sequence {t,} is of bounded variation, that is the
series & |, — t,—1 | is convergent.
When p,, = "If;l), a >0, | N,p, | summability reduces to | C, « | summability.
We give the following definition :. A series Ta, is said to be summable | N, p, |k
, B3,

[e o]
55 o ded
Pn

n=1

Clearly | N,p, | is the same as | N,pn |. We set Vf, = f, — fn_; for any sequence

{fa}-
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Let f(z) be a periodic function with period 27 and integrable in the sense of Lebesgue
over the interval (—, ) and let its Fouries series be

1

e o) oo
500 - z(an cosnz + b, sinnz) = ZAn(:c). (1.1)
n=1 n=1

Then the derived series of (1.1) is

o0 (o0}

Zn(bn cosnz — a, sinnz) = Zan(a:) fl2)
n=1 n=1
We write
' ¢(u) = flz+u)+ f(z—u)—2f(z)
P(u) = f(z+u)— f(z—u)—2tf(z)
1/ 1
at) = 7 /0 bu)du = ()
0o = 7 [ i = 160
i, = (Hi,;l1 log"” n) (logn)' e, €> 0,
where

log'n = log(log'"'n), --- ,log’n = log logn.

Throughout this paper we are assuming h is a positive function such that for some
B, 0< B <1, w?h(u~') is nondecreasing. Also we let s, denote the nth partial sum of
the series under consideration.

PANDEY, in 1978, proved the following.
Theorem A. If

o) = [ w14 1du = 0 {(1og(1/0)") as t = +0 (L3)

0 < 6 <, then the series LAn(z)/pn is summable | C, 1| for0 < n <e.

The object of this paper is to prove the following theorems under conditions weaker
than that used in theorem A.

Theorem 1. Let {p,} be a positive sequence such that {Vp,} is bounded, mono-
tonic, nonincreasing, {1/pk~1P,} nonincreasing. If

6
By(t) = /t w~lgy(w)du = OfR(t™Y)]}, t — 0; (1.4)

ZM < o0, (1.5)

Pﬁ—lpn
then the series (1.1) is summable | N,pn |k.
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Theorem 2. Let {p,} be as defined in theorem 1. If
5
¥(t) = / w1y (w)du = O{h(tY)}, t—0, (1.6)
i

then ihe series (1.2) is summable | N,p, |i provided that (1.4) holds.

The following result is needed
i
() = o} > [ e = 0he) (L.7)
Proof.
t i
. /¢1(u)du — / —u<I>'1(u)du
0 0

- [—u@l(u)];+A‘¢1(u)du

= O[uh(u‘l)]; + O{tPh(t™Y) /t uPdu}, 0<pB<1
0
O{th(t™1)}.

For the fact that (1.4) is weaker than (1.3), when h(t~1) = (log(t~1))7, see [2].

2. The following lemma is required.

Lemma 2. Let s&) = 27 _osk- If {pn} is a posilive sequence such that {Vp,} is

bounded, monotonic, nonincreasing, {1/(pE~*P,} is nonincreasing, and

0 | 85.1) |k

Dhl < oo
n:Opf‘ IP" ’

then the series Ta, is summable | N,p, |&.

Proof. Since Aypp—y = VnPn—t, then we have



82 W.T. SULAIMAN

b1 — tn
1 n
= - '}3" an—-vsv
S
= —vSy + — E(Pﬂ 1-v Pn-v)sv PO -
P,
1 n—2
— (1)
= Pn— );A Pn-1- v)s +A( )P()S
1 n—2
+5 D By(Pn-1-v — Pn-v)s) + —(Po ~ p1)ss?
n v=0
_ post” - post,
P, P,
1 n—2
= Pn__ ) Z vn(pn 1- v)s(l) o A( - )POSS; )1
n—2

Zv (pn 1-v — Pn- v)3(1)+—(p0_p1) S‘L)

POS( ) POSEL-)l
P, Py
= T1 +T2+T3+T4+T5+T6, say.

To prove the lemma, it is sufficient by Minkowski’s inequality to show that

o0

Py
Y (VT <o,  forr=1,2,3,4,5,6.

fi=l £

Now applying Holder’s inequality, we have

Z( kllle
Z( kllA

n—2
A (Bi—1-0)6 M0 [*
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n=1 -1 v=

omy 2 Zp.‘, 0 P
n=1 n+t n—

m n-2 «—
> e S 1 Tt H P (S
P, v=0

1

m—2
O(I)Z 1- kis(l)lk E PP
v=0

n=v+1

| (1) |k

w3 Ly

Z( )T o= Z( 22k A post, I

m
_ Pnpo | s (1) Ik
n=1 PnP”f_l

. 0(1)2 = 1P Jagdy IF

n=1 Tl 1

o~ Pk
S T
n=1 B
m P n—2
= 3 Evn(pn 1-0 = Pao)sS) |f
n=1 £
m n—2
<Y = Tl IESE
= -1p n\Pn-1-v = Pn—v

n y=0

p
X { Va(Pa-1-0 — Pn—v)}k_l

m—2 m

Vi (Pr—i~s = P
o Y 1 Y, Taltasiempany)
v=0 n=v+1 Pn B
= 0(1)2—,:'1—-—— Z Vn(Pn—l—v"‘pn—v)
v Opv+1P"‘|'1 n=v+1

Do }k—l
Pn——l
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Z( )k ' = 0(1)2
(1) Ik

= 0(1)2 lk o

n=1Pn-1

| (1)1 |k

Other parts could be treated similarly and the lemma follows.

3. Proof of the theorems.
Proof of theorem 1. We have
n 9 T n
Z[sv (z) = f(2)] = / t=1¢(t) Zsin vt dt + o(n)
0 v=0

v=0

= 2[00 + 60) Yosinut dt+o0)

2
= ;{Il + I}, say.

1/n T
i = / +/ = L1+ L2, say.
0 1/n

1/n
O(n?) /0 1=1,(t)dt = Ofnh(n)}, as (1.4)

~

e

-
[l

iy /t $1(t)dt = Ofth(t™1)}

I = O(n) / t71¢,(t)dt = O{nh(n)}, by (1.4)
1/n
I, = [Zsin vt - ¢1(1)]5 --'/1r qSl(t)Zvcos vt dit
v=0 0 v=0
= —v/’r(ﬁl(t)z vcos vt dt
0 v=0

1/n s
— _/ _/ = —Iyy — Iy, say, as
0 1/n

sin vw = 0, and ®(0) = 0 implies

sin vt

[Zsin vt d1(D)]t=0 = [ -O(t)}i=0 — Zv ®(0) = 0.

v=0
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i/n

Iy = O(n?) |, e = Biphla),
L, = 0(1) /r é1(¢) | Zv cos vt | dt

= O(n)/ é1(t) - Jmax |Zcos vt | dt

O(n) /I/nt‘lqsl(t)dt = Ofnhin)L

Compining (3.1),(3.2),(3.3) and (3.4) we obtain

> [su(z) - f(z)] = Of{nh(n)},

which implies
Ist(x) | < IZ[su(x) f@]1+ sz(z) | = O{nh(n)}.

The theorem follows by the lemma.
Proof of theorem 2. We have

1
= 1 [™ Zp—oSin(v+ )t
[so(2) — f'(2)] = — 2 dy(t)
; 2m /0 sin %t (

1
" > v=08in(v + =)t
%/0 {¥1(t) + t¥1 (1)} - T 2—dt

in -1
sin o

1
= 5-{h + L}, say.

1/n
I = / / = N1+ 12, say.
/n

hay = O(nz) 1/)1(t)dt = O{nh(n)}, as (1.6)

- / bi(t)dt = Ofth(t=1)}

85
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L, = O(n) / [ rhna = ofah(), by (16) (3.6)
1 1
n_sin(v + )t x S _o(v+ 3)t cos(v+ o)t
B o= (12 Ol [ (0 V2
v=0 sin -t # sin =t
2 2
cos lt En:sin(v -+ l)t " 1
1 (" 2 2 T Y p=oSin(v + E)t
+Z/ t1(t) 1 dt — / Y1(t) 1
0] Sln2 §t 0 Sin Et
1
= —-ha+ Zfz.z — I3,

as the quantity in the brackets equals zero for the same reason given in the proof of
theorem 1.

Ir3 = O{nh(n)}, as before. (3.7
1/n
12.1=/ // = Ip1.1+ 1212, say.
1/n
12‘1_1 = O(TI.Z) ¢1(t)dt = O{nh(n)} (38)

Lz = O(n) / ¥1(t) max |Ecos(v+%)t|dt
v=0

= O(n) /W t=Y1(t)dt = O{nh(n)} (3.9)
1/n
I, = / //n—1221+1222, say.
1/n
Iy21 = O(n) : P1(t)dt = O{nh(n)} (3.10)
12_2_2 = 0(71) 1: t—1¢1(t)dt = {nh(n)} (311)
Combining (3.5), - -, (3.11), we obtain -

Y so(z) = f'(2)] = Ofnh(n)},
which implies
[} ada) )= O{nh(n)}.

The theorem also follows by the lemma.
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