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ON ABSOLUTE NORLUND SUMMABILITY OF FOURIER SERIES 
AND THE DERIVED FOURIER SERIES 

W.T. SULAIMAN 

Abstract. In this paper two new theorem concerning I N, Pn lk summability of 
Fourier series and its derived series have been proved. 

1. Introduction. 
Let Ean be a given infinite series with sequence of partial sums {Sn}. Let {Pn} be 

a sequence of constants real or complex, and let us write 

n LPv,_ 
v=O 

P-1 0. 

The sequence to sequence transformation 

n 

P;;1 LPn-vSv 
v=O 

(Pn i= 0) 

defines the sequence { tn} of Norlund mean of { sn} generated by the sequence of coef­ 
ficients {Pn}. The series Ean, or the sequence {Sn}, is said to be absolutely summable 
(N,pn), or summable I N,Pn I, if the sequence {tn} is of bounded variation, that is the 
series E I tn - tn-1 I is convergent. 

When Pn = (n!~~1), a > 0, I N, Pn I summability reduces to IC, a I summability. 
We give the following definition :_ .. · A series Ean is said to be summable I N, Pn lk 

) k ~ l, if 

Clearly I N,Pn Ii is the same as I N,Pn I- We set v'fn = fn - fn-1 for any sequence 
{In}- . 
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Let f(x) be a periodic function with period 21r and integrable in the sense of Lebesgue 
over the interval (.-1r, 1r) and let its Fouries series be 

00 

I:An(x). 
n=l 

1 00 

2ao + I)an cosnx + bn sinnx) 
n=l 

Then the derived series of (1.1) is 

(1.1) 

00 

I: nBn(x) 
n=l 

00 I: n(bn cos nx - an sin nx) 
n=l 

We write 
</>( u) 
t/J( u) 

</>1(t) 

t/J1 ( t) 

(1.2) 

f(x + u) + f(x - u) - 2/(x) 
f(x + u) - f(x - u) - 2tf'(x) 11t 1 - </>(u)du = -cI>(t) 
t o t 11t 1 - dt/J( u)du = -t/J2(t) 
t o t 
( rr~-::\ logv n) (log n )1+\ { > 0, 

where 
log1 n = log(log1-1 n), · · · , log2 n = log log n. 

Throughout this paper we are assuming h is a positive function such that for some 
f3, O < f3 < 1, u/J h( u-1) is nondecreasing. Also we let Sn denote the nth partial sum of 
the series under consideration. 

PANDEY, in 1978, proved the following. 

Theorem A. If 

cp(t) = 1/j u-1 I <fa(u) I du = 0 {(log(l/t))'7} as t - +0 (1.3) 

0 < b ~ 1r, then the series EAn( x )/ µn is summable I C, 1 1 for O < 17 < c. 
The object of this paper is to prove the following theorems under conditions weaker 

than that used in theorem A. 

Theorem 1. Let {Pn} be a positive sequence such that {'vpn} is bounded, mono­ 
tonic, nonincreasing, {1/p~-l Pn} nonincreasing. If 

<I>1(t) = 1/j u-1</>i(u)du = O{h(C1)}, t - O; 

nk [h( n )]k I: 1-_, - < oo, 

then the series (1.1} is summable I N,Pn lk- 

(1.4) 

(1.5) 
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Theorem 2. Let frn} be as defined in theorem 1. If 

w(t) = 16 
u-1'111(u)du = O{h(r1

)}, t-+ 0, (1.6) 

then the series {1.2} is summable I N,Pn 11: provided that {L4) holds. 

The following result is needed 

(1.7) 

Proof. 

For the fact that (1.4) is weaker than (1.3), when h(r1) = (log(r1 ))11, see [2]. 

2. The following lemma is required. 

Lemma 2. Let s~1) = Ek=Osk. If {Pn} is a positive sequence such that {Vpn} is 
bounded, monotonic, nonincreasing, {1/(p~-l Pn} is nonincreasing, and 

00 I s~1) 11: I: k-1?, < oo, 
n=O Pn n 

then the series Ean is summable I N,Pn 11:. 

Proof. Since 6.vPn-v = VnPn-k, then we have 
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To prove the lemma, it is sufficient by Minkowski's inequality to show that 

for r = 1,2,3,4,5,6. 

Now applying Holder's inequality, we have 
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m I s£1) lk 
0(1) L p!-l Pv 

v=O 

I)Pn)k-1 j 6(-l-)pos~121 lk 
n=l Pn Pn-1 
m . k 
~ PnPo I (1) lk ~ p pk sn-1 
n=l n n-1 

m 

0(1) L k-/ I s~121 lk 
n=l Pn-1 Pn-1 

f)Pnl-1 I T3 jk 
n=l Pn 
m n-2 
~ Pn k-1 I 1 ~ (1) lk ~(-) p ~ 'vn(Pn-1-v - Pn-v)sv 
n=l Pn n v=O 
m n-2 

< L k-~ p L 'v n(Pn-1-v - Pn-v) I S~l) lk 
n=l Pn n v=O 

n-2 k-1 
X { I: 'v n(Pn-1-v - Pn-v)} 

v=O 
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m m I (1) lk 
L(Pn t-1 I T4 lk = 0(1) L :~~~ 
n=l Pn n=l Pn n 

m I (1) lk 
0(1)""' sn-1 . 

L.J k-lP. 
n=l Pn-1 n-1 

Other parts could be treated similarly and the lemma follows. 

3. Proof of the theorems. 
Proof of theorem 1. We have 

n 

L[sv(x) - J(x)] 
v=O 

2 /'Ir n - Jn C1</>(t)Lsinvt dt+o(n) 
7r O v=O 

2 /'Ir n 
- Jo {t-1</>i(t) + </>~(t)} I:sin vt dt + o(n) 
7r O v=O 

2 -{Ii+ 12}, say. 
7r 

Ii.1 

11/n 1"" + = li.1 + li.2, say. 
0 1/n 

{1/n 
O(n2) Jo C1</>1(t)dt = O{nh(n)}, as (1.4) 

=> 1t </>1(t)dt = O{th(r1)} 

O(n) f1r r1¢>1(t)dt = O{nh(n)}, by (1.4) 
J1/n 

Ii.2 

n {"" n 
I2 = [L sin vt · </>1 (t)]; - Jo </>1(t) L v cos vt dt 

v=O O v=O r n 
- Jo </>1(t) L v cos vt dt 

O v=O 

11/n 1,r 

- - = -I2.1 - 12.2, say, as 
0 1/n 

sin v1r = 0, and <I>(O) = 0 implies 

n 

[L sin vt · </>1 (t)]t=O 
v=O 

n . 
""'sm vt 
[L.J -t - · O(t)]t=o -+ 
v=O 

n 

L v · <I>(O) = 0. 
v=O 

(3.1) 

(3.2) 
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11/n h.1 = O(n2) 
0 

¢,1(t)dt = O{nh(n)}, 

12.2 = 0(1) 11r ¢,1(t) I t v cos vt I dt 
1/n v=O 

- O(n) 11r ¢,1(t) · max I tcos vt I dt 
1/n 0'.5r'.5n v=O 

- O(n) 11r r1¢,1(t)dt = O{nh(n)}. 
1/n 

Compining (3.1),(3.2),(3.3) and (3.4) we obtain 

n 

L[sv(x) - f(x)] = O{nh(n)}, 
v=O 

which implies 

n n n 

I Lsv(x) I :S I I)sv(x)- f(x)] I + I Lf(x) I= O{nh(n)}. 
v=O 

The theorem follows by the lemma. 
Proof of theorem 2. We have 

n 

L[sv(x) - J'(x)] 
v=O 

_ _!_ 11r L~=o sin( v + ~ )t 
21r o . I dtf;(t) 

sm-t 
2 

1 111" I:n . 1 - 2 {¢1(t) +t·'.,(t)} v=Osm(v + -)t 
7r O 'Pl 2 dt . 1 

sm-t 
2 

11/n 1,r 
Ii = + = 11.1 + li.2, say. 

0 1/n 

11/n 
- O(n2) 

0 
t/J1(t)dt = O{nh(n)}, as (1.6) 

=;, 1t t/;1(t)dt = O{th(r1)} 

Ii.1 

85 

(3.3) 

(3.4) 

(3.5) 
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Ji.2 = O(n) jrr C1t/J1(t)dt = O{nh(n)}, by (1.6) 
1/n 

. 1) n 1 ( 1 n sm(v + 2 t rr {1r I:v=0(v + 2)t cos v + 2)t 
I2 = [L l · t/J2(t)]t=O - lo tt/)1 (t) 1 

v=O sin -t O sin -t 
2 2 

(3.6) 

1 n 

1 17f cos -t ~ . 1 + - t·t, ( 2 ~sm(v+ -)t 
4 0 o/1 t) ,-o 2 

Sl
. 2 1 dt - 
n -t 

2 
1'/f ""'" • 1 t/Ji(t) L..,v=Osm(v + 2)t 
0 • 1 dt 

sm-t 
2 

1 
-/2.1 + 4/2.2 - h.3, 

as the quantity in the brackets equals zero for the same reason given in the proof of 
theorem 1. 

I2.3 = O{nh(n)}, as before. 

11/n 11r 
I2.1 = + = 12.1.1 + /2.1.2, say. 

0 1/n 

r1'" h.1.1 = O(n2) lo t/J1(t)dt = O{nh(n)}. 

11r r 1 
/2.1.2 = O(n) t/J1(t) max I I::cos(v + -2)t I dt 

1/n O~r~n v=O 

O(n) jrr C1t/J1(t)dt = O{nh(n)} 
1/n 

11/n j,r 
h.2 = + = /2.2.1 + 12.2.2, say. 

0 1/n 

[1fn 
/2.2.1 = O(n) lo t/J1(t)dt = O{nh(n)} 

12.2.2 = O(n) j1r C1t/J1(t)dt = {nh(n)} 
1/n 

Combining (3.5), · · ·, (3.11), we obtain 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

n 

L[sv(x)- J'(x)] = O{nh(n)}, 
v=O 

which implies 
n 

I Lsv(x) I= O{nh(n)}. 
•,. 

The theorem also follows by the lemma. 



ON ABSOLUTE NORLUND SUMMABILITY OF FOURIER SERIES 87 

References 

[1} S.N.BHATT, An aspect oflocal property of (N,Pn) summability of a Fourier series, Indian Journal 
of Mathematics 5 (1963), 87-91. 

[2] M.M.NANDA and G.DAS, The summability (L) of the Fourier series and the first differentiated 
Fourier series, Indian J. Math. 12 (1970), 125-135. 

[3} G.S.PANDEY, Multipliers for I C, 1 I summability of Fouier series, Pacific J. Math., (1978), 177- 
182. 

Department of Applied Sciences, College of Technological Studies, P.O. Box 42325, 70654 KUWAIT. 


