ON ABSOLUTE NÖRLUND SUMMABILITY OF FOURIER SERIES AND THE DERIVED FOURIER SERIES

W.T. SULAIMAN

Abstract

In this paper two new theorem concerning $\left|N, p_{n}\right|_{k}$ summability of Fourier series and its derived series have been proved.

1. Introduction.

Let Σa_{n} be a given infinite series with sequence of partial sums $\left\{s_{n}\right\}$. Let $\left\{p_{n}\right\}$ be a sequence of constants real or complex, and let us write

$$
P_{n}=\sum_{v=0}^{n} p_{v}, \quad P_{-1}=p_{-1}=0
$$

The sequence to sequence transformation

$$
t_{n}=P_{n}^{-1} \sum_{v=0}^{n} p_{n-v} s_{v} \quad\left(P_{n} \neq 0\right)
$$

defines the sequence $\left\{t_{n}\right\}$ of Nörlund mean of $\left\{s_{n}\right\}$ generated by the sequence of coefficients $\left\{p_{n}\right\}$. The series Σa_{n}, or the sequence $\left\{s_{n}\right\}$, is said to be absolutely summable (N, p_{n}), or summable $\left|N, p_{n}\right|$, if the sequence $\left\{t_{n}\right\}$ is of bounded variation, that is the series $\Sigma\left|t_{n}-t_{n-1}\right|$ is convergent.

When $p_{n}=\binom{n+\alpha-1}{\alpha-1}, \alpha>0,\left|N, p_{n}\right|$ summability reduces to $|C, \alpha|$ summability.
We give the following definition: A series Σa_{n} is said to be summable $\left|N, p_{n}\right|_{k}$, $k \geq 1$, if

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|t_{n}-t_{n-1}\right|^{k}<\infty
$$

Clearly $\left|N, p_{n}\right|_{1}$ is the same as $\left|N, p_{n}\right|$. We set $\nabla f_{n}=f_{n}-f_{n-1}$ for any sequence $\left\{f_{n}\right\}$.

Let $f(x)$ be a periodic function with period 2π and integrable in the sense of Lebesgue over the interval $(-\pi, \pi)$ and let its Fouries series be

$$
\begin{equation*}
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \equiv \sum_{n=1}^{\infty} A_{n}(x) \tag{1.1}
\end{equation*}
$$

Then the derived series of (1.1) is

$$
\begin{equation*}
\sum_{n=1}^{\infty} n\left(b_{n} \cos n x-a_{n} \sin n x\right) \equiv \sum_{n=1}^{\infty} n B_{n}(x) \tag{1.2}
\end{equation*}
$$

We write

$$
\begin{aligned}
\phi(u) & =f(x+u)+f(x-u)-2 f(x) \\
\psi(u) & =f(x+u)-f(x-u)-2 t f^{\prime}(x) \\
\phi_{1}(t) & =\frac{1}{t} \int_{0}^{t} \phi(u) d u=\frac{1}{t} \Phi(t) \\
\psi_{1}(t) & =\frac{1}{t} \int_{0}^{t} d \psi(u) d u=\frac{1}{t} \psi_{2}(t) \\
\mu_{n} & =\left(\Pi_{v=1}^{l-1} \log ^{v} n\right)(\log n)^{1+\epsilon}, \quad \epsilon>0
\end{aligned}
$$

where

$$
\log ^{l} n=\log \left(\log ^{l-1} n\right), \cdots, \log ^{2} n=\log \log n
$$

Throughout this paper we are assuming h is a positive function such that for some $\beta, 0<\beta<1, u^{\beta} h\left(u^{-1}\right)$ is nondecreasing. Also we let s_{n} denote the nth partial sum of the series under consideration.

PANDEY, in 1978, proved the following.
Theorem A. If

$$
\begin{equation*}
\varphi(t)=\int_{t}^{\delta} u^{-1}|\phi(u)| d u=0\left\{(\log (1 / t))^{\eta}\right\} \text { as } t \rightarrow+0 \tag{1.3}
\end{equation*}
$$

$0<\delta \leq \pi$, then the series $\Sigma A_{n}(x) / \mu_{n}$ is summable $|C, 1|$ for $0<\eta<\epsilon$.
The object of this paper is to prove the following theorems under conditions weaker than that used in theorem A.

Theorem 1. Let $\left\{p_{n}\right\}$ be a positive sequence such that $\left\{\nabla p_{n}\right\}$ is bounded, monotonic, nonincreasing, $\left\{1 / p_{n}^{k-1} P_{n}\right\}$ nonincreasing. If

$$
\begin{gather*}
\Phi_{1}(t)=\int_{t}^{\delta} u^{-1} \phi_{1}(u) d u=O\left\{h\left(t^{-1}\right)\right\}, t \rightarrow 0 \tag{1.4}\\
\sum \frac{n^{k}[h(n)]^{k}}{p_{n}^{k-1} P_{n}}<\infty \tag{1.5}
\end{gather*}
$$

then the series (1.1) is summable $\left|N, p_{n}\right|_{k}$.

Theorem 2. Let $\left\{p_{n}\right\}$ be as defined in theorem 1. If

$$
\begin{equation*}
\Psi(t)=\int_{t}^{\delta} u^{-1} \Psi_{1}(u) d u=O\left\{h\left(t^{-1}\right)\right\}, \quad t \rightarrow 0 \tag{1.6}
\end{equation*}
$$

then the series (1.2) is summable $\left|N, p_{n}\right|_{k}$ provided that (1.4) holds.
The following result is needed

$$
\begin{equation*}
\Phi_{1}(t)=O\left\{h\left(t^{-1}\right)\right\} \quad \Rightarrow \quad \int_{0}^{t} \phi_{1}(u) d u=O\left\{t h\left(t^{-1}\right)\right\} \tag{1.7}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
\int_{0}^{t} \phi_{1}(u) d u & =\int_{0}^{t}-u \Phi_{1}^{\prime}(u) d u \\
& =\left[-u \Phi_{1}(u)\right]_{0}^{t}+\int_{0}^{t} \Phi_{1}(u) d u \\
& =O\left[u h\left(u^{-1}\right)\right]_{0}^{t}+O\left\{t^{\beta} h\left(t^{-1}\right) \int_{0}^{t} u^{-\beta} d u\right\}, 0<\beta<1 \\
& =O\left\{\operatorname{th}\left(t^{-1}\right)\right\}
\end{aligned}
$$

For the fact that (1.4) is weaker than (1.3), when $h\left(t^{-1}\right)=\left(\log \left(t^{-1}\right)\right)^{\eta}$, see [2].
2. The following lemma is required.

Lemma 2. Let $s_{n}^{(1)}=\Sigma_{k=0}^{n} s_{k}$. If $\left\{p_{n}\right\}$ is a positive sequence such that $\left\{\nabla p_{n}\right\}$ is bounded, monotonic, nonincreasing, $\left\{1 /\left(p_{n}^{k-1} P_{n}\right\}\right.$ is nonincreasing, and

$$
\sum_{n=0}^{\infty} \frac{\left|s_{n}^{(1)}\right|^{k}}{p_{n}^{k-1} P_{n}}<\infty
$$

then the series Σa_{n} is summable $\left|N, p_{n}\right|_{k}$.
Ṕroof. Since $\triangle_{v} p_{n-v}=\nabla_{n} p_{n-k}$, then we have

$$
\begin{aligned}
& t_{n-1}-t_{n} \\
= & \frac{1}{P_{n-1}} \sum_{v=0}^{n-1} p_{n-1-v} s_{v}-\frac{1}{P_{n}} \sum_{v=0}^{n} p_{n-v} s_{v} \\
= & \Delta\left(\frac{1}{P_{n-1}}\right) \sum_{v=0}^{n-1} p_{n-1-v} s_{v}+\frac{1}{P_{n}} \sum_{v=0}^{n-1}\left(p_{n-1-v}-p_{n-v}\right) s_{v}-\frac{p_{0} s_{n}}{P_{n}} \\
= & \Delta\left(\frac{1}{P_{n-1}}\right) \sum_{v=0}^{n-2} \Delta_{v}\left(p_{n-1-v}\right) s_{v}^{(1)}+\Delta\left(\frac{1}{P_{n-1}}\right) p_{0} s_{n-1}^{(1)} \\
& +\frac{1}{P_{n}} \sum_{v=0}^{n-2} \Delta_{v}\left(p_{n-1-v}-p_{n-v}\right) s_{v}^{(1)}+\frac{1}{P_{n}}\left(p_{0}-p_{1}\right) s_{n-1}^{(1)} \\
& \quad-\frac{p_{0} s_{n}^{(1)}}{P_{n}}+\frac{p_{0} s_{n-1}^{(1)}}{P_{n}} \\
= & \Delta\left(\frac{1}{P_{n-1}}\right) \sum_{v=0}^{n-2} \nabla_{n}\left(p_{n-1-v}\right) s_{v}^{(1)}+\Delta\left(\frac{1}{P_{n-1}}\right) p_{0} s_{n-1}^{(1)} \\
& +\frac{1}{P_{n}} \sum_{v=0}^{n-2} \nabla_{n}\left(p_{n-1-v}-p_{n-v}\right) s_{v}^{(1)}+\frac{1}{P_{n}}\left(p_{0}-p_{1}\right) s_{n-1}^{(1)} \\
& -\frac{p_{0} s_{n}^{(1)}}{P_{n}}+\frac{p_{0} s_{n-1}^{(1)}}{P_{n}} \\
= & T_{1}+T_{2}+T_{3}+T_{4}+T_{5}+T_{6}, \text { say. }
\end{aligned}
$$

To prove the lemma, it is sufficient by Minkowski's inequality to show that

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{r}\right|^{k}<\infty, \quad \text { for } r=1,2,3,4,5,6
$$

Now applying Hölder's inequality, we have

$$
\begin{aligned}
& \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{1}\right|^{k} \\
= & \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\Delta\left(\frac{1}{P_{n-1}}\right) \sum_{v=0}^{n-2} p_{v}^{-1} \nabla_{n}\left(p_{n-1-v}\right) s_{v}^{(1)} p_{v}\right|^{k}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{n=1}^{m} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=0}^{n-2} p_{v}^{1-k}\left|\nabla_{n}\left(p_{n-1-v}\right)\right|^{k}\left|s_{v}^{(1)}\right|^{k}\left\{\sum_{v=0}^{n-2} \frac{p_{v}}{P_{n-1}}\right\}^{k-1} \\
& =O(1) \sum_{n=1}^{m} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=0}^{n-2} p_{v}^{1-k}\left|s_{v}^{(1)}\right|^{k} \\
& =O(1) \sum_{v=0}^{m-2} p_{v}^{1-k}\left|s_{v}^{(1)}\right|^{k} \sum_{n=v+1}^{m} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=0}^{m} \frac{\left|s_{v}^{(1)}\right|^{k}}{p_{v}^{k-1} P_{v}} \\
& \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{2}\right|^{k}=\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\Delta\left(\frac{1}{P_{n-1}}\right) p_{0} s_{n-1}^{(1)}\right|^{k} \\
& =\sum_{n=1}^{m} \frac{p_{n} p_{0}^{k}}{P_{n} P_{n-1}^{k}}\left|s_{n-1}^{(1)}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} \frac{1}{p_{n-1}^{k-1} P_{n-1}}\left|s_{n-1}^{(1)}\right|^{k} \\
& \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{3}\right|^{k} \\
& =\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\frac{1}{P_{n}} \sum_{v=0}^{n-2} \nabla_{n}\left(p_{n-1-v}-p_{n-v}\right) s_{v}^{(1)}\right|^{k} \\
& \leq \sum_{n=1}^{m} \frac{1}{p_{n}^{k-1} P_{n}} \sum_{v=0}^{n-2} \nabla_{n}\left(p_{n-1-v}-p_{n-v}\right)\left|s_{v}^{(1)}\right|^{k} \\
& \times\left\{\sum_{v=0}^{n-2} \nabla_{n}\left(p_{n-1-v}-p_{n-v}\right)\right\}^{k-1} \\
& =O(1) \sum_{v=0}^{m-2}\left|s_{v}^{(1)}\right|^{k} \sum_{n=v+1}^{m} \frac{\nabla_{n}\left(p_{n-1-v}-p_{n-v}\right)}{p_{n}^{k-1} P_{n}} \\
& =O(1) \sum_{v=0}^{m} \frac{\left|s_{v}^{(1)}\right|^{k}}{p_{v+1}^{k-1} P_{v+1}} \sum_{n=v+1}^{m} \nabla_{n}\left(p_{n-1-v}-p_{n-v}\right) \\
& =O(1) \sum_{v=0}^{m} \frac{\left|s_{v}^{(1)}\right|^{k}}{p_{v}^{k-1} P_{v}}
\end{aligned}
$$

$$
\begin{aligned}
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{4}\right|^{k} & =O(1) \sum_{n=1}^{m} \frac{\left|s_{n-1}^{(1)}\right|^{k}}{p_{n}^{k-1} P_{n}} \\
& =O(1) \sum_{n=1}^{m} \frac{\left|s_{n-1}^{(1)}\right|^{k}}{p_{n-1}^{k-1} P_{n-1}} .
\end{aligned}
$$

Other parts could be treated similarly and the lemma follows.

3. Proof of the theorems.

Proof of theorem 1. We have

$$
\begin{align*}
\sum_{v=0}^{n}\left[s_{v}(x)-f(x)\right]= & \frac{2}{\pi} \int_{0}^{\pi} t^{-1} \phi(t) \sum_{v=0}^{n} \sin v t d t+o(n) \\
= & \frac{2}{\pi} \int_{0}^{\pi}\left\{t^{-1} \phi_{1}(t)+\phi_{1}^{\prime}(t)\right\} \sum_{v=0}^{n} \sin v t d t+o(n) \\
= & \frac{2}{\pi}\left\{I_{1}+I_{2}\right\}, \text { say. } \\
I_{1}= & \int_{0}^{1 / n}+\int_{1 / n}^{\pi}=I_{1.1}+I_{1.2}, \text { say. } \\
I_{1.1}= & O\left(n^{2}\right) \int_{0}^{1 / n} t^{-1} \phi_{1}(t) d t=O\{n h(n)\}, \text { as }(1.4) \\
& \Rightarrow \int_{0}^{t} \phi_{1}(t) d t=O\left\{t h\left(t^{-1}\right)\right\} \tag{3.1}\\
I_{1.2}= & O(n) \int_{1 / n}^{\pi} t^{-1} \phi_{1}(t) d t=O\{n h(n)\}, \text { by }(1.4) \tag{3.2}\\
I_{2}= & {\left[\sum_{v=0}^{n} \sin v t \cdot \phi_{1}(t)\right]_{0}^{\pi}-\int_{0}^{\pi} \phi_{1}(t) \sum_{v=0}^{n} v \cos v t d t } \\
= & -\int_{0}^{\pi} \phi_{1}(t) \sum_{v=0}^{n} v \cos v t d t \\
= & -\int_{0}^{1 / n}-\int_{1 / n}^{\pi}=-I_{2.1}-I_{2.2}, \text { say, as }
\end{align*}
$$

$\sin v \pi=0$, and $\Phi(0)=0$ implies

$$
\left[\sum_{v=0}^{n} \sin v t \cdot \phi_{1}(t)\right]_{t=0}=\left[\sum_{v=0}^{n} \frac{\sin v t}{t} \cdot O(t)\right]_{t=0} \rightarrow \sum_{v=0}^{n} v \cdot \Phi(0)=0 .
$$

$$
\begin{align*}
I_{2.1} & =O\left(n^{2}\right) \int_{0}^{1 / n} \phi_{1}(t) d t=O\{n h(n)\} \tag{3.3}\\
I_{2.2} & =O(1) \int_{1 / n}^{\pi} \phi_{1}(t)\left|\sum_{v=0}^{n} v \cos v t\right| d t \\
& =O(n) \int_{1 / n}^{\pi} \phi_{1}(t) \cdot \max _{0 \leq r \leq n}\left|\sum_{v=0}^{n} \cos v t\right| d t \\
& =O(n) \int_{1 / n}^{\pi} t^{-1} \phi_{1}(t) d t=O\{n h(n)\} \tag{3.4}
\end{align*}
$$

Compining (3.1),(3.2),(3.3) and (3.4) we obtain

$$
\sum_{v=0}^{n}\left[s_{v}(x)-f(x)\right]=O\{n h(n)\}
$$

which implies

$$
\left|\sum_{v=0}^{n} s_{v}(x)\right| \leq\left|\sum_{v=0}^{n}\left[s_{v}(x)-f(x)\right]\right|+\left|\sum_{v=0}^{n} f(x)\right|=O\{n h(n)\} .
$$

The theorem follows by the lemma.
Proof of theorem 2. We have

$$
\begin{aligned}
\sum_{v=0}^{n}\left[s_{v}(x)-f^{\prime}(x)\right] & =\frac{1}{2 \pi} \int_{0}^{\pi} \frac{\sum_{v=0}^{n} \sin \left(v+\frac{1}{2}\right) t}{\sin \frac{1}{2} t} d \psi(t) \\
& =\frac{1}{2 \pi} \int_{0}^{\pi}\left\{\psi_{1}(t)+t \psi_{1}^{\prime}(t)\right\} \frac{\sum_{v=0}^{n} \sin \left(v+\frac{1}{2}\right) t}{\sin \frac{1}{2} t} d t \\
& =\frac{1}{2 \pi}\left\{I_{1}+I_{2}\right\}, \text { say. }
\end{aligned}
$$

$$
\begin{align*}
& I_{1}= \int_{0}^{1 / n}+\int_{1 / n}^{\pi}=I_{1.1}+I_{1.2}, \text { say } \\
& I_{1.1}= O\left(n^{2}\right) \int_{0}^{1 / n} \psi_{1}(t) d t=O\{n h(n)\}, \text { as }(1.6) \\
& \Rightarrow \int_{0}^{t} \psi_{1}(t) d t=O\left\{t h\left(t^{-1}\right)\right\} \tag{3.5}
\end{align*}
$$

$$
\begin{align*}
I_{1.2}= & O(n) \int_{1 / n}^{\pi} t^{-1} \psi_{1}(t) d t=O\{n h(n)\}, b y \tag{3.6}\\
I_{2}= & {\left[\sum_{v=0}^{n} \frac{\sin \left(v+\frac{1}{2}\right) t}{\sin \frac{1}{2} t} \cdot \psi_{2}(t)\right]_{t=0}^{\pi}-\int_{0}^{\pi} t \psi_{1}(t) \frac{\sum_{v=0}^{n}\left(v+\frac{1}{2}\right) t \cos \left(v+\frac{1}{2}\right) t}{\sin \frac{1}{2} t} } \\
& +\frac{1}{4} \int_{0}^{\pi} t \psi_{1}(t) \frac{\cos \frac{1}{2} t \sum_{v=0}^{n} \sin \left(v+\frac{1}{2}\right) t}{\sin ^{2} \frac{1}{2} t} d t-\int_{0}^{\pi} \psi_{1}(t) \frac{\sum_{v=0}^{n} \sin \left(v+\frac{1}{2}\right) t}{\sin \frac{1}{2} t} d t \\
= & -I_{2.1}+\frac{1}{4} I_{2.2}-I_{2.3}
\end{align*}
$$

as the quantity in the brackets equals zero for the same reason given in the proof of theorem 1.

$$
\begin{align*}
I_{2.3} & =O\{n h(n)\}, \text { as before. } \tag{3.7}\\
I_{2.1} & =\int_{0}^{1 / n}+\int_{1 / n}^{\pi}=I_{2.1 .1}+I_{2.1 .2}, \text { say } \\
I_{2.1 .1} & =O\left(n^{2}\right) \int_{0}^{1 / n} \psi_{1}(t) d t=O\{n h(n)\} \tag{3.8}\\
I_{2.1 .2} & =O(n) \int_{1 / n}^{\pi} \psi_{1}(t) \max _{0 \leq r \leq n}\left|\sum_{v=0}^{r} \cos \left(v+\frac{1}{2}\right) t\right| d t \\
& =O(n) \int_{1 / n}^{\pi} t^{-1} \psi_{1}(t) d t=O\{n h(n)\} \tag{3.9}\\
I_{2.2} & =\int_{0}^{1 / n}+\int_{1 / n}^{\pi}=I_{2.2 .1}+I_{2.2 .2}, \text { say. } \\
I_{2.2 .1} & =O(n) \int_{0}^{1 / n} \psi_{1}(t) d t=O\{n h(n)\} \tag{3.10}\\
I_{2.2 .2} & =O(n) \int_{1 / n}^{\pi} t^{-1} \psi_{1}(t) d t=\{n h(n)\} \tag{3.11}
\end{align*}
$$

Combining (3.5), $\cdots,(3.11)$, we obtain

$$
\sum_{v=0}^{n}\left[s_{v}(x)-f^{\prime}(x)\right]=O\{n h(n)\}
$$

which implies

$$
\left|\sum_{v=0}^{n} s_{v}(x)\right|=O\{n h(n)\}
$$

The theorem also follows by the lemma.

References

[1] S.N.BHATT, An aspect of local property of (N, p_{n}) summability of a Fourier series, Indian Journal of Mathematics 5 (1963), 87-91.
[2] M.M.NANDA and G.DAS, The summability (L) of the Fourier series and the first differentiated Fourier series, Indian J. Math. 12 (1970), 125-135.
[3] G.S.PANDEY, Multipliers for $|C, 1|$ summability of Fouier series, Pacific J. Math., (1978), 177182.

Department of Applied Sciences, College of Technological Studies, P.O. Box 42325, 70654 KUWAIT.

