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CONSTRAINED APPROXIMATION OF A COMPACT SET 
IN A NORMED SPACE 

KIM-PIN LIM 

1. Introduction 
In this paper we are going to discuss the constrained approximation, that is, find 

a best approximation fror_n a convex subset to a given compact subset subject to cer 
tain constraints. Essentially, the problem is based on the monotone best approximation 
given by Roulier [6] and Lorentz and Zeller [4.5], as well as Taylor's papers [7 ,8,9] on 
best approximation by algebraic polynomials with restricted ranges. In [6] Roulier has 
discussed the monotone best approximation to a given function· with same property. 
Later on Lorentz and Zeller generalized this problem to a general form by assuming that 
€iDk;p(x) 2: 0, i = 1,2,···,r. where €i = ±1, 1 :S k1 :S k2 :S ... :S kr < n and p(x) is 
polynomial of degree :Sn. Meanwhile, Taylor has considered a problem concerning best 
approximation by algebraic polynomials with restricted ranges, i.e. to find a polynomial 
Po( x) of degre~ :S n which is a best approximation to a given function f ( x) such that 
f(x) :S f(x )-Po(x) :S u(x) where£, u are given functions in C[a, b] such that f(x) :S u(x) 
for all x E (a, b]. This leads us to question that whether it is possible to develop a more 
general theory with regard to these problems. To answer the question, let us consider 
the following problem: 
(P): Given a compact subset F C X, a real Banach Space, to find y' E Y, a subset of a 

subspace G of X, such that 

dF(Y') = inf dF(Y) = inf max max < k, f - y > 
yEY yEY f EF kEKCX* 

where K is a symmetric u(X*, X) - compact subset of X*, the real dual space of X, and 
Y = Y1 n Y2 with 

Y1 = {yEG :<h,y-'ljJi>:2'.: OVhEBi, i=l,2, .. ·,m} 
Y2 = { y E G : < h, y - Pi > :5 0 V h E Ci, i = 1, 2, · · · , m} 

for some elements t/Ji and Pi in X. 
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We introduce, for y EX, 

p(y) 

dF(Y) 

max < k,y > 
kEK · 

max p(f - y) 
JEF 

and 

By a proper choice of Bi, Ci, "Pi and Pi, we may assume that Y f; 0. A solution for (P) 
will be called a best approximation to F from Y, or briefly, a "best approximation". 

We begin with discussing some general questions on the existence and characteri 
zation of the solution. Indeed, the theory in which we shall develop will give a definite 
answer to the previous question. 

2. General results 

Lemma 2.1. Let G be n-dimensional subspace of X and Y be defined as above. 
Assume that the restriction of p(-) to G is a norm and each Bi, Ci C X*(i = 1, 2, · · ·, m). 
Then, there exists y' E Y such that 

dp(y') = inf dp(y). 
yEY 

Proof. Let Yi be a sequence in Y such that limi-.oo dF(Yi) = infyeY dp(y). More 
over, 

P(Yi) :S maxfeF p(f - Y}) + maxJeF p(f) :SM, for some real M, since maxfeF p(f) 
is fixed and dp(Yi) are terms of a convergent sequence. As the restriction is a norm, {yj} 
is a bounded sequence in G. Hence, there exists y' in G such that limi-oo Yi = y'. We 
will show that, in fact, y' E Y. For each i, we have 

< h,Yi -1/;i > 2: 0 Vh E Bi and< h,yj -pi> :S O \/h E Ci and all j. Since 
Bi, Ci C X*, < h, y' - "Pi > =limi-+oo < h, Yi - "Pi >2: 0 \/h E Bi and < h, y' - 
Pi >=limi-oo < h, Yi - Pi >:SO \/h E Ci. Therefore, y' E Y. Further, for each j, 

0 < dp(y') - inf dp(y) :S [maxp(f - Yi)+ p(yi - y')] - inf dF(Y) 
yEY JEF yEY 

[dF(Yi) - inf dp(y)] + P(Yi - y'). yEF 

Since the term in breaket tends to zero as j -+ oo and also limi-oo P(Yi - y') = 0, this 
shows that dF(Y') = infyeY dF(Y), which proves the lemma. 

For the sake of simplicity, we will assume that Bi n Bi = 0, Ci n Ci = 0 for 
if; j and Bin (-Bj) = 0, C n (-Cj) = 0 for if; j, where -Bi = {-h: h E Bi}, 
-Ci = { -h : -h E Ci}. Define the sets 

H(y) = {ck E I{: 3/ E F, < ck, f - y >= dp(y)} where c = ±1; 
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N1,i(Y) 
N2,i(Y) 

J 

I1(Y) 
h(y) 

{h E Bi:< h,y- TPi >= 0}, 
{ h E Ci : < h, y - Pi > = 0}, 
{1, · · · ,m}, 
{ i E J : N1,i(Y) f= 0}, 
{iEJ: N2,i(Y)f=0}, 

and 

Let us consider two particular cases which are not of general interest. First, suppose 
that, for some Yo E Y and k E K, there exist Ji, h E F such that 

and < k, h - Yo > = -dF(Yo). 
Then Yo is obviously a best approx~ation, as no approximation can make the error 
smaller at k. We will therefore call k a straddle point of F. In case, we have {H+(y') n 
N2,i(y')} U {H-(y') n N1,j(y')} f= 0 for some i,j E J, where H+(y') = {+k E H(y')} 
and H-(y') = {-k E H(y')}, then any attempt to decrease the error dF(Y') would 
remove y' from Y through failure of the necessary inequalities for < h, y' - 1Pi > and 
< h,y' - Pi> at all h E {H+(y') n N2,i(y')} U {H-(y') n N1,i(y')}. Thus, y' is clearly 
a best approximation. In the following discussion, unless otherwise stated, we will rule 
out these two cases. 

Theorem 2.1. Let G be a subspace of X and Y a subset of G defined as before. 
Then y' E Y is a best approximation to F if and only if there does not exist y E G such 
that 

< k, y > < 0 \/ k E H (y') 

< h, y > :::; < h, y' - tfi > \/ h E Bi, i=l,2,···,m (2.1) 

and 
< -h y > < < h p. - y' > \/ h E Ci, i=l,2,···,m. ' - ' ' 

Proof. Suppose that y' is not a best approximation to F, then there is a y1 in Y 
such that 

dF(Y1) < dF(y'). 
Observe that for each k E H(y') there is a / in F such that 

< k' I - Yl > < < k' I - y' > . 

Therefore, we have 
< k, y' - Yt > < 0 for all k E H (y'). 
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Moreover, 

< h, y' - Y1 > - < h, y' - "Pi > = < h, -Yi+ t/Ji >= - < h, Y1 - "Pi >:5 0 
for all h E Bi, i = 1, · · ·, m, 

and 
< h, y' - Yi > - < h, y' - Pi > = < h, -y + Pi > = < h, Pi - Y1 >2: 0 

V h E Ci, i = 1,2,···,m. 

Consequently, if we put y = y' - y1, then we have the required result. This proves 
the sufficiency. 

On the other hand, if there is a y in G such that 

< k, y > < 0 for all k E H(y'), 

< h, y > :S < h, y' - t/Ji > for all h E Bi, i = 1, · · ·, m, 

and 
- < h, y > :S < h, Pi - y' > for all h E Ci, i = 1, · · ·, m. 

Then, by compactness of H(y'), there exists a real b > 0 and an open subset V of K 
such that 

inf I dp(y') < k, y >I = b, 
kEH(y') 

and 
max < k, f - y' > < k, y > < -b /2 
JEF 

Obviously, H(y') C V. Hence, there is a real c > 0 such that 

for all k E V. 

dp(y') - max max < k, f - y' > 2: c. 
JEF kEKIV 

Take r = min [b/2p(y)2, c/2p(y)], and observe that, for k E V, 

max < k, f Yt > = max < k, f - y' > +t < k, y > 
JEF JEF 

< TlJ- < k, f - y' > :S dp(y') for sufficiently small t E (0, r], 

where Yt = y' - ty, while for k E K I V, t E (0, r], 

max I< k, f - Yt >I = max max I< k, f - y' >I +t I< k, Y >I 
JEF JEF kEKIV 

< dp(y') - c + c/2 = dp(y') - c/2. 
It follows that dp(Yt) < dp(y') for sufficiently small t E (0, r]. Finally, we will show 
that there exists t in (0, r] such that Yt is in Y. Since < h, y >:S< h, y' - "Pi > and 
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< h,y' - "Pi >2: 0 for all h E Bi, i = 1,···,m, we have< h,ty >:S< h,y' -1/;i > for all 
h E Bi, i = 1, · · ·, m and t E (0, 1]. Therefore, < h, y' - ty -1/;i >2: 0 for all h E Bi, 
i = 1, · · ·, m and t E (0, 1). Similarly, we have < h, Pi - y' + ty >2: 0 for all h E Ci, 
i = 1, 2, · · ·, m and t E (0, 1]. Consequently, this shows that there exists t E (0, r] such 
that Yt is in Y and dF(Yt) < dF(Y'). Hence, y' is not a best approximation to F, proving 
the theorem. 

The condition (2.1) of Theorem 2.1 is too restrictive. Therefore, for the practical 
purpose we would like to replace condition (2.1) by a less restrictive condition. First, we 
assume that Bi, Ci C X* (i = 1, 2, · · ·, m) are u(X*, X)-compact. 

With the aid of the additional assumptions, we have 

Theorem 2.2. Suppose that Bi, Ci C X* ( i = 1, 2, · · · , m) are u(X*, X) -compact 
and there exists y E G such that < r, y >2: a > 0 for r E N1,1(y') U [-N2,i(Y')], 
i = 1, 2, · · · , m, for some given y' E Y. Then y' is a best approximation to F if and only 
if 

co(H(y') u N(y')) n a.1. f; 0 
where c.1. = { u EX* : < u, y > = 0 \/ y E G}. 

Proof. For the sake of convenience, let M = H(y') U N(y'). As in Theorem 2.1, we 
know that if y' is not a best approximation, there is an y1 E Y such that 

< k, y' - Yi > < 0 k E H(y') · · 

< h, y' - Yi > :S < h, y' - "Pi > V h E Bi , i = l, 2, · · · , m 

and 
< -h, y' - Y1 > :S < h, Pi - y' > \/ h E Ci, i = 1, 2, · · ·, m. 

Hence,< h, y' - Y1 >:SO \/h E N1,i(Y'), i E /i(y') and< -h, y' - Y1 >:SO \/h E N2,i(Y'), 
i E I2(y'). If 

< r, y' - Y1 > < 0 
then, putting y = y' - Yi, we get 

< T;Y > < 0 

\/ r E N(y') 

\/rEM. 

Hence oo(M) n G.l. = 0. Otherwise, if exists r E N(y') such that < r, y' - y1 >= 0. 
By assumption, we have a y E G such that < r, y >2: a > 0 V r E N(y'), and, by the 
compactness of H(y'), there exist real b1 > 0 and b2 > 0 such that infkeH(y') I< k, y' - 
Y1 >I= b1 and maxkEH(y') I< k, y >I= b2. Take c = bi/2b2, then, for Yt = y' - y1 - ty, 
where t E (0, c], we have 

< k, Yt > = < k, y' - Y1 > - t < k, y > < 0 V k E H(y'); 
and 

< r, Yt > = < r, y' - Y1 > - t < r, y > < 0 \/ r E N(y'). 
This again shows that co(M) n Gl. = 0, proving the sufficiency. 
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Conversely, suppose co(M) n G.l. = 0, by a separation theorem [2] and the fact that 
the dual space of X* under u( X*, X) - topology is X, there is an y E G such that 

< k,y > < 0 \/ k E H(y') 

and 
< r,y > < 0 Vr E N(y'). 

By a similar argument to that in the proof of Theorem 2.1, there exist real b, c, r > 0 
and an open subset V of K such that 

[rlt<k,/-yt>]
2
:::; [dF(y')]

2
-tb/2VtE(0,r), kEV, 

Tll < k, I - Yt > :::; dF(y') - c/2 Vk EK IV, t E (0, r] 

where Yt = y' - ty. 
Since Bi,Ci are compact and N1,i(Y'), N2,i(Y') are closed subsets of Bi,Ci, there 

exist ej,i > 0 such that 

mm I< h,y >I= e1,i 
hEN1.i(Y') 

Vi E Ji(y') 

and 
mm I< -h, y >I = e2 i 

hEN2,;(y') ' 

Define the open set Uj ,i as 

e1 · Vi E Ji(y')} U1,i = {h E Bi:< h,y > < --;f-, 
e2 · Vi E I2(y')} U2,i = { h E Ci :< -h, Y > < - 2'', 

U1,i = 0 Vi E J I Ji(y') 
and 

U2,i = 0 V i E J I h(y'). 
Clearly, Nj,i(Y') C Uj,i \/ i E Ij(y'). Hence there exists Cj,i > 0 such that 

< h, y' - tfi > ?: 
< -h y' -p· > > ' ' - 

\/ h E Bi I U1,i, i E J 
\/ h E Ci I U2,i, i E J 

I . {Cj,i Cj,i} Put µi = maxhEB; I< h, y >I, Vi = maxhEC; I< h, y > , aj,i = mm 2µi, 2l/i and 

ro = { minio{a1,i}, minio{a2,d,r}. Observe that, for h E U1,i and t E (O,ro], 

< h, y' - ty - tfi > = < h, y' - tfi > - t < h, y > > 0 
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and for h E Bi I U1,i, t E (0, ro] 
< h, y' - ty - "Pi > = < h, y' - "Pi > - t < h, y > ~ c1,i - t < h, y > > 0. 

Similary, for h E U2,i and t E (0, r], 
< -h, y' - ty - Pi > = < -h, y' .- Pi > - t < -h, y > > 0 

and for h E Ci I U2,i, t E ~o, ro] 
< -h y' -ty - p· > = < -h y - p· > -t < -h y > > C2 · - t < -h Y > > 0. 

' 1 ' 1, ' - ,, ' 

This shows y' - ty is in Y fort E (0, ro]. Moreover, we have dp(y' - ty) < dp(y'). Hence 
y' is not a best approximation to F which proves the theorem. 

In the case where G is of dimension n, we have the following useful result without 
the additional assumption of continuity of linear functional in Bi, Ci, i = 1, 2, · · · , m. 

Theorem 2.3. Suppose G is an n-dimensional subspace of X and Bi, Ci C X* ( i = 
1, 2, · · ·, m). Furthermore, assume that the restriction Bi IG, Ci IG are closed and 
bounded. If there exists y E G such that 

<r,y> ~a> 0, 'vrENi,i(y') U [-N2,i(y')], i=l,2,···,m, 

for some given y' E Y, then y' is a best approximation to F if and only if there exist 
s functionals, ki,···,k$ E H(y'), ii functionals hi,1,···,hi,l; E N1,i(Y') for i E I1(y') 
and ti functionals qi,1, ... , qi,t; E N2,i(Y') for i E I2(y') and S + LiEI1(Y')i'i + LiEI2(Y')ti 
scalars a1, ... , a$ ,bi,i, · · ·, bi,l;, Ci,1, ... , Ci,t; > 0, such that 

.s + I: ii + I: ti S n + 1, 
iEI1(Y') iEI2(Y') 

$ l; t; 
Lai+ I: I:b·· + I: LCjj - 1 ',J 
i=l iE11(y1) j=l iE12(y') f=i 

and 
$ l; t; 

Lai<ki,Y>+ L Lbij<hi,j,y>- L Lci,j<qi,j,Y>=OVyEG. 
i:i iEI1(y')j=i iEI2(y1) i=i 

Proof. Define the set W of n-tuples as follows: 

W = {(< k,y1 >, ,< k,Yn >): k E H(y')} 

U { ( < hi ,i , Y1 >, , < hi ,i , Yn >) : hi ,i E N 1, i ( y'), i E Ji ( y')} 
U { ( < -Qi,i, Yi >, , < -qi,i, Yn >) : qi,i E N2,i(y'), i E h(y')} 

where Y1, ... , Yn is a basis for G. Obviously, W is a compact subset of Rn, since Bi !G 
, Ci IG are closed and bounded. 
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First of all, we shall show that y' is a best approximation if and only if OE co(W). 
Suppose that y' is not a best approximation, then, as in the proof of sufficiency of 

Theorem 2.2, there exists a y E G such that 

< k, y > < 0 \/ k E H(y') 

and 
< r,y > < 0 V r E N(y'). 

Therefore, by a known result in [1, p.19], 0 f/:. co(W). 
On the other hand, suppose Of/:. co(W), then, by a known result in [1, p.19), there 

exists y E G such that 
< k, y > < 0 V k E H(y') 

and 
< r, y > < 0 V r E N(y'). 

By a similar argument to that in the proof of necessity of Theorem 2.2, we can find y E Y 
such that dp(y) < dp(y'). Therefore, y' is not a best approximation. 

Thus, we have shown that y' is a best approximation if and only if O E co(W). 
By Caratheodory's Theorem, 0 E co(W) if and only if there exist k1, ... , ks E H(y'), 
hi,1, ... , hi,l; E N1,i(y') for i E I1(y') and qi,1, · · ·, qi,t; E N2,i(Y') for i E I2(y') and 
s + r.;ieJ1(y')fi + r.;ieJ2(y')ti scalars a1, ···,as, bi,1, · · ·, bi,l; and Ci,1, ... , Ci,t; > 0 such that 

s l; 

I:ai + I: I:bi,j + 
i:l iEI1(Y')i=l 

1 

and 
$ 

L ai ( < ki, YI >, · · · , < ki, Yn >) + 
i=l 

l; 

L Lbi,i(< hi,j,Yl >, ... ,< hi,i,Yn >) 
iEI1(Y')j=l 

t; 

L Lci,i(< qi,i,Yl >, ... ,< qi,i,Yn >) = 0. 
iE/2(y')i=l 

On multiplying by any vector d = ( d1, d2, ... , dn), it follows that 
s l; 

I:ai<ki,Y> + L Lbu<hi,;,Y> 
i=l iE/i(y') j=l 

t; 

L L Ci,j < qi,i, Y > = 0 
iEI2(y') i=l 

'v yE G. 
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which proves the theorem. 

3. Application to space C[a, b] 
We now turn to a concrete application of the results of Section 2. Let G be an n 

dimensional subspace of Cr[a, b], the set of all r times continuous differentiable functions 
in C[a, b]. We denote the point evaluation functional of k-th derivative at x by xk(/) = 
Dk f(x) for all/ E cr[a,b) (k:::; r). The semi-norm p(-) is defined as 

p(/) = max I /(x) I 
xET 

where Tis a closed subset of [a,b]. Obviously, the corresponding set K = {ci:: x ET} 
where C = ±1. First, we consider Bi= Ci= {xk•: XE [a,bJ} and tfi,Pi E cr[a,b], 
i = 1,2,···,m, such that i;k•(t/Ji) < xk;(Pi) \/i;k, E Bi, i = 1,2,···,m, 1:::; k1:::; k2:::; 

· · · :::; km < r. Hence the set 

Obviously the restriction B; IG is closed and bounded. By virtue of Theorem 2.3, we 
have, 

Theorem 3.1. Suppose there exists a g E G such that r(g) ~ /3 > 0 V r E N1,i(go) 
U 1:...,N2,i(go)] i = 1, 2, · · ·, m, for some given go E Y. Then go is best approximation to a 
compact subset F C C[a, b] if and only if there exist x1, ... , Xs ET, Yi,I, , Yi,l; E [a, b] 
for i E Ii (go), Zi,t, ... , Zi,t; E [a, bJ, for i E h(go), s functions Ji, , Is E F (not 
necessarily distinct) ands+ EiEli(oo/i + EieJ2(go)ti scalars a1, ... , as, bi,1, · · ·, bi,l; and 
Ci,1, ... , ci,t, > 0 such that 

s l; 

""""" a · + """"" """"" b · · + ~ i ~ ~ i,J 
i=l iE/1(90) j:1 

1, 

3 L aiu(xi)g(xi) + 
i=l 

l; 

L Lbi,jDkig(Yi,j) 
iE/1(90) i=l 

t; L LCijDk;g(zi,j) = 0 
iE/2(00) i=l 

\/ g E G. (3.1) 

i = 1, 2, · · ·, s, 
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j = 1, ···,ii, i E Ji(go) 

and 
j = 1, .. ·, ti, i E h(go), 

where o-(xi) = sign(fi(xi) - g0(xi)) i = 1, 2, · · ·, s. 
lfwe put Bi= {€iXk,: x E [a,b]}, Ci= 0, and "Pi= 0, i = 1,2, ... ,m, where 

€i = ±1, 1 :S k1 :S k2 :S · · · :S km < r, then Y = {g E G : €iDk;g(x) ~ 0, V x E 
[a,b], i = 1,2, ... ,m}. Suppose G is the set of all polynomials of degree :Sn. Then, 
since G is the set of all polynomials of degree :S n, there always exist g E G such that 
ciXk;(g) > 0, 'v€iXk; E N1,i(g0), i E Ji(go), for some go E Y, and by virtue of Theorem 
2.3, we have 

Theorem 3.2. An element g0 E Y is a best approximation to a compact subset 
F C C[a, b], if and only if there exist x1, ... , Xs ET, Yi,1, ... , Yi,l; E [a, b] for i E I1 (go), 
s functions Ji,···, ls E F (not necessarily distinct) ands+ Eie/i(go/i scalars ai, ... , as 
and bi,1, ... , bi,l; > 0 such that s + EiEli(go)fi :S n + 2, 

l; 

~ ~b-· LJ LJ i,J 1. 

s l; 

Laiu(xi)g(xi) + LiE11(g0) L€ibi,jDk;g(Yi,j) 
i=l j=i 

0 V g E G (3.2) 

i=l,2,···,S 

and 
j = 1, 2, · · · ,f.i, i E Ii(go), 

where u(xi) = sign(fi(xi) - g0(xi)), i = 1, 2, · · ·, s. 
In the case F consists of a single function and p(-) is the usual supremum-norm, 

Theorem 3.2 is, in fact, a known result given in [5]. 
Now, consider the case. m = 1, B1 = C1 = {x : x E [a,b]} and G is an n 

dimensional subspace of C[a,b]. Let t/;1,p1 be two given functions in C[a,b] such that 
1P1(x) < P1(x) Vx E [a,b]. Then, by Theorem 2.3, we have 

Theorem 3.3. Suppose there exists a g E G such that r(g) ~ f3 > 0 Yr E Ni,2(go) 
U [-N2,1(go)], for some given g0 E Y. Then g0 is a best approximation to a compact 
subset F C C[a, b] if and only if there exist s points, x1, ... , Xs E T, £ points Y1, ... , YL E 
[a, b], t points z1, ... , Zt E [a, b], s functions Ji, ... , Is E F ands+£ +t scalars a1, ···,as, 
b1, ... , bl and ci, ···,Ct > 0 such that s + £ + t < n + 1, 

s l t 

Lai + L bi + L Ci = 1 and 
i=l i=l 
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8 l t L aio-(xi)9(xi) + L bi9(yi) - L ci9(zi) = 0 
i=l 

V 9 E G (3.3) 

I fi(xi) - 9o(xi) I 
9o(Yi) - 1P1 (Yi) 

dp(go), 
0, 

i=l,2, ... ,s; 

i=l,2,···,l; 

and 
0, i = 1,2,···,t, 

where 
i = 1, 2, · · ·, s. 

In this case, if G is the set of all polynomials of degree :S n, F consists of a single function 
f say, 1/;1 = / + ,1, Pl= f + 12, for some 11,12 E C[a,b) such that ,1(x) < 12(x), and 
p(·) is the usual supremum norm, then Theorem 3.3 is, in fact, a known result in {7}. 

4. Appication to space C[a, b] endowed with Lµ-norm (µ 2: 1) 
Let G be an n-dimensional subspace of cr [ a, b] and Bi, Ci, "Pi, Pi, Y be defined as in 

the beginning of Section 3. Suppose p(·) is defined to be a Lµ-norm. Then, by virtue of 
Theorem 2.3, we have 

Theorem 4.1. Suppose there exists a 9 E G such that r(g) 2: /3 > 0 V r E N1,i(9o) 
U [-N2,i(9o)], i E J for some given 9o E Y. Then 9o is a best approximation to a com 
pact subset F C C[a,b] if and only if there exists functions u1(x), ... , u3(x) E Lv[a,b], s 
functions Ji, ... , /8 E F (not necessarily distinct}, r;iE/i(goli points Yi,1, ... , Yi,l; E [a, b], 
r;iEf2(go)ti points Zi,1, , Zi,t; E [a, b) ands+ r;iEf1(g0)fi + r;iEf2(g2)t, scalars a1, · · ·, a3, 
bi,1, ... , bi,l; an</. Ci,1, , Ci,t, > 0 such thats+ r;iEf1(g0)fi + r;ieI2(g0)ti :Sn+ l and 

8 b l; 

~ai 1 9(x)ui(x)dx + . L ~b,,iDk;g(yi,i) 
1=1 1E/i(go) J =1 

t; 

+ "' "'c· · Dk;9(z· ·) = 0 L...J L...J 1,J 1,J 
iEI2(go)i=l 

V gE G (4.1) 

where i + t = 1, I:ui - 9o)ui = dF(Uo), i = 1, 2, · · ·, s, 

j=l,2,···,li, iEJi(go) 

and 
0, j = 1,2,···,ti, i E h(go). 
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Finally, we consider the case m = 1, e:1 = -1, B1 = {e:1i: : x E [a, b]}, C1 = 0 
and F = {/}. Suppose G is an n-dimensional subspace of C[a, b] containing constant 
functions. Define the set Y as before by taking t/J1 = f. This again leads to one-sided 
approximation in C[a, b] with Lµ-norm. However, it is clear that f(x) - g(x) does not 
change sign for each g E Y, hence, ifu(x) E L,,[a,b] such that J(f-g)u = 11/-gjjµ, 
then u(x) = (/- g)µ-l(x)/11/ - gll~-1. Consequently, we have 

Theorem 4.3. A function g0 E Y is a best approximation to f E C[a, b] if and only 
if there exist Yi, ... , Yl E N1,1(go) and l scalars b1, ... ,be> 0 such that l:::; n and 

b l 1 g(x)(/(x) - go(x))µ-ldx - ~big(yi) 
a i=l 

0 for all g E G. (4.2) 

Ifµ= l, then the equality (4.t; can be written as 

for all g E Gn. 

Remark In the case G is the set of all polynomials of degree :::; n - 1, then 2£ - e1 2: n 
where l. and e1 are the number of points in N1,1(g0) and N1,1(go) n {a,b}, respectively, 
for otherwise, we would find a g E G such that g has double zeros on N1,1(go) I {a, b} and 
simple zeros on N1,1(go)n{a,b}, which would contradict the relation (4.2). Moreover, if 
Dgo f; 0, then 2£ - e1 is, in fact, actually equal to n. 
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