CONSTRAINED APPROXIMATION OF A COMPACT SET IN \mathbb{A} NORMED SPACE

KIM-PIN LIM

1. Introduction

In this paper we are going to discuss the constrained approximation, that is, find a best approximation from a convex subset to a given compact subset subject to certain constraints. Essentially, the problem is based on the monotone best approximation given by Roulier [6] and Lorentz and Zeller [4.5], as well as Taylor's papers [7,8,9] on best approximation by algebraic polynomials with restricted ranges. In [6] Roulier has discussed the monotone best approximation to a given function with same property. Later on Lorentz and Zeller generalized this problem to a general form by assuming that $\varepsilon_{i} D^{k_{i}} p(x) \geq 0, i=1,2, \cdots, r$. where $\varepsilon_{i}= \pm 1,1 \leq k_{1} \leq k_{2} \leq \ldots \leq k_{r}<n$ and $p(x)$ is polynomial of degree $\leq n$. Meanwhile, Taylor has considered a problem concerning best approximation by algebraic polynomials with restricted ranges, i.e. to find a polynomial $P_{0}(x)$ of degree $\leq n$ which is a best approximation to a given function $f(x)$ such that $\ell(x) \leq f(x)-\dot{P}_{0}(x) \leq u(x)$ where ℓ, u are given functions in $C[a, b]$ such that $\ell(x) \leq u(x)$ for all $x \in[a, b]$. This leads us to question that whether it is possible to develop a more general theory with regard to these problems. To answer the question, let us consider the following problem:
(P): Given a compact subset $F \subset X$, a real Banach Space, to find $y^{\prime} \in Y$, a subset of a subspace G of X, such that

$$
\left.d_{F}\left(y^{\prime}\right)=\inf _{y \in Y} d_{F}(y)=\inf _{y \in Y} \max _{f \in F} \max _{k \in K \subset X^{*}}<k, f-y\right\rangle
$$

where K is a symmetric $\sigma\left(X^{*}, X\right)$ - compact subset of X^{*}, the real dual space of X, and $Y=Y_{1} \cap Y_{2}$ with

$$
\begin{aligned}
& Y_{1}=\left\{y \in G:<h, y-\psi_{i}>\geq 0 \forall h \in B_{i}, i=1,2, \cdots, m\right\} \\
& Y_{2}=\left\{y \in G:<h, y-\rho_{i}>\leq 0 \forall h \in C_{i}, i=1,2, \cdots, m\right\}
\end{aligned}
$$

for some elements ψ_{i} and ρ_{i} in X.

We introduce, for $y \in X$,

$$
\begin{aligned}
p(y) & =\max _{k \in K}<k, y> \\
\text { and } \quad d_{F}(y) & =\max _{f \in F} p(f-y)
\end{aligned}
$$

By a proper choice of B_{i}, C_{i}, ψ_{i} and ρ_{i}, we may assume that $Y \neq \emptyset$. A solution for (P) will be called a best approximation to F from Y, or briefly, a "best approximation".

We begin with discussing some general questions on the existence and characterization of the solution. Indeed, the theory in which we shall develop will give a definite answer to the previous question.

2. General results

Lemma 2.1. Let G be n-dimensional subspace of X and Y be defined as above. Assume that the restriction of $p(\cdot)$ to G is a norm and each $B_{i}, C_{i} \subset X^{*}(i=1,2, \cdots, m)$. Then, there exists $y^{\prime} \in Y$ such that

$$
d_{F}\left(y^{\prime}\right)=\inf _{y \in Y} d_{F}(y)
$$

Proof. Let y_{j} be a sequence in Y such that $\lim _{j \rightarrow \infty} d_{F}\left(y_{j}\right)=\inf _{y \in Y} d_{F}(y)$. Moreover,
$p\left(y_{j}\right) \leq \max _{f \in F} p\left(f-y_{j}\right)+\max _{f \in F} p(f) \leq M$, for some real M, since $\max _{f \in F} p(f)$ is fixed and $d_{F}\left(y_{j}\right)$ are terms of a convergent sequence. As the restriction is anorm, $\left\{y_{j}\right\}$ is a bounded sequence in G. Hence, there exists y^{\prime} in G such that $\lim _{j \rightarrow \infty} y_{j}=y^{\prime}$. We will show that, in fact, $y^{\prime} \in Y$. For each i, we have
$<h, y_{j}-\psi_{i}>\geq 0 \forall h \in B_{i}$ and $<h, y_{j}-\rho_{i}>\leq 0 \forall h \in C_{i}$ and all j. Since $B_{i}, C_{i} \subset X^{*},<h, y^{\prime}-\psi_{i}>=\lim _{j \rightarrow \infty}<h, y_{j}-\psi_{i}>\geq 0 \forall h \in B_{i}$ and $<h, y^{\prime}-$ $\rho_{i}>=\lim _{j \rightarrow \infty}<h, y_{j}-\rho_{i}>\leq 0 \forall h \in C_{i}$. Therefore, $y^{\prime} \in \bar{Y}$. Further, for each j,

$$
\begin{aligned}
0 & \leq d_{F}\left(y^{\prime}\right)-\inf _{y \in Y} d_{F}(y) \leq\left[\max _{f \in F} p\left(f-y_{j}\right)+p\left(y_{j}-y^{\prime}\right)\right]-\inf _{y \in Y} d_{F}(y) \\
& =\left[d_{F}\left(y_{j}\right)-\inf _{y \in F} d_{F}(y)\right]+p\left(y_{j}-y^{\prime}\right)
\end{aligned}
$$

Since the term in breaket tends to zero as $j \rightarrow \infty$ and also $\lim _{j \rightarrow \infty} p\left(y_{j}-y^{\prime}\right)=0$, this shows that $d_{F}\left(y^{\prime}\right)=\inf _{y \in Y} d_{F}(y)$, which proves the lemma.

For the sake of simplicity, we will assume that $B_{i} \cap B_{j}=\emptyset, C_{i} \cap C_{j}=\emptyset$ for $i \neq j$ and $B_{i} \cap\left(-B_{j}\right)=\emptyset, C_{i} \cap\left(-C_{j}\right)=\emptyset$ for $i \neq j$, where $-B_{j}=\left\{-h: h \in B_{j}\right\}$, $-C_{j}=\left\{-h: h \in C_{j}\right\}$. Define the sets

$$
H(y)=\left\{\varepsilon k \in K: \exists f \in F,\langle\varepsilon k, f-y\rangle=d_{F}(y)\right\} \quad \text { where } \varepsilon= \pm 1
$$

$$
\begin{aligned}
N_{1, i}(y) & =\left\{h \in B_{i}:<h, y-\psi_{i}>=0\right\}, \\
N_{2, i}(y) & =\left\{h \in C_{i}:<h, y-\rho_{i}>=0\right\}, \\
J & =\{1, \cdots, m\}, \\
I_{1}(y) & =\left\{i \in J: N_{1, i}(y) \neq \emptyset\right\}, \\
I_{2}(y) & =\left\{i \in J: N_{2, i}(y) \neq \emptyset\right\},
\end{aligned}
$$

and

$$
N(y)=\left[\cup_{i \in I_{1}(y)} N_{1, i}(y)\right] \cup\left[\cup_{i \in I_{2}(y)} N_{2, i}(y)\right] .
$$

Let us consider two particular cases which are not of general interest. First, suppose that, for some $y_{0} \in Y$ and $k \in K$, there exist $f_{1}, f_{2} \in F$ such that

$$
<k, f_{1}-y_{0}>=d_{F}\left(y_{0}\right) \quad \text { and } \quad<k, f_{2}-y_{0}>=-d_{F}\left(y_{0}\right) .
$$

Then y_{0} is obviously a best approximation, as no approximation can make the error smaller at k. We will therefore call k a straddle point of F. In case, we have $\left\{H^{+}\left(y^{\prime}\right) \cap\right.$ $\left.N_{2, i}\left(y^{\prime}\right)\right\} \cup\left\{H^{-}\left(y^{\prime}\right) \cap N_{1, j}\left(y^{\prime}\right)\right\} \neq \emptyset$ for some $i, j \in J$, where $H^{+}\left(y^{\prime}\right)=\left\{+k \in H\left(y^{\prime}\right)\right\}$ and $H^{-}\left(y^{\prime}\right)=\left\{-k \in H\left(y^{\prime}\right)\right\}$, then any attempt to decrease the error $d_{F}\left(y^{\prime}\right)$ would remove y^{\prime} from Y through failure of the necessary inequalities for $\left\langle h, y^{\prime}-\psi_{j}\right\rangle$ and $<h, y^{\prime}-\rho_{i}>$ at all $h \in\left\{H^{+}\left(y^{\prime}\right) \cap N_{2, i}\left(y^{\prime}\right)\right\} \cup\left\{H^{-}\left(y^{\prime}\right) \cap N_{1, j}\left(y^{\prime}\right)\right\}$. Thus, y^{\prime} is clearly a best approximation. In the following discussion, unless otherwise stated, we will rule out these two cases.

Theorem 2.1. Let G be a subspace of X and Y a subset of G defined as before. Then $y^{\prime} \in Y$ is a best approximation to F if and only if there does not exist $y \in G$ such that

$$
\begin{align*}
&<k, y><0 \forall k \in H\left(y^{\prime}\right) \\
&<h, y>\leq<h, y^{\prime}-\psi_{i}>\quad \forall h \in B_{i}, \quad i=1,2, \cdots, m \tag{2.1}
\end{align*}
$$

and

$$
\left.<-h, y>\leq<h, \rho_{i}-y^{\prime}\right\rangle \quad \forall h \in C_{i}, \quad i=1,2, \cdots, m .
$$

Proof. Suppose that y^{\prime} is not a best approximation to F, then there is a y_{1} in Y such that

$$
d_{F}\left(y_{1}\right)<d_{F}\left(y^{\prime}\right) .
$$

Observe that for each $k \in H\left(y^{\prime}\right)$ there is a. f in F such that

$$
<k, f-y_{1}>\ll k, f-y^{\prime}>.
$$

Therefore, we have

$$
<k, y^{\prime}-y_{1}><0 \text { for all } k \in H\left(y^{\prime}\right)
$$

Moreover,

$$
\begin{aligned}
& <h, y^{\prime}-y_{1}>-<h, y^{\prime}-\psi_{i}>=<h,-y_{1}+\psi_{i}>=-<h, y_{1}-\psi_{i}>\leq 0 \\
& \quad \text { for all } h \in B_{i}, i=1, \cdots, m,
\end{aligned}
$$

and

$$
\begin{gathered}
<h, y^{\prime}-y_{1}>-<h, y^{\prime}-\rho_{i}>=<h,-y+\rho_{i}>=<h, \rho_{i}-y_{1}>\geq 0 \\
\forall h \in C_{i}, \quad i=1,2, \cdots, m .
\end{gathered}
$$

Consequently, if we put $y=y^{\prime}-y_{1}$, then we have the required result. This proves the sufficiency.

On the other hand, if there is a y in G such that

$$
\begin{gathered}
<k, y><0 \text { for all } k \in H\left(y^{\prime}\right) \\
<h, y>\leq<h, y^{\prime}-\psi_{i}>\text { for all } h \in B_{i}, i=1, \cdots, m
\end{gathered}
$$

and

$$
-<h, y>\leq<h, \rho_{i}-y^{\prime}>\text { for all } h \in C_{i}, i=1, \cdots, m
$$

Then, by compactness of $H\left(y^{\prime}\right)$, there exists a real $b>0$ and an open subset V of K such that

$$
\inf _{k \in H\left(y^{\prime}\right)}\left|d_{F}\left(y^{\prime}\right)<k, y>\right|=b
$$

and

$$
\max _{f \in F}<k, f-y^{\prime}><k, y><-b / 2 \quad \text { for all } k \in V
$$

Obviously, $H\left(y^{\prime}\right) \subset V$. Hence, there is a real $c>0$ such that

$$
d_{F}\left(y^{\prime}\right)-\max _{f \in F} \max _{k \in K \mid V}<k, f-y^{\prime}>\geq c .
$$

Take $r=\min \left[b / 2 p(y)^{2}, c / 2 p(y)\right]$, and observe that, for $k \in V$,

$$
\begin{aligned}
\max _{f \in F}<k, f y_{t}> & =\max _{f \in F}<k, f-y^{\prime}>+t<k, y> \\
& <\max _{f \in F}<k, f-y^{\prime}>\leq d_{F}\left(y^{\prime}\right) \text { for sufficiently small } t \in(0, r]
\end{aligned}
$$

where $y_{t}=y^{\prime}-t y$, while for $k \in K \mid V, t \in(0, r]$,

$$
\begin{aligned}
\max _{f \in F}\left|<k, f-y_{t}>\right| & =\max _{f \in F} \max _{k \in K \mid V}\left|<k, f-y^{\prime}>|+t|<k, y>\right| \\
& \leq d_{F}\left(y^{\prime}\right)-c+c / 2=d_{F}\left(y^{\prime}\right)-c / 2 .
\end{aligned}
$$

It follows that $d_{F}\left(y_{i}\right)<d_{F}\left(y^{\prime}\right)$ for sufficiently small $t \in(0, r]$. Finally, we will show that there exists t in $(0, r]$ such that y_{t} is in Y. Since $<h, y>\leq<h, y^{\prime}-\psi_{i}>$ and
$<h, y^{\prime}-\psi_{i}>\geq 0$ for all $h \in B_{i}, i=1, \cdots, m$, we have $<h, t y>\leq<h, y^{\prime}-\psi_{i}>$ for all $h \in B_{i}, i=1, \cdots, m$ and $t \in(0,1]$. Therefore, $\left\langle h, y^{\prime}-t y-\psi_{i}\right\rangle \geq 0$ for all $h \in B_{i}$, $i=1, \cdots, m$ and $t \in(0,1]$. Similarly, we have $\left\langle h, \rho_{i}-y^{\prime}+t y>\geq 0\right.$ for all $h \in C_{i}$, $i=1,2, \cdots, m$ and $t \in(0,1]$. Consequently, this shows that there exists $t \in(0, r]$ such that y_{t} is in Y and $d_{F}\left(y_{t}\right)<d_{F}\left(y^{\prime}\right)$. Hence, y^{\prime} is not a best approximation to F, proving the theorem.

The condition (2.1) of Theorem 2.1 is too restrictive. Therefore, for the practical purpose we would like to replace condition (2.1) by a less restrictive condition. First, we assume that $B_{i}, C_{i} \subset X^{*}(i=1,2, \cdots, m)$ are $\sigma\left(X^{*}, X\right)$-compact.

With the aid of the additional assumptions, we have
Theorem 2.2. Suppose that $B_{i}, C_{i} \subset X^{*}(i=1,2, \cdots, m)$ are $\sigma\left(X^{*}, X\right)$-compact and there exists $y \in G$ such that $\left\langle\tau, y>\geq a>0\right.$ for $\tau \in N_{1, i}\left(y^{\prime}\right) \cup\left[-N_{2, i}\left(y^{\prime}\right)\right]$, $i=1,2, \cdots, m$, for some given $y^{\prime} \in Y$. Then y^{\prime} is a best approximation to F if and only if

$$
\overline{c o}\left(H\left(y^{\prime}\right) \cup N\left(y^{\prime}\right)\right) \cap G^{\perp} \neq \emptyset
$$

where $G^{\perp}=\left\{u \in X^{*}:\langle u, y\rangle=0 \forall y \in G\right\}$.
Proof. For the sake of convenience, let $M=H\left(y^{\prime}\right) \cup N\left(y^{\prime}\right)$. As in Theorem 2.1, we know that if y^{\prime} is not a best approximation, there is an $y_{1} \in Y$ such that

$$
\begin{array}{rl}
<k, y^{\prime}-y_{1}><0 & k \in H\left(y^{\prime}\right) \cdots \\
<h, y^{\prime}-y_{1}>\leq<h, y^{\prime}-\psi_{i}> & \forall h \in B_{i}, i=1,2, \cdots, m
\end{array}
$$

and

$$
<-h, y^{\prime}-y_{1}>\leq\left\langle h, \rho_{i}-y^{\prime}\right\rangle \quad \forall h \in C_{i}, i=1,2, \cdots, m
$$

Hence, $<h, y^{\prime}-y_{1}>\leq 0 \forall h \in N_{1, i}\left(y^{\prime}\right), i \in I_{1}\left(y^{\prime}\right)$ and $<-h, y^{\prime}-y_{1}>\leq 0 \forall h \in N_{2, i}\left(y^{\prime}\right)$, $i \in I_{2}\left(y^{\prime}\right)$. If

$$
<\tau, y^{\prime}-y_{1}><0 \quad \forall \tau \in N\left(y^{\prime}\right)
$$

then, putting $y=y^{\prime}-y_{1}$, we get

$$
<\tau ; y><0 \quad \forall \tau \in M
$$

Hence $\bar{\infty}(M) \cap G^{\perp}=\emptyset$. Otherwise, if exists $\tau \in N\left(y^{\prime}\right)$ such that $\left\langle\tau, y^{\prime}-y_{1}\right\rangle=0$. By assumption, we have a $y \in G$ such that $\langle\tau, y>\geq a\rangle 0 \forall \tau \in N\left(y^{\prime}\right)$, and, by the compactness of $H\left(y^{\prime}\right)$, there exist real $b_{1}>0$ and $b_{2}>0$ such that $\inf _{k \in H\left(y^{\prime}\right)} \mid<k, y^{\prime}-$ $y_{1}>\mid=b_{1}$ and $\max _{k \in H\left(y^{\prime}\right)}|<k, y>|=b_{2}$. Take $c=b_{1} / 2 b_{2}$, then, for $y_{t}=y^{\prime}-y_{1}-t y$, where $t \in(0, c]$, we have

$$
<k, y_{t}>=<k, y^{\prime}-y_{1}>-t<k, y><0 \forall k \in H\left(y^{\prime}\right) ;
$$

and

$$
<\tau, y_{t}>=<\tau, y^{\prime}-y_{1}>-t<\tau, y><0 \forall \tau \in N\left(y^{\prime}\right) .
$$

This again shows that $\overline{c o}(M) \cap G^{\perp}=\emptyset$, proving the sufficiency.

Conversely, suppose $\overline{c o}(M) \cap G^{\perp}=\emptyset$, by a separation theorem [2] and the fact that the duall space of X^{*} under $\sigma\left(X^{*}, X\right)$ - topology is X, there is an $y \in G$ such that

$$
<k, y><0 \quad \forall k \in H\left(y^{\prime}\right)
$$

and

$$
<\tau, y><0 \quad \forall \tau \in N\left(y^{\prime}\right) .
$$

By a similar argument to that in the proof of Theorem 2.1, there exist real $b, c, r>0$ and an open subset V of K such that

$$
\begin{aligned}
& {\left[\max _{f \in F}<k, f-y_{t}>\right]^{2} \leq\left[d_{F}\left(y^{\prime}\right)\right]^{2}-t b / 2 \forall t \in(0, r], k \in V,} \\
& \max _{f \in F}<k, f-y_{t}>\leq d_{F}\left(y^{\prime}\right)-c / 2 \quad \forall k \in K \mid V, \quad t \in(0, r]
\end{aligned}
$$

where $y_{t}=y^{\prime}-t y$.
Since B_{i}, C_{i} are compact and $N_{1, i}\left(y^{\prime}\right), N_{2, i}\left(y^{\prime}\right)$ are closed subsets of B_{i}, C_{i}, there exist $e_{j, i}>0$ such that

$$
\min _{h \in N_{1, i}\left(y^{\prime}\right)}|<h, y>|=e_{1, i} \quad \forall i \in I_{1}\left(y^{\prime}\right)
$$

and

$$
\min _{h \in N_{2, i}\left(y^{\prime}\right)}|<-h, y>|=e_{2, i} \quad \forall i \in I_{2}\left(y^{\prime}\right) .
$$

Define the open set $U_{j, i}$ as

$$
\begin{aligned}
& U_{1, i}=\left\{h \in B_{i}:<h, y><-\frac{e_{1, i}}{2}, \quad \forall i \in I_{1}\left(y^{\prime}\right)\right\} \\
& U_{2, i}=\left\{h \in C_{i}:<-h, y><-\frac{e_{2, i}}{2}, \quad \forall i \in I_{2}\left(y^{\prime}\right)\right\} \\
& U_{1, i}=\emptyset \quad \forall i \in J \mid I_{1}\left(y^{\prime}\right) \\
& \text { and } \\
& U_{2, i}=\emptyset \quad \forall i \in J \mid I_{2}\left(y^{\prime}\right) .
\end{aligned}
$$

Clearly, $N_{j, i}\left(y^{\prime}\right) \subset U_{j, i} \forall i \in I_{j}\left(y^{\prime}\right)$. Hence there exists $c_{j, i}>0$ such that

$$
\begin{aligned}
<h, y^{\prime}-\psi_{i}>\geq c_{1, i} & \forall h \in B_{i} \mid U_{1, i}, i \in J \\
<-h, y^{\prime}-\rho_{i}>\geq c_{2, i} & \forall h \in C_{i} \mid U_{2, i}, i \in J
\end{aligned}
$$

Put $\mu_{i}=\max _{h \in B_{i}}\left|<h, y>\left|, \nu_{i}=\max _{h \in C_{i}}\right|<h, y>\right|, a_{j, i}=\min \left\{\frac{c_{j, i}}{2 \mu_{i}}, \frac{c_{j, i}}{2 \nu_{i}}\right\}$ and $r_{0}=\left\{\min _{i \in J}\left\{a_{1, i}\right\}, \min _{i \in J}\left\{a_{2, i}\right\}, r\right\}$. Observe that, for $h \in U_{1, i}$ and $t \in\left(0, r_{0}\right]$,

$$
<h, y^{\prime}-t y-\psi_{i}>=<h, y^{\prime}-\psi_{i}>-t<h, y \gg 0
$$

and for $h \in B_{i} \mid U_{1, i}, t \in\left(0, r_{0}\right]$

$$
<h, y^{\prime}-t y-\psi_{i}>=<h, y^{\prime}-\psi_{i}>-t<h, y>\geq c_{1, i}-t<h, y \gg 0 .
$$

Similary, for $h \in U_{2, i}$ and $t \in(0, r]$,

$$
\left.\left.<-h, y^{\prime}-t y-\rho_{i}\right\rangle=<-h, y^{\prime}-\rho_{i}\right\rangle-t<-h, y \gg 0
$$

and for $h \in C_{i} \mid U_{2, i}, t \in\left(0, r_{0}\right]$

$$
<-h, y^{\prime}-t y-\rho_{i}>=<-h, y^{\prime}-\rho_{i}>-t<-h, y>\geq c_{2, i}-t<-h, y \gg 0 .
$$

This shows $y^{\prime}-t y$ is in Y for $t \in\left(0, r_{0}\right]$. Moreover, we have $d_{F}\left(y^{\prime}-t y\right)<d_{F}\left(y^{\prime}\right)$. Hence y^{\prime} is not a best approximation to F which proves the theorem.

In the case where G is of dimension n, we have the following useful result without the additional assumption of continuity of linear functional in $B_{i}, C_{i}, i=1,2, \cdots, m$.

Theorem 2.3. Suppose G is an n-dimensional subspace of X and $B_{i}, C_{i} \subset X^{*}(i=$ $1,2, \cdots, m)$. Furthermore, assume that the restriction $\left.B_{i}\right|_{G},\left.C_{i}\right|_{G}$ are closed and bounded. If there exists $y \in G$ such that

$$
<\tau, y>\geq a>0, \forall \tau \in N_{1, i}\left(y^{\prime}\right) \cup\left[-N_{2, i}\left(y^{\prime}\right)\right], i=1,2, \cdots, m
$$

for some given $y^{\prime} \in Y$, then y^{\prime} is a best approximation to F if and only if there exist s functionals, $k_{1}, \cdots, k_{s} \in H\left(y^{\prime}\right), \ell_{i}$ functionals $h_{i, 1}, \ldots, h_{i, \ell_{i}} \in N_{1, i}\left(y^{\prime}\right)$ for $i \in I_{1}\left(y^{\prime}\right)$ and t_{i} functionals $q_{i, 1}, \ldots, q_{i, t_{i}} \in N_{2, i}\left(y^{\prime}\right)$ for $i \in I_{2}\left(y^{\prime}\right)$ and $s+\Sigma_{i \in I_{1}\left(y^{\prime}\right)} \ell_{i}+\Sigma_{i \in I_{2}\left(y^{\prime}\right)} t_{i}$ scalars $a_{1}, \ldots, a_{s}, b_{i, 1}, \cdots, b_{i, \ell_{i}}, c_{i, 1}, \ldots, c_{i, t_{i}}>0$, such that

$$
\begin{gathered}
s+\sum_{i \in I_{1}\left(y^{\prime}\right)} \ell_{i}+\sum_{i \in I_{2}\left(y^{\prime}\right)} t_{i} \leq n+1 \\
\sum_{i=1}^{s} a_{i}+\sum_{i \in I_{1}\left(y^{\prime}\right)} \sum_{j=1}^{\ell_{i}} b_{i, j}+\sum_{i \in I_{2}\left(y^{\prime}\right)} \sum_{j=1}^{t_{i}} c_{i j}=1
\end{gathered}
$$

and

$$
\sum_{i=1}^{s} a_{i}\left\langle k_{i}, y\right\rangle+\sum_{i \in I_{1}\left(y^{\prime}\right)} \sum_{j=1}^{\ell_{i}} b_{i j}\left\langle h_{i, j}, y\right\rangle-\sum_{i \in I_{2}\left(y^{\prime}\right)} \sum_{i=1}^{t_{i}} c_{i, j}\left\langle q_{i, j}, y\right\rangle=0 \forall y \in G .
$$

Proof. Define the set W of n-tuples as follows:

$$
\begin{aligned}
W= & \left\{\left(<k, y_{1}>, \ldots,<k, y_{n}>\right): k \in H\left(y^{\prime}\right)\right\} \\
& \cup\left\{\left(<h_{i, j}, y_{1}>, \ldots,<h_{i, j}, y_{n}>\right): h_{i, j} \in N_{1, i}\left(y^{\prime}\right), i \in I_{1}\left(y^{\prime}\right)\right\} \\
& \cup\left\{\left(<-q_{i, j}, y_{1}>, \ldots,<-q_{i, j}, y_{n}>\right): q_{i, j} \in N_{2, i}\left(y^{\prime}\right), i \in I_{2}\left(y^{\prime}\right)\right\}
\end{aligned}
$$

where y_{1}, \ldots, y_{n} is a basis for G. Obviously, W is a compact subset of R^{n}, since $\left.B_{i}\right|_{G}$, $\left.C_{i}\right|_{G}$ are closed and bounded.

First of all, we shall show that y^{\prime} is a best approximation if and only if $O \in c o(W)$.
Suppose that y^{\prime} is not a best approximation, then, as in the proof of sufficiency of Theorem 2.2, there exists a $y \in G$ such that

$$
<k, y><0 \quad \forall k \in H\left(y^{\prime}\right)
$$

and

$$
<\tau, y><0 \quad \forall \tau \in N\left(y^{\prime}\right)
$$

Therefore, by a known result in [1, p.19], $O \notin c o(W)$.
On the other hand, suppose $O \notin c o(W)$, then, by a known result in [1, p.19], there exists $y \in G$ such that

$$
<k, y><0 \quad \forall k \in H\left(y^{\prime}\right)
$$

and

$$
<r, y><0 \quad \forall \tau \in N\left(y^{\prime}\right)
$$

By a similar argument to that in the proof of necessity of Theorem 2.2, we can find $y \in Y$ such that $d_{F}(y)<d_{F}\left(y^{\prime}\right)$. Therefore, y^{\prime} is not a best approximation.

Thus, we have shown that y^{\prime} is a best approximation if and only if $O \in \operatorname{co}(W)$. By Caratheodory's Theorem, $0 \in c o(W)$ if and only if there exist $k_{1}, \ldots, k_{s} \in H\left(y^{\prime}\right)$, $h_{i, 1}, \ldots, h_{i, \ell_{i}} \in N_{1, i}\left(y^{\prime}\right)$ for $i \in I_{1}\left(y^{\prime}\right)$ and $q_{i, 1}, \cdots, q_{i, t_{i}} \in N_{2, i}\left(y^{\prime}\right)$ for $i \in I_{2}\left(y^{\prime}\right)$ and $s+\Sigma_{i \in I_{1}\left(y^{\prime}\right)} \ell_{i}+\Sigma_{i \in I_{2}\left(y^{\prime}\right)} t_{i}$ scalars $a_{1}, \cdots, a_{s}, b_{i, 1}, \cdots, b_{i, \ell_{i}}$ and $c_{i, 1}, \ldots, c_{i, t_{i}}>0$ such that

$$
\begin{gathered}
s+\sum_{i \in I_{1}\left(y^{\prime}\right)} \ell_{i}+\sum_{i \in I_{2}\left(y^{\prime}\right)} t_{i} \leq n+1 \\
\sum_{i=1}^{s} a_{i}+\sum_{i \in I_{1}\left(y^{\prime}\right)} \sum_{j=1}^{\ell_{i}} b_{i, j}+\sum_{i \in I_{2}\left(y^{\prime}\right)} \sum_{j=1}^{t_{i}} c_{i, j}=1
\end{gathered}
$$

and

$$
\begin{aligned}
& \sum_{i=1}^{s} a_{i}\left(<k_{i}, y_{1}>, \ldots,<k_{i}, y_{n}>\right)+\sum_{i \in I_{1}\left(y^{\prime}\right)} \sum_{j=1}^{\ell_{i}} b_{i, j}\left(<h_{i, j}, y_{1}>, \ldots,<h_{i, j}, y_{n}>\right) \\
- & \sum_{i \in I_{2}\left(y^{\prime}\right)} \sum_{j=1}^{t_{i}} c_{i, j}\left(<q_{i, j}, y_{1}>, \ldots,<q_{i, j}, y_{n}>\right)=0
\end{aligned}
$$

On multiplying by any vector $\bar{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, it follows that

$$
\begin{aligned}
& \quad \sum_{i=1}^{s} a_{i}<k_{i}, y>+\sum_{i \in I_{1}\left(y^{\prime}\right)} \sum_{j=1}^{\ell_{i}} b_{i, j}<h_{i, j}, y> \\
& -\sum_{i \in I_{2}\left(y^{\prime}\right)} \sum_{j=1}^{t_{i}} c_{i, j}\left\langle q_{i, j}, y>=0 \quad \forall y \in G .\right.
\end{aligned}
$$

which proves the theorem.

3. Application to space $C[a, b]$

We now turn to a concrete application of the results of Section 2. Let G be an ndimensional subspace of $C^{r}[a, b]$, the set of all r times continuous differentiable functions in $C[a, b]$. We denote the point evaluation functional of k -th derivative at x by $\hat{x}^{k}(f)=$ $D^{k} f(x)$ for all $f \in C^{r}[a, b](k \leq r)$. The semi-norm $p(\cdot)$ is defined as

$$
p(f)=\max _{x \in T}|f(x)|
$$

where T is a closed subset of $[a, b]$. Obviously, the corresponding set $K=\{\varepsilon \hat{x}: x \in T\}$ where $\varepsilon= \pm 1$. First, we consider $B_{i}=C_{i}=\left\{\hat{x}^{k_{i}}: x \in[a, b]\right\}$ and $\psi_{i}, \rho_{i} \in C^{r}[a, b]$, $i=1,2, \cdots, m$, such that $\hat{x}^{k_{i}}\left(\psi_{i}\right)<\hat{x}^{k_{i}}\left(\rho_{i}\right) \forall \hat{x}^{k_{i}} \in B_{i}, i=1,2, \cdots, m, 1 \leq k_{1} \leq k_{2} \leq$ $\cdots \leq k_{m}<r$. Hence the set

$$
Y=\left\{g \in G: \hat{x}^{k_{i}}\left(\psi_{i}\right) \leq \hat{x}^{k_{i}}(g) \leq \hat{x}^{k_{i}}\left(\rho_{i}\right), \forall \hat{x}^{k_{i}} \in B_{i}, i=1,2, \cdots, m\right\}
$$

Obviously the restriction $\left.B_{i}\right|_{G}$ is closed and bounded. By virtue of Theorem 2.3, we have,

Theorem 3.1. Suppose there exists a $g \in G$ such that $\tau(g) \geq \beta>0 \forall \tau \in N_{1, i}\left(g_{0}\right)$ $\cup\left[-N_{2, i}\left(g_{0}\right)\right] i=1,2, \cdots, m$, for some given $g_{0} \in Y$. Then g_{0} is best approximation to a compact subset $F \subset C[a, b]$ if and only if there exist $x_{1}, \ldots, x_{s} \in T, y_{i, 1}, \ldots, y_{i, \ell_{i}} \in[a, b]$ for $i \in I_{1}\left(g_{0}\right), z_{i, 1}, \ldots, z_{i, t_{i}} \in[a, b]$, for $i \in I_{2}\left(g_{0}\right)$, s functions $f_{1}, \ldots, f_{s} \in F$ (not necessarily distinct) and $s+\Sigma_{i \in I_{1}\left(g_{0}\right)} \ell_{i}+\Sigma_{i \in I_{2}\left(g_{0}\right)} t_{i}$ scalars $a_{1}, \ldots, a_{s}, b_{i, 1}, \cdots, b_{i, \ell_{i}}$ and $c_{i, 1}, \ldots, c_{i, t_{i}}>0$ such that

$$
\begin{gather*}
s+\sum_{i \in I_{1}\left(g_{0}\right)} \ell_{i}+\sum_{i \in I_{2}\left(g_{0}\right)} t_{i} \leq n+1, \\
\sum_{i=1}^{s} a_{i}+\sum_{i \in I_{1}\left(g_{0}\right)} \sum_{j=1}^{\ell_{i}} b_{i, j}+\sum_{i \in I_{2}\left(g_{0}\right)} \sum_{j=1}^{t_{i}} c_{i, j}=1, \\
\sum_{i=1}^{s} a_{i} \sigma\left(x_{i}\right) g\left(x_{i}\right)+\sum_{i \in I_{1}\left(g_{0}\right)} \sum_{j=1}^{\ell_{i}} b_{i, j} D^{k_{i}} g\left(y_{i, j}\right) \\
-\sum_{i \in I_{2}\left(g_{0}\right)} \sum_{j=1}^{t_{i}} c_{i j} D^{k_{i}} g\left(z_{i, j}\right)=0 \quad \forall g \in G . \tag{3.1}\\
\left|f_{i}\left(x_{i}\right)-g_{0}\left(x_{i}\right)\right|=d_{F}\left(g_{0}\right), \quad i=1,2, \cdots, s,
\end{gather*}
$$

$$
D^{k_{i}}\left[g_{0}\left(y_{i, j}\right)-\psi_{i}\left(y_{i, j}\right)\right]=0, \quad j=1, \cdots, \ell_{i}, i \in I_{1}\left(g_{0}\right)
$$

and

$$
D^{k_{i}}\left[g_{0}\left(z_{i, j}\right)-\rho_{i}\left(z_{i, j}\right)\right]=0, \quad j=1, \cdots, t_{i}, i \in I_{2}\left(g_{0}\right)
$$

where $\sigma\left(x_{i}\right)=\operatorname{sign}\left(f_{i}\left(x_{i}\right)-g_{0}\left(x_{i}\right)\right) i=1,2, \cdots, s$.
If we put $B_{i}=\left\{\varepsilon_{i} \hat{x}^{k_{i}}: x \in[a, b]\right\}, C_{i}=\emptyset$, and $\psi_{i}=0, i=1,2, \ldots, m$, where $\varepsilon_{i}= \pm 1,1 \leq k_{1} \leq k_{2} \leq \cdots \leq k_{m}<r$, then $Y=\left\{g \in G: \varepsilon_{i} D^{k_{i}} g(x) \geq 0, \forall x \in\right.$ $[a, b], i=1,2, \ldots, m\}$. Suppose G is the set of all polynomials of degree $\leq n$. Then, since G is the set of all polynomials of degree $\leq n$, there always exist $g \in G$ such that $\varepsilon_{i} \hat{x}^{k_{i}}(g)>0, \forall \varepsilon_{i} \hat{x}^{k_{i}} \in N_{1, i}\left(g_{0}\right), i \in I_{1}\left(g_{0}\right)$, for some $g_{0} \in Y$, and by virtue of Theorem 2.3, we have

Theorem 3.2. An element $g_{0} \in Y$ is a best approximation to a compact subset $F \subset C[a, b]$, if and only if there exist $x_{1}, \ldots, x_{s} \in T, y_{i, 1}, \ldots, y_{i, \ell_{i}} \in[a, b]$ for $i \in I_{1}\left(g_{0}\right)$, s functions $f_{1}, \cdots, f_{s} \in F$ (not necessarily distinct) and $s+\Sigma_{i \in I_{1}\left(g_{0}\right)} \ell_{i}$ scalars a_{1}, \ldots, a_{s} and $b_{i, 1}, \ldots, b_{i, \ell_{i}}>0$ such that $s+\Sigma_{i \in I_{1}\left(g_{0}\right)} \ell_{i} \leq n+2$,

$$
\begin{gather*}
\sum_{i=1}^{s} a_{i}+\sum_{i \in I_{1}\left(g_{0}\right)} \sum_{j=1}^{\ell_{i}} b_{i, j}=1 . \\
\sum_{i=1}^{s} a_{i} \sigma\left(x_{i}\right) g\left(x_{i}\right)+\Sigma_{i \in I_{1}\left(g_{0}\right)}^{\ell_{i}} \sum_{j=1} \varepsilon_{i} b_{i, j} D^{k_{i}} g\left(y_{i, j}\right)=0 \quad \forall g \in G \tag{3.2}\\
\left|f_{i}\left(x_{i}\right)-g_{0}\left(x_{i}\right)\right|=d_{F}\left(g_{0}\right), \quad i=1,2, \cdots, s
\end{gather*}
$$

and

$$
D^{k_{i}} g_{0}\left(y_{i, j}\right)=0, \quad j=1,2, \cdots, \ell_{i}, i \in I_{1}\left(g_{0}\right)
$$

where $\sigma\left(x_{i}\right)=\operatorname{sign}\left(f_{i}\left(x_{i}\right)-g_{0}\left(x_{i}\right)\right), i=1,2, \cdots, s$.
In the case F consists of a single function and $p(\cdot)$ is the usual supremum-norm, Theorem 3.2 is, in fact, a known result given in [5].

Now, consider the case. $m=1, B_{1}=C_{1}=\{\hat{x}: x \in[a, b]\}$ and G is an ndimensional subspace of $C[a, b]$. Let ψ_{1}, ρ_{1} be two given functions in $C[a, b]$ such that $\psi_{1}(x)<\rho_{1}(x) \forall x \in[a, b]$. Then, by Theorem 2.3, we have

Theorem 3.3. Suppose there exists a $g \in G$ such that $\tau(g) \geq \beta>0 \forall \tau \in N_{1,2}\left(g_{0}\right)$ $\cup\left[-N_{2,1}\left(g_{0}\right)\right]$, for some given $g_{0} \in Y$. Then g_{0} is a best approximation to a compact subset $F \subset C[a, b]$ if and only if there exist s points, $x_{1}, \ldots, x_{s} \in T, \ell$ points $y_{1}, \ldots, y_{\ell} \in$ $[a, b], t$ points $z_{1}, \ldots, z_{t} \in[a, b], s$ functions $f_{1}, \ldots, f_{s} \in F$ and $s+\ell+t$ scalars a_{1}, \cdots, a_{s}, b_{1}, \ldots, b_{ℓ} and $c_{1}, \cdots, c_{t}>0$ such that $s+\ell+t \leq n+1$,

$$
\sum_{i=1}^{s} a_{i}+\sum_{i=1}^{\ell} b_{i}+\sum_{i=1}^{t} c_{i}=1 \quad \text { and }
$$

$$
\begin{gather*}
\sum_{i=1}^{s} a_{i} \sigma\left(x_{i}\right) g\left(x_{i}\right)+\sum_{i=1}^{\ell} b_{i} g\left(y_{i}\right)-\sum_{i=1}^{t} c_{i} g\left(z_{i}\right)=0 \quad \forall g \in G \tag{3.3}\\
\left|f_{i}\left(x_{i}\right)-g_{0}\left(x_{i}\right)\right|=d_{F}\left(g_{0}\right), \quad i=1,2, \ldots, s ; \\
g_{0}\left(y_{i}\right)-\psi_{1}\left(y_{i}\right)=0, \quad i=1,2, \cdots, \ell ;
\end{gather*}
$$

and

$$
g_{0}\left(z_{i}\right)-\rho_{1}\left(z_{i}\right)=0, \quad i=1,2, \cdots, t
$$

where

$$
\sigma\left(x_{i}\right)=\operatorname{sgn}\left(f_{i}\left(x_{i}\right)-g_{0}\left(x_{i}\right)\right), \quad i=1,2, \cdots, s
$$

In this case, if G is the set of all polynomials of degree $\leq n, F$ consists of a single function f say, $\psi_{1}=f+\gamma_{1}, \rho_{1}=f+\gamma_{2}$, for some $\gamma_{1}, \gamma_{2} \in C[a, b]$ such that $\gamma_{1}(x)<\gamma_{2}(x)$, and $p(\cdot)$ is the usual supremum norm, then Theorem 3.3 is, in fact, a known result in [7].
4. Appication to space $C[a, b]$ endowed with L_{μ}-norm $(\mu \geq 1)$

Let G be an n-dimensional subspace of $C^{r}[a, b]$ and $B_{i}, C_{i}, \psi_{i}, \rho_{i}, Y$ be defined as in the beginning of Section 3. Suppose $p(\cdot)$ is defined to be a L_{μ}-norm. Then, by virtue of Theorem 2.3, we have

Theorem 4.1. Suppose there exists a $g \in G$ such that $\tau(g) \geq \beta>0 \forall \tau \in N_{1, i}\left(g_{0}\right)$ $\cup\left[-N_{2, i}\left(g_{0}\right)\right], i \in J$ for some given $g_{0} \in Y$. Then g_{0} is a best approximation to a compact subset $F^{\prime} \subset C[a, b]$ if and only if there exist s functions $u_{1}(x), \ldots, u_{s}(x) \in L_{\nu}[a, b]$, s functions $f_{1}, \ldots, f_{s} \in F$ (not necessarily distinct), $\Sigma_{i \in I_{1}\left(g_{0}\right)} \ell_{i}$ points $y_{i, 1}, \ldots, y_{i, \ell_{i}} \in[a, b]$, $\Sigma_{i \in I_{2}\left(g_{0}\right)} t_{i}$ points $z_{i, 1}, \ldots, z_{i, t_{i}} \in[a, b]$ and $s+\Sigma_{i \in I_{1}\left(g_{0}\right)} \ell_{i}+\Sigma_{i \in I_{2}\left(g_{2}\right)} t_{i}$ scalars a_{1}, \cdots, a_{s}, $b_{i, 1}, \ldots, b_{i, \ell_{i}}$ and $c_{i, 1}, \ldots, c_{i, t_{i}}>0$ such that $s+\Sigma_{i \in I_{1}\left(g_{0}\right)} \ell_{i}+\Sigma_{i \in I_{2}\left(g_{0}\right)^{t_{i}}} \leq n+1$ and

$$
\begin{align*}
& \quad \sum_{i=1}^{s} a_{i} \int_{a}^{b} g(x) u_{i}(x) d x+\sum_{i \in I_{1}\left(g_{0}\right)} \sum_{j=1}^{\ell_{i}} b_{i, j} D^{k_{i}} g\left(y_{i, j}\right) \\
& +\sum_{i \in I_{2}\left(g_{0}\right)} \sum_{j=1}^{t_{i}} c_{i, j} D^{k_{i}} g\left(z_{i, j}\right)=0 \quad \forall g \in G \tag{4.1}
\end{align*}
$$

where $\frac{1}{\mu}+\frac{1}{\nu}=1, \int_{a}^{b}\left(f_{i}-g_{0}\right) u_{i}=d_{F}\left(g_{0}\right), i=1,2, \cdots, s$,

$$
D^{k_{i}}\left[g_{0}\left(y_{i, j}\right)-\psi_{i}\left(y_{i, j}\right)\right]=0, \quad j=1,2, \cdots, \ell_{i}, i \in I_{1}\left(g_{0}\right)
$$

and

$$
D^{k_{i}}\left[g_{0}\left(z_{i, j}\right)-\rho_{i}\left(z_{i, j}\right)\right]=0, \quad j=1,2, \cdots, t_{i}, i \in I_{2}\left(g_{0}\right)
$$

Finally, we consider the case $m=1, \varepsilon_{1}=-1, B_{1}=\left\{\varepsilon_{1} \hat{x}: x \in[a, b]\right\}, C_{1}=\emptyset$ and $F=\{f\}$. Suppose G is an n-dimensional subspace of $C[a, b]$ containing constant functions. Define the set Y as before by taking $\psi_{1}=f$. This again leads to one-sided approximation in $C[a, b]$ with L_{μ}-norm. However, it is clear that $f(x)-g(x)$ does not change sign for each $g \in Y$, hence, if $u(x) \in L_{\nu}[a, b]$ such that $\int(f-g) u=\|f-g\|_{\mu}$, then $u(x)=(f-g)^{\mu-1}(x) /\|f-g\|_{\mu}^{\mu-1}$. Consequently, we have

Theorem 4.3. A function $g_{0} \in Y$ is a best approximation to $f \in C[a, b]$ if and only if there exist $y_{1}, \ldots, y_{\ell} \in N_{1,1}\left(g_{0}\right)$ and ℓ scalars $b_{1}, \ldots, b_{\ell}>0$ such that $\ell \leq n$ and

$$
\begin{equation*}
\int_{a}^{b} g(x)\left(f(x)-g_{0}(x)\right)^{\mu-1} d x-\sum_{i=1}^{\ell} b_{i} g\left(y_{i}\right)=0 \quad \text { for all } g \in G \tag{4.2}
\end{equation*}
$$

If $\mu=1$, then the equality (4. $\hat{\varepsilon}$) can be written as

$$
\int_{a}^{b} g(x) d x=\sum_{i=1}^{\ell} b_{i} g\left(y_{i}\right) \quad \text { for all } g \in G_{n}
$$

Remark In the case G is the set of all polynomials of degree $\leq n-1$, then $2 \ell-e_{1} \geq n$ where ℓ and e_{1} are the number of points in $N_{1,1}\left(g_{0}\right)$ and $N_{1,1}\left(g_{0}\right) \cap\{a, b\}$, respectively, for otherwise, we would find a $g \in G$ such that g has double zeros on $N_{1,1}\left(g_{0}\right) \mid\{a, b\}$ and simple zeros on $N_{1,1}\left(g_{0}\right) \cap\{a, b\}$, which would contradict the relation (4.2). Moreover, if $D g_{0} \neq 0$, then $2 \ell-e_{1}$ is, in fact, actually equal to n.

References

[1] Cheney, E.W., Introduction to Approximation Theory, McGraw -Hill Pub. (1966).
[2] Dunford, N. and Schwartz, J.T., Linear Operators, Part 1, New York, Int. Pub. (1958) p. 412.
[3] Laurent, P.J. and Pham-Tuan, Global approximation of a compact set by element of a convex set in normed space. Num. Math. 15(1970) 137-150.
[4] Lorentz, G.G. and Zeller, K.L., Gleichmassige approximation durch monotone polynome. Math. Z. 109(1969) 87-91.
[5] Lorentz, G.G. and Zeller, K.L. , Monotone approximation by algebraic polynomials. Tran. AM. Math. Soc. 149(1970) 1-18.
[6] Roulier, J., Monotone and weight approximation. Dissertation, Syracuse University, 1968.
[7] Taylor, G.D. , On approximation by polynomial having restricted ranges. SIAM J. Numer. Anal. $5(1968)$ 258-268.
[8] Taylor, G.D., Approximation by functions having restricted ranges, equality case. Numer. Math. 14(1969) 71-78.
[9] Taylor, G.D., Approximation by functions having restricted ranges III. J. Math Anal. and Appl. 27(1969) 241-248.

