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CONSTRAINED APPROXIMATION OF A COMPACT SET
IN A NORMED SPACE

KIM-PIN LIM

1. Introduction

In this paper we are going to discuss the constrained approximation, that is, find
a best approximation from a convex subset to a given compact subset subject to cer-
tain constraints. Essentially, the problem is based on the monotone best approximation
given by Roulier [6] and Lorentz and Zeller [4.5], as well as Taylor’s papers [7,8,9] on
best approximation by algebraic polynomials with restricted ranges. In [6] Roulier has
discussed the monotone best approximation to a given function with same property.
Later on Lorentz and Zeller generalized this problem to a general form by assuming that
e;D¥ip(z) >0, i=1,2,---,r. whereg; =+1,1<k; <ky<...< k. <nand p(z) is
polynomial of degree < n. Meanwhile, Taylor has considered a problem concerning best
approximation by algebraic polynomials with restricted ranges, i.e. to find a polynomial
Po(z) of degree < n'which is a best approximation to a given function f(z) such that
#(z) < f(z)— Po(z) < u(z) where £, u are given functions in C[a, b] such that £(z) < u(z)
for all z € [a,b]. This leads us to question that whether it is possible to develop a more
general theory with regard to these problems. To answer the question, let us consider
the following problem:
(P): Given a compact subset F C X, a real Banach Space, to find y’ €Y, a subset of a

subspace G of X, such that

dr(y") = infd = inf k, f—
F(y') inf F(y) inf max max, < J—-y>

where K is a symmetric o(X*, X) - compact subset of X*, the real dual space of X, and
Y = Y1 NY; with

Yl = {yEG Z<h:y—¢i>2 OVhEB,, i_—_l’z,...’m}
Y2 = {yGG <h:y“P1>S OVhEC” i:l)?)...’m}

for some elements ¥; and p; in X.
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We introduce, for y € X,

= k,y >
p(y) o LR

cend  dp(y) = max p(f-y)
By a proper choice of B;,C;,9; and p;, we may assume that Y # @. A solution for (P)
will be called a best approximation to F from Y, or briefly, a “best approximation”.
We begin with discussing some general questions on the existence and characteri-
zation of the solution. Indeed, the theory in which we shall develop will give a definite
answer to the previous question.

2. General results

Lemma 2.1. Let G be n-dimensional subspace of X and Y be defined as above.
Assume that ihe resiriction of p(-) to G is a norm and each B;,C; C X*(i =1,2,-- -, m).
Then, there ezists y' € Y such that

dr(y') = ylg}; dr(y).

Proof. Let y; be a sequence in Y such that lim;_, dr(y;) = infyey dr(y). More-
over,

p(¥;) < maxjer p(f — y;) + maxser p(f) < M, for some real M, since max;ser p(f)
is fixed and dp(y;) are terms of a convergent sequence. As the restriction is a norm, {y;}
is a bounded sequence in G. Hence, there exists y’ in G such that limj . y; =y. We
will show that, in fact, ¥ € Y. For each i, we have

< h,yj—vi >> O0Vh € B; and < h,y; —p; > < 0 Vh € C; and all j. Since
B;,C; C X*, < hy —; > =1imj—-oo < h,yj —1; >> 0Vh € B; and < h,y —
pi >=limj oo < h,y;j — pi >< 0 Vh € C;. Therefore, y € Y. Further, for each j,

0 < dp(y) ~ inf dr(y) < [rfng,cp(f —9)+p(y; — ¢ )] ~ inf dp(y)
= [dF(yj) = inf dF(y)] +p(y; - ¥).

Since the term in breaket tends to zero as j — oo and also lim;_, o p(y; — ¥') = 0, this
shows that dr(y’) = infyey dp(y), which proves the lemma.

For the sake of simplicity, we will assume that B; N B; =9,CinC; = @ for
i# jand BiN(=B;) =0, C;N(=C;) = O for i # j, where —B; = {-h : h € B;},
—~C; = {~h :h € C;}. Define the sets

H(y) = {ek€e K:3f €F, <ck, f—y>= dr(y)} where ¢ = £1;
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Nii(y) = {h € Bi: <hy—1y; >=0},

Nai(y) = {h€Ci: < h,y-pi >=0},
J ={1,---,m},

Li(y) = {ied: Nu(y)#0},

L(y) = {i€eJ: Nyi(y) # 0},

and
N(y) = [Uieh(y)Nl,i(y)} U [UiGIz(y)NZ,i(y)]'

Let us consider two particular cases which are not of general interest. First, suppose
that, for some yo € Y and k € K, there exist f;, fo € F such that

<k, fi—yo>= dr(y) and <k fa—y >= —dr(w).

Then yo is obviously a best approxifﬁation, as no approximation can make the error
smaller at k. We will therefore call k a straddle point of F. In case, we have {H*(y') N
N2i(y)} U{H(y') N N1,;(¥')} # 0 for some i,j € J, where H*(y') = {+k € H(y')}
and H=(y') = {—k € H(y')}, then any attempt to decrease the error dr(y’) would
remove y' from Y through failure of the necessary inequalities for < h,y — 9; > and
<hy —pi>atallhe {H*(y)NNai(y')}U{H~(¥') N N1 ;(y')}. Thus, ¢/ is clearly
a best approximation. In the following discussion, unless otherwise stated, we will rule
out these two cases.

Theorem 2.1. Let G be a subspace of X and Y a subset of G defined as before.
Then y' €Y is a best approzimation to F if and only if there does not ezist y € G such
that

<ky>< 0VkeH(®Y)
<hy><<hy-—-yv;> VY h € B;, i=1,2,---,m (2.1)

and
<—h,y>5<h,Pi—y'> VhEC” i=1’2,...7m_

Proof. Suppose that 3/ is not a best approximation to F', then there is a y; in Y
such that

dr(y1) < dr(y).
Observe that for each k € H(y') there is a f in F such that

<k f-pu><<kf-y>.

Therefore, we have
<ky —y1>< Oforall ke H®).
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Moreover,

<hy —-y>—<hy-¥i>=<h-pn+¢>=—-<hy -9 ><0
forallh€ B;, i=1,---,m,
and
<hy-yu>—-<hy-—-pi>=<h—-y+pi>=<hpi—y1>20
Vhe(C;, i=1,2,---,m.
Consequently, if we put y = y’ — y1, then we have the required result. This proves

the sufficiency.
On the other hand, if there is a y in G such that

<k,y>< Oforall ke H(y),

<hay> S<h,y'—¢,-> forallheB,-, i:],---,m’

and
—<h,y>s<h,P;'—yl> forallhEC,, 1:1,,m

Then, by compactness of H(y'), there exists a real b > 0 and an open subset V of K
such that

inf dr(y) < k,y>| = b,
. | dr(y') y >

and

Ifneaﬁ)g <k, f—y ><ky>< -b/2 for all Ic.e V.

Obviously, H(y') C V. Hence, there is a real ¢ > 0 such that

dr(y’) — max max <k f—-y >> c
rF(y) e Dom f-y¥>2>c¢

Take r = min |b/2p(y)?, c/2p(y)], and observe that, for k € V,

max < k, > = max<k,f—-y >+ <ky>
e fw s =y >+ y

& max <k, f—y > < dr(y') for sufficiently small ¢ € (0, ],

where y; =y’ —ty, whilefor k€ K |V, t € (0,7],

max |<k,f—y > = max max |<kf—-y >|+t|<k
JEF l f Y | FEF keK|V l af y |+ [ ay>|

< dp(y')—c+c/2 = dr(y) — /2.

It follows that dp(y;) < dr(y’) for sufficiently small ¢ € (0,r]. Finally, we will show
that there exists ¢ in (0,r] such that y; is in Y. Since < h,y ><< h,¥' —¢; > and



CONSTRAINED APPROXIMATION OF A COMPACT SET 93

<hy—9y;>>0forallh€ B;,i=1,---,m, we have < h,ty ><< h,y’ — 1); > for all
he€B;,i=1,---,mand t € (0,1]. Therefore, < h,y’ —ty —1; >> 0 for all h € B;,
i=1,---,mand ¢ € (0,1]. Similarly, we have < h,p; — 3y +ty >> 0 for all h € C;,
i=1,2,---,m and t € (0,1]. Consequently, this shows that there exists ¢ € (0,r] such
that y; isin Y and dp(y:) < dp(y’). Hence, y' is not a best approximation to F, proving
the theorem.

The condition (2.1) of Theorem 2.1 is too restrictive. Therefore, for the practical
purpose we would like to replace condition (2.1) by a less restrictive condition. First, we
assume that B;,C; C X* (1 =1,2,---,m) are o(X*, X)-compact.

With the aid of the additional assumptions, we have

Theorem 2.2. Suppose that B;,C; C X* (i =1,2,---,m) are o(X*,X) -compact
and there exisis y € G such that < 7,y >> a > 0 for 7 € Ny () U [—Nz,;(y')],
1=1,2,---,m, for some given y' €Y. Then y’ is a best approrimation to F if and only

if
(H(y') U N()) N G+ # 0

where Gt = {u€ X* :<u,y>= 0V yeG}.
Proof. For the sake of convenience, let M = H(y')UN(y’). As in Theorem 2.1, we
know that if 3’ is not a best approximation, there is an y; € Y such that
<k,y-yu>< 0 ke H(y') -

<h7yl_yl>s<h)y,_¢i> VheBi:i=1,2,"')m
and

<=hy -y >L<<hpi—y > VheC;, i=1,2,.---,m.
Hence, < b,y —y1 >XO0Vh € N1 i(y'), i € 1(y') and < —h, ¥ —y; ><O0Vh € N2.i(y'),
i€ L(y) If

<7yY-;m>< 0 V7reNy)
then, putting y = ¥’ — y;, we get
<rnyg>< 0 VreM.

Hence 35(M) N G+ = 0. Otherwise, if exists 7 € N(y') such that < 7,y —y; >= 0.
By assumption, we have a y € G such that < 7,y >> a > 0V 7 € N(¥), and, by the
compactness of H(y'), there exist real ; > 0 and b3 > 0 such that infrepy [< kY —
y1 >|= b; and maXief(y') |< k,y >|= ba. Take ¢ = by /2by, then, for y; =y — y; — ty,
where ¢ € (0,c], we have

<kyu>=<ky-y1> —-t<ky>< 0VkeH();

and
<Tp>=<1yY-u> -—t<ry>< 0VTeEN().

This again shows that co(M) N G+ = @, proving the sufficiency.
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Conversely, suppose €6(M)N G+ = 0, by a separation theorem [2] and the fact that
the dual space of X* under o(X*, X) - topology is X, there is an y € G such that

<ky>< 0 VkeH®)

and
<ry>< 0 VreN®).

By a similar argument to that in the proof of Theorem 2.1, there exist real b,c,r > 0
and an open subset V of K such that

[I}leag & B >]2 < [dF(y')]2 —th/2VtE(0,r], ke,

1}1€a}c<k,f—y¢>_<_ dr(y')—c/2 VYkeK|YV, te(0,r]

where y; = ¥’ — ty.
Since B;, C; are compact and Ny ;(y'), N3 i(y') are closed subsets of B, Ci, there
exist e; ; > 0 such that

i <hy>l= e Vie L(v
heg}}gy,)l y>| = e, i€ Li(y)

and

min < =h,y>| = es; Vie L)
hENz"_(y,)I y>| = ey 2(y')

Define the open set Uj; as

Ui = {heBi<hy>< -2, Vieh()}
Ui = {heC;< —h,y>< —e;’i, Vie Iz(y’)}
Ui = 0 VielJ|L(Y)

and

U, 0 Vield | L®).

Clearly, N; ;(y') C Uj; Vi € I;(y'). Hence there exists c;; > 0 such that

<hy—vi>> e VheB;|Ui, i€J
<—h,y —pi>2> ca VheC;| Uz, t€J

. c. . c- .
Put z; = maxses; |< h,y >|, » = maxnec; |< b,y >|, @j; = min 5ju_’,EJ_'} sl
i 4V

ro = {min,-ej{al,,-}, minie_y{agy,-},r}. Observe that, for h € Uy ; and ¢ € (0, 7o),

<hy —ty—pi>=<hy—v;> —t<hy>>0
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and for h € B; | Uy, t € (0,70]
<hy —ty—;>=<hy—ti> —t<hy>2 ci—-t<hy>> 0.
Similary, for h € Us; and t € (0,r],
<—hy-ty—pi>=<-hy—-pi> —-t<-hy>>0
and for h € C; | Uz ;, t € (0,70]
<-hy —ty—pi>=<-hy—pi>-t<-hy>2> c2;—t<-hy>> 0.

This shows y’ —ty isin Y for t € (0, o). Moreover, we have dr(y' —ty) < dr(y'). Hence
y' is not a best approximation to F' which proves the theorem.

In the case where G is of dimension n, we have the following useful result without
the additional assumption of continuity of linear functional in B;,C;, i = 1,2,---,m.

Theorem 2.3. Suppose G is an n-dimensional subspace ofX and B;,C; C X*(i =
1,2,---,m). Furthermore, assume that the restriction B; |G, Ci |g are closed and
bounded. If there exists y € G such that

<ny>2a>0,V7reN,(y) U [—Nz,,-(y’)], i=1,2---,m,

for some given y' € Y, then y' is a best approzimation to F if and only if there ezist
s functionals, ky,---,k, € H(Y'), & functionals hiy1,...,hie, € N1;(y') fori € Li(y')
and t; functionals g;1,...,qi; € Nai(y') fori € Io(y') and s+ Tier, (y)li + Tieny)ti

scalars ay,...,as5,bi 1, +, b ¢,€i1,- .-, Ci,t; > 0, such that
s+ Y b4+ Yo ti<n+ 1,
ieli(y'") i€lx(y’)
Set T Shit ¥ e -
i€n(y’)i=1 i€l (y') i=1
and
t;
Za‘ < k“y> 5 Z Zblj < th,y> Z Zci,j <qi,j,y>=0\/y€ G.
i€h(y')i=1 i€l (y') i=1

Proof. Define the set W of n-tuples as follows:
W= {(<ku>..,<ky>):k e H)}
u {(< B UL 51005 Mgt 2) s hiy € Mii(y); 4E Il(y')}
U {(< —Gij, Y1 >, < —Gij,¥n >) 1 €ij € Nai(y'), i € Iz(y')}

where v1,...,yn is a basis for G. Obviously, W is a compact subset of R", since B; |
, Ci |g are closed and bounded.



96 KIM-PIN LIM

First of all, we shall show that 3 is a best approximation if and only if O € co(W).
Suppose that 3’ is not a best approximation, then, as in the proof of sufficiency of
Theorem 2.2, there exists a y € G such that

<ky>< 20 VkeH(y)

and
<ny>< 0 VreNy)

Therefore, by a known result in [1, p.19], O & co(W).
On the other hand, suppose O ¢ co(W), then, by a known result in [1, p.19], there
exists y € G such that
<ky>< 0 VkeH(®)

and

L e VreN®E).
By a similar argument to that in the proof of necessity of Theorem 2.2, wecanfindy €Y
such that dr(y) < dp(y’). Therefore, ¥’ is not a best approximation.

Thus, we have shown that y’ is a best approximation if and only if O € co(W).
By Caratheodory’s Theorem, 0 € co(W) if and only if there exist k1,...,k, € H(Y'),
hiv,...,hiz; € Nii(y) for i € I1(y') and gi1,--*,9it; € Nai(y') for i € I>(y') and
s+ Tier, (v)l + Tier,(y)li scalars ay, - -+, a5, b; 1, -+, bi g, and ¢; 1, .. ., €1, > 0 such that

s + Z££+ Zt;§n+1,

i€l (y') i€lz(y')
Za, + Z Eb,_’ + E Ect,] =1
i€l (y') i=1 i€lz(y') j=1

and
s £
Zai(< kiryl >)"'a<kl':yn >) + Z th,1(< h%',j)yl >)"-s<hi,jayn >)

iel,(y')i=1

ig
2 i< Gph >, < @i ¥n >) =

i€lz(y’) j=1
On multiplying by any vector d = (d,ds, ..., dy,), it follows that

Za.<k,,y>+ Z Zb:]<ht1ay>

ieh(y') =1

Z Zc;,j<q;,j,y>= 0 Vyea.
i€lz(y')j=1
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which proves the theorem.

3. Application to space C|a,b]

We now turn to a concrete application of the results of Section 2. Let G be an n-
dimensional subspace of C"[a, b], the set of all  times continuous differentiable functions
in C[a,b]. We denote the point evaluation functional of k-th derivative at z by ¥(f) =
D f(z) for all f € C"[a,b] (k < r). The semi-norm p(-) is defined as

p(f) = max| f(z)|

where T is a closed subset of [a,b]. Obviously, the corresponding set K = {¢z : z € T'}
where ¢ = +1. First, we consider B; = C; = {:?:’"' iz € [a,b]} and v;,p; € C"[a,b],
i=1,2,.---,m, such that #%i(¢;) < #*¥(p;) Vi* € B;,i=1,2,---,m, 1 < k3 < ks <
- < km < r. Hence the set

Y = {g €G: #Fi(y;) < #%i(g) < 2*i(p;), VE*i € B;, i = 1,2,---,m}.

Obviously the restriction B; |¢ is closed and bounded. By virtue of Theorem 2.3, we
have,

Theorem 3.1. Suppose there ezrists a g € G such that (g) > 3 >0V 7 € N1,i(90)
u ‘[;Nz,;(go)] i=1,2,---,m, for some given go € Y. Then go is best approzimation to a
compact subset F C Cla,b] if and only if there exist z1,...,2, €T, % 1,...,¥i.e, € [a,b]
for i € Ii(go), zi1,-..,2it, € [a,D], for i € I3(g0), s functions fi,...,fs € F (not
necessarily distinct) and s + Zieq, (o)l + Lier(go)ti scalars ay, ... a5, b1, -+, b, and
Ci1,---,Cit; > 0 such that

s + Z[,-{- Zti§n+1,

i€l1(go) i€15(g0)
s 7 t;
Dot D Dobis+ D Does =1,
i=1 i€l (go) j=1 i€12(g0) J=1

s 4
Zaw(-’ti)g(zi) + Z Eb,-,_,-Dk‘g(y,-,j)

i€l1(g0)J=1

= 2 iCijDk‘g(zi,j) =0 VygeG. (8.1}

i€l2(go) =1

lfi(zi) _90(1:1') l = dF(gO)a = 1127°"1SJ
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D*: [go(yi,j) - ¢‘i(yi,j)] = 0, j=1,---,4, i € Ii(go)
and
Dki[Q’O(Zi,j)“‘Pi(zi,j)] =0, j=1,-,t, i€l(g),

where o(z;) = sign(fi(zi) — go(2:)) 1 = 1,2,---,s.

If we put B; = {ei:i:’“ cx € [a,b]}, C; =0, and ¢; =0,i=1,2,...,m, where
e,-::tl,lglclgkzg---gkm<r,thenY={g€G: g;D*ig(z) >0, Vz €
[a,8], i = 1,2,...,m}. Suppose G is the set of all polynomials of degree < n. Then,
since G is the set of all polynomials of degree < n, there always exist g € G such that
e:z*i(g) > 0, Ve; 2% € N1i(g0), i € I1(go), for some go € Y, and by virtue of Theorem
2.3, we have

Theorem 3.2. An element go € Y is a best approzimation to a compact subset
F C Cla,b], if and only if there exist 2y,...,2s €T, Yi1,---»¥it; € [a,8] for i € I1(g90),
s functions f1,---,fs € F (not necessarily distinct) and s+ Xier,(40)% scalars ay, ..., as
and bi,l, . bi,g'. > 0 such that s + Eie,l(go)ei <n+42,

s £;
Za; + z Zbi.j -

i=1 i€ (g0)i=1

s £;
Zaia(zg)g(zi) + Zieli(g0) Zs;b;,jDk‘g(y,‘,j) =0 VgeG (3.2)
i=1 ’ j=1

lfi(xi)_QO(xi) |= dF(QO): i::l,?,---,s
and
Dkigo(yi,j) = 01 .7 = 1’2v° e ’Zi: e Il(go)’
where o(z;) = sign(fi(z;) — go(23)), i=1,2,---,s.
In the case F' consists of a single function and p(-) is the usual supremum-norm,
Theorem 3.2 is, in fact, a known result given in [5].
Now, consider the case. m = 1, By = C; = {& : ¢ € [a,b]} and G is an n-
dimensional subspace of C[a,b]. Let %;,p; be two given functions in C [a,b] such that
¥1(z) < p1(z) Vz € [a,b]. Then, by Theorem 2.3, we have

Theorem 3.3. Suppose there ezists a g € G such that 7(g) > B> 0 V7 € Ni,2(g0)
U [—Nz,l(go)], for some given go € Y. Then go is a best approzimation o a compact
subsel F C Cla,b] if and only if there ezist s points, 21,...,zs €T, £ points y1,...,ye €

[a,b], t points 21, ...,z € [a,b], s functions f1,...,f; € F and s+£+1 scalars ay, -+ -, a5,
bi,..., b and ¢y,---,¢c; > 0 such that s+ £+t < n+1,

s

4 t
Za; + Zbi + ZC,- = 1 and
i=1 =1

i=1
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s £ t
S wo(z)g(z:) + Y bigw) — D cig(z) =0 VgeG (3.3)
i=1 i=1 i=1
lfi(zi)"'gO(xi) | - dF(QO): i=1,2,...,8;
gO(yi) - lpl(yt) 0) 1= 132)""‘8;

and

I
=
-
Il
=
R
-

go(z) — p1(z)
where

o(z;) =sgn(f.~(z:,-)~—go(a:,-)), $=1,2. .8

In this case, if G is the set of all polynomials of degree < n, F consists of a single function

f say, Y1 = [+ 71, pr = [+ 72, for some 11,72 € Cla,b] such that 7:1(z) < 72(z), and
p(-) is the usual supremum norm, then Theorem 3.3 is, in fact, a known result in [7].

4. Appication to space C[a,b] endowed with L,-norm (x> 1)

Let G be an n-dimensional subspace of C"[a,b] and B;, C;,%;, pi,Y be defined as in
the beginning of Section 3. Suppose p(-) is defined to be a L,-norm. Then, by virtue of
Theorem 2.3, we have

Theorem 4.1. Suppose there ezists a ¢ € G such that 7(¢g) > 8 >0V 7 € N1,i(g0)
U [—Ng,,-(go)], i € J for some given go €Y. Then go is a best approzimation to a com-
pact subset F' C Cla,b] if and only if there ezist s functions uy(z),...,us(z) € L,[a,d], s
functions f1,...,fs € F (not necessarily distinct), Tier, (4o)li POints Yi1,- .., Yie, € [a,b],
Tiel,(go)ti POInts 21, ..., %1, € [a,b] and s + ier, (go)li + Lier,(g,)ti Scalars ay, -, as,
biy,....bie, and ci1, ..., cir; > 0 such that s + Tier, (go)li + Tier(go)ti <n+1 and

s b 4
Za;/ g(2)ui(z)de + D Y biiDg(yis)
i=1 74 i€I1(g0) j=1

ti
+ D, D ciDbg(zy) =0 VgeG (4.1)

i€l2(g0) J=1
where % L] % = 1’ f:(f‘ _go)ui = dF(go), = 112:"'151

D* [ go(yig) = ilwi)] = 0, j=1,2,---,4, i€ L(go)

and
D*|go(zi5) = pilmg)| = 0, i=1,2-,t, i € L(go).
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Finally, we consider the case m = 1, &, = =1, By = {12 : z € [a,0]}, CL = 0
and F = {f}. Suppose G is an n-dimensional subspace of Cla,b] containing constant
functions. Define the sel' Y as before by taking Y1 = f. This again leads io one-sided
approzimation in C[a,b] with L,-norm. However, it is clear that f(z) — g(z) does not
change sign for each g € Y, hence, if u(z) € Ly[a,b] such that J(f = 9)u = |If = gllu,
then u(z) = (f — 9)#~(2)/||f — gll4~!. Consequently, we have

Theorem 4.3. A function go €Y is a best approzimation to f € Cla,b] if and only
if there ezist yy, ...,y € N1,1(go) and £ scalars by,...,be >0 such that £ < n and

b L
/ 9(z2)(f(=) — go(2))*~ldz — Zb;g(y,-) = (] forallg € G. (4.2)

If p=1, then the equality (4.2, can be writlen as

b ¢
/ g(z)dz = Zb.—g(y,-) for all g € G,,.
@ i=1

Remark In the case G is the set of all polynomials of degree < n — 1, then 28 —e; > n
where £ and e; are the number of points in N 1(go) and Ny 1(go) N {a,b}, respectively,
for otherwise, we would find a g € G such that g has double zeros on N1,1(go) | {a,b} and
simple zeros on N; 1(g0) N {a, b}, which would contradict the relation (4.2). Moreover, if
Dgo # 0, then 2£ — e; is, in fact, actually equal to n.
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