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DETECTION OF ANEW NONTRIVIAL
FAMILY IN THE STABLE HOMOTOPY OF
SPHERES 7. S

LIU XITUGUI AND JIN YINGLONG

Abstract. To determine the stable homotopy groups of spheres is one of the central problems in homotopy theory.

Let A be the mod p Steenrod algebra and S the sphere spectrum localized at an odd prime p. In this article, it is

proved that for p > 7, n > 4 and 3 < s < p—2, the product by hy hyp s € Ext;H‘* (Zp,Zp) is a permanent cycle in the

Adams spectral sequence and converges to a nontrivial element of order p in the stable homotopy groups of spheres

T gesp? g (s+ ) pg+(s—2) g7 Where g =2(p—1).

1. Introduction and statement of the main theorem

Thei-th homotopy group rt; (X) of a topological space X is considered as the set of homotopy
classes of the mappings from i-sphere S' into X preserving base points. One of the main prob-
lems in homotopy theory is to determine the homotopy groups ;(S™) of spheres, since this
is the first fundamental difficulty in the computations of the homotopy groups of polyhedra
and topological spaces.

Throughout this article, we let A denote the mod p Steenrod algebra and S denote the
sphere spectrum localized at a prime p > 7. To determine the stable homotopy groups of
spheres 7. S is one of the central problems in homotopy theory. One of the main tools to
reach it is the Adams spectral sequence:Ezs‘t = Extfq't(Zp, Zp) = 7S, where the Ezs‘t-term is
the cohomology of A.

If a family of homotopy generators x; in E;”* converges nontrivially in the Adams spectral
sequence, then we get a family of homotopy elements f; in 7. S and we say that f; is repre-
sented by x; € E; and has filtration s in the Adams spectral sequence. So far, not so many
families of homotopy elements in 7, S have been detected. Recently, Lin Jinkun got a series of
results and detected some new families in 7. S.

In this article, we always fix g =2(p — 1).
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Theorem 1.1.([1]) Let p > 7, n > 4, then the product b,,_180Y3s # 0 € Extz"* (Zp,Zp) and it
converges in the Adams spectral sequence to a nontrivial element in

ﬂpnq+3(p2+p+l)q—7s Oforder p.

Theorem 1.2.([12]) Let p > 7, n > 4, then h,8oY3 #0 € Extg’*(Zp,Zp) and it converges in
the Adams spectral sequence to a nontrivial element in 7, 3,24 p+1)g-6S 0f order p.

Theorem 1.3.([3]) Let p > 5, n > 3, then,

(1) ix(hy) £#0€ Exti’p"qwq(H*M,Zp) is a permanent cycle in the Adams spectral se-
quence and converges to a nontrivial element ¢, € Tyngy pg—2M.

(2) Foréy € mpngrpq—2M obtained in (1), j§pn € Tpng+pg-3S is a nontrivial element of order p
which is represented up to nonzero scalar by (boh, + h1b,—1) € Extj’pnqwq (Zp,Zp) in the
Adames spectral sequence.

we use Theorem 1.3 to detect a new family in 7, S. Our result can be stated as follows.
Theorem 1.4. Let p > 7, n > 4, then the product boh1h,¥Vs¢3 #0 € Exti”’*(Zp,Zp) isa
permanent cycle in the Adams spectral sequence and converges to a nontrivial element of order

p in np”q+[S+3)p2q+(S+4)pq+(S+1)0/77S’ where0 é s< p—5

Remark. The element by h; h,,¥s obtained in Theorem 1.4 is an indecomposable element
in the stable homotopy groups of spheres 7..S, i.e., it is not a composition of two elements of
lower filtration in 7. S, because h, (n > 0) is known to die in the Adams spectral sequence.

The article is arranged as follows: after recalling some knowledge on the May spectral
sequence in Section 2, we will make use of the May spectral sequence and the Adams spectral
sequence to prove Theorem 1.4 in Section 3.

2. Recollections on the May spectral sequence

From [4], Extk*(Zp,Zp) has Z,-bases consisting of ag € Extlla’l(Zp,Zp), h; € Extkplq
(Zp,Zp) forall i > 0 and Extf"* (Zp,Zp) has Z,,-bases consisting of a;, aé, aph;(i>0), g;(i >
0), k;(i > 0), b;(i > 0), and h;h;(j > i +2,i > 0) whose internal degrees are 2q + 1, 2, pq+
L,pitlg+2piq, 2p'ttq+piq, p'*t'qand p'q + p! q respectively.

From (5], there is a May spectral sequence {E;"",d,} which converges to Ext3'(Z),Z))
with Ej-term

EP™" = E(hy,ilm > 0,i > 0) Q) P(by,ilm>0,i > 0) Q) Playln > 0), 2.1

. . . . 1,2(p"-1)pt2m-1
where E is the exterior algebra, P is the polynomial algebra, hy,,; € E, , bm,i €

m_ i+1 _ n_ _ . %
E‘;"Z(p Lppem=1 11'2p L2141 One has dy : ESY% — ES*V0% T andif x € EXP* and
y€eE ,thend,(x-y)=d,(x)-y+(-1)°x-d,(y). For x,y = hyn,i,bm,; or a,, we have x-y =
(_l)ssr+t[’y‘x'

,an € E
S',t',*
r
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The first May differential d, is given by

d(hij)= Y, hi—kgsjhej di(ai)= Y, hi—grag di(b;;)=0. (2.2)
0<k<i 0<k<i
S, L, %

For each element x € E;"”", we define dim x = s, deg x = t. Then we have:

dim h; j=dima; =1, dimb;;=2, degap=1
deg hij=2(p' -Dp/ =2(p-D)(p" 1+ + pl),
deg b j=2(p' = Dp/t =2(p-1)(p"* +---+ pI*h,
dega;=2p' —1=2(p-1)(p" 1+ +1)+1,

2.3)

wherei>1, j > 0.

Proposition 2.1.([6, proposition 1.1]) Let t = q(c, p™ + cp—1 p”‘l +--+cp+co)+ebea
positive integer with0 < c; < p 0<i<n),0< e<q,and s a positive integer with0 < s< p. If
forsome j (0 < j < n), s<cj, then we have Ef't’* = 0 in the May spectral sequence.

3. The convergence of the products boh h,¥ 5.3

Let M be the Moore spectrum modulo a prime p > 5 given by the cofibration S Zsiml
2S. Let a: £9M — M be the Adams map and K be its cofibre given by the cofibration £9M

M L kL sat1p. This spectrum which we briefly write as K is known to be the Toda-
Smith spectrum V(1). Let V(2) be the cofibre of §: ZP*D9K — K given by the cofibration

svag b Loy L serhanig et y : 4P +P+UY(2) - V(2) be the vs-map. AS we
know, in the Adams spectral sequence, for p > 7 the y-element y, = jj'jy'ii'i is a nontrivial
element of order p in ”tq(p2+p+1)—q(p+z)—35 (see [7, Theorem 2.12]).

Proposition 3.1.([6, Theorem 1.1]) For p > 7, 0 < s < p — 3, the element a§h3,0h2,1 hip €

E™* converges to the third Greek letter family element V5.5 € Ext},>"(Z,,Z,) in the May
spectral sequence, where t = (s +3)p?>q + (s +2)pq + (s +1)q + s and 43 converges to the y-

elementy .3 € W(gy3)p2 g+ (s42)pg+(s+1)g—3S in the Adams spectral sequence, wherey 5.3 = jiljystiiilie

My-s-3S.

$+6,p" g+ (s+3)p?q+(s+4) pg+(s+1)G+s,% _

Proposition3.2. Letp > 7, n > 4,0 < s < p—5, then in the May spectral sequence, E|

Zptazhsohzhihy nba o}

!
Proof. First consider the structure of Ef+6't "* in the May spectral sequence, where ¢’ =
!
p"q+(s+3)p*q+ (s+4)pq+(s+1)g+s. Consider h = x1xp++ X € Ef+6't '* where x; is one
of ay, hlyjorbu’z,ogk<n+1,0<l+j<n+1,0<u+z<n,l>0,j>0, u>0z>0.
Assume that deg x; = g(c; np" +Ci p_1p" ' +--++ci o) +e;, where cij=0orl, e;=1ifx; = ay,
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or e; =0. Then

degh =Y, degx;
= 5/((2:11 Ci,n)pn +oeeet (Z:ril Ci,Z)P2 + (Z?il Ci,l)P""(Z?il Ci,o))+(2§11 ei)
=qg(p"+(+3)PP+(s+4)p+(s+1) +5,

dimh=%", dimx; = s+6.

By the facts that dim h;,; = dim a; = 1 and dim b; ; = 2, we know that 0 < m < s+ 6 from
dim h = Z:ﬁldlmxl—s+6.Notethatcl,]—Oorc,,]—l,e, Oorland m<s+6<p+1. We
have

Ymoei=s, XM cio=s+1, X" ci1=s5+4,
{ i=1"1 i=1 i=1"1 3.1)

Yl cia=s+3, (X cig)p’+-+ X0 cin)p" =

Casel. 0 < s < p—6. Note that m < s+6 < p. From (3.1) we have thatz 18 = S,Z;Zl Cip=
s+1L,YM cii=s+4,X " cio=s+3, X" ciz=-=X" ¢in-1=0,11", cl,n =1.By (2.3), itis
easy to see that there exists a factor h; j, or bl,n,l in h. By the graded commutativity of E;"*",

Li—phq,
we can denote hy , or by, _1 by Xp. Then h' = x1 22+ Xy € B PP

and we have

,where [ =s+5o0rs+4

m—1 m-1 m-1 m-1

Y ei=s ) cio=s+1, ) cii=s+4, ) cip=5+3. (3.2)

i=1 i=1 i=1 i=1
We can get that m > s+5 from Z cl 1 = s+4. Meanwhile, we know that m < s+ 6, so
m=s+5o0rs+6. Since Y 'e; = s, deg h; j = 0(mod g) (i >0,j > 0), deg a; = 1(mod q)
(i >0) and deg b; j = 0(mod ¢) (i >0, j > 0), then by the graded commutativity of E;"**, b’
must have a factor aj aj, ---aj, (0 < j1 < j2 <--- < j5). By the reason of the degrees of a;’s, we
can suppose h' = aé‘a{afaéfxﬁl - Xm-1,Wwhere0< x,y,2,k<s, x+y+z+k=sand m=s+5
or s+6. From (3.2) we have

m-1 m—1 m—1
y+z+k+ Z cio=s+1, z+k+ Z ci1=S+4, k+ Z Ci2=5+3. (3.3)
i=s+1 i=s+1 i=s+1
Subcase1.1. Ifh=x1x2- - Xm—1h1, 5, then hl_xle X IEEHSI_’” P*
When m = s+5, (3.3) canturnmtothath*‘S‘H y+z+k+Zl S+1ci0=s+1,z+k+
Zf+§+lc,1—s+4 k+X¥3t  cio=s+3.We cangetthatk>s+3 T 2> s+3-4=5-1
from k+Y5*? | ¢;» = s+3. Meanwhile, we have that z+ k > s from z + k + s+4 ci1=s+4.

i= s+1 i=s+1
Note that x+ y+z+k =sand 0 < x,¥,%,k < s. Thus there are two possibilities that satisfy

the two conditions. One isthat k =s,x =y = z=0, the otheristhatk=s-1,z=1,x=y=0.If

. 5,3p2q+apqtq,*
k=s,x=y=z=0,thenh' = ajxs.1 - Xs4q With Xs41 -+ X544 € E’ prarapata =Zpthsoho1h1,1b2}.

Thus up tosign b’ = ajhzoha,1hy1bop. fk=s-1,z=1,x=y=0,h'= a2a§‘1x3+1-~-xs+4 with
54p q+4pq+q,*

Xs+1° - Xs+4 € E|
exist.
When m = s+86, (3.3) can‘[urnintotha‘[ZsJr5 =0, y+z+k+Zs+5 cio=s+1,z+k+

i= s+1 l s+1
ci1=S+4,k+Y5° cip=s+3. Wecangetthatk>s+3 Z Ci2>28§+3-5=s5-2

= 0. Thus the possibility k = s—1,x =1,y = z= 0 isimpossible to

+5
l s+1 i= s+l +l
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(Letty = (s+3-k)p’q+(s+4—z-K)pg+(s+1-y—z—-k)q.)

¢i2 = $+3. Meanwhile, we can have that z+ k> s—1from z+ k+}_
s+4. But we also know that k < s, so s —2 < k < s. There are seven possibilities satisfying the
two conditions: k > s—2 and z+ k > s— 1. For the seven possibilities, we list a table as follows.

The existence
The possibili k |z B>
P i Y ! of Xg11-+ Xs45
2
The 1st s—211]|1 Ef’q(SP P _ Nonexistence
2 * .
The 2nd s=21110 Ef’q(s’” P _ Nonexistence
2 * .
The 3rd s=21210 Ei,q(Sp T _ Nonexistence
2 *
The 4th s—1/101|0 Ef,q(4p P2 _ 0 Nonexistence
2 * .
The 5th s—=1]0]|1 Ef’qup P 0 Nonexistence
2 * .
The 6th s—111]010 Ef’qﬂp *ap+h, =0 Nonexistence
ES,q(3p2+4p+1),*
The 7th s [0|0]O 1 Nonexistence
= Zpthzohz1h11b2,0}

From the above table, it follows that when m = s+ 6, k' can not exist.
From the above argument, we get that / exists and up to sign h = ag hzoha,1h1,1b20 By p.

4,t'-p"q,
Subcase 1.2. If h = x1x2 - X1 b1,n-1, then b’ = x1 X+ Xpy—1 eEfJf piax
4, '—p" » .
When m = s+5, then h/ = x1x3++ X544 € Ef+ “=P"4* Note that dim x; = 1 or 2 and

dim ' = s+4. Itis easy to see that b’ = x1 X+ X544 € E(hy,ilm > 0,1 > 0) ® P(ay|n > 0). From
(3.3), we have that z+ k > s and k > s — 1. we can get that there are two possibilities satisfying
the two conditions. Oneisthat k =s,x =y =z=0, the otheristhatk=s-1,z=1,x=y=0.If

. 4,3p% q+apq+q,
k=sx=y=2=0,h"=axe1  Xspa With Xgs1 - Xgea € B0 TP =0 Ifk=s-1,z=1,x=y=0,

_ . 4,4p% g+Apq+q,* . . -
then h' = apa§ ' Xg41 -+ Xsra With Xgp1 -+ Xspq € EP TP = 0, Thus in this case h' is im-

possible to exist either.

When m = s+ 6, we would have that &' = x1X2 -+ Xjp_1 = X1 X2+~ Xs45 € Ef+4'ﬂ_pnq’*. Note
that dim x; = 1 or 2. It is easy to see that m is impossible to equal s + 6.

From the above argument, we get that i’ is impossible to exist. Then it follows that & =
X1X2 -+ Xm-1b1,,—1 is impossible to exist.

From Subcases 1.1 and 1.2, we see that when 0 < s < p — 6, h exists such that up to sign

. s+6,1 %
h=a3h3ohz1h11h1 b2y, ie., B =Zplazhsoho,1hy1hy b o}

Case2. s = p—6. Then m < s+6 = p—6+6 = p. From (3.1) we have (X", ¢; 3)+ (X2, ¢i4) p+
o+ (XM cin)p" 3 = p"~3. Therefore, p| X%, ¢i;3. Note that ¢;3 =0 or 1, m < p, it is easy to
know that Y7, ¢;3=0or p.

Subcase 2.1. Zl’.’il ¢i3 =0. When n = 4, it is easy to get that Z;’il ¢; 4 =1, so there exists a
factor hy,, or by,,—1 in h.
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When n > 4, then (X, cigpt++ Xl cinp"=p", 50 (XL cia)+ (X cis)p +-+
", cin)p* = p"~4. Similarly we know that X" cia=0or=p. Weclaim thatif ¥ ¢;3=
0, then Z;?il ci,a = 0. For otherwise, we would have Z;’;l ¢ia = p, then m = p. For each 1 <
i < m, deg x; = higher terms +p*g+lower terms. Since Zle e; = p—6,degb;;j =0(mod q)
(i>0,j>0),dega; =1(mod q) (i > 0) and deg h; ; = 0(mod q) (i >0, j > 0), then by the
graded commutativity of E;"**, there would exist a factor a;, a;, aj, s O< 1< fa<- <
Jp-6 < n+1) among x;’s such that for any 1 < i < p—6,j; > 5 and deg a;; =higher terms
+ptq+p2q+p?q+pg+q+1. Itis obvious that Y., ci3 = p—6which contradictsto Y77, ¢j3 =
0, thus the claim is proved. By induction on j we can get Zyil ci,j=04<j<n-1),s0
Z;?il ci,n = 1. By (2.3), it follows that there is a factor hy,, or by, -1 in k.

In all, for n > 4, there is a factor hy , or by,,—1 in h. By the graded commutativity of E}"™*,
we can denote hy , o1 by 41 by X,. By an argument similar to that used in the proof in Case
1, we can show that / exists such that i = a§76h3,0 hy,1hy1,1h1,,b2 o up to sign.

Subcase 2.2. }7" cj3=p. Bym < s+6=pandc;3=0or 1, we have that m = p. By
dim x; = 1 or 2, we have that dim x; = 1 from dim s = Zle dim x; = p. Thus h € E(hy,,;|m >
0,i > 0@ P(ayln > 0). We claim that Zle ci;3 = p is impossible to exist. For otherwise, we
would have that for each 1 < i < p, deg x; = higher terms +p®g+lower terms. At the same
time, from Zle ¢i1 = p — 2, we know that there would be p —2 x;’s in k with deg x; =higher
terms +p! g+lower terms. Note that deg hs; = (p** =1 +---+ p')q (s > 0,i > 0) and deg a; =
(p'~'+---+1)g+1 (i > 0). Thus there would be p — 2 x;’s with deg x; =higher terms +p%q +
p?q + p' g+lower terms. And it would follow that Zle ¢;2 = p — 2 which would contradict to
Zle ci2 = p—3. The claim is proved.

From Subcases 2.1 and 2.2, we get when s = p —6,

., -6
EY o Zp{ay " hgoha, by, nbao}.
From Cases 1 and 2, the proposition follows.

Proposition 3.3. Letp > 7, n > 4,0 < s < p—5, then the product

n 2
bOhl hn?x+3 £0€ Ext:er q+(s+3)p q+(s+4)pq+(s+l)q+s(zp,Zp).

Proof. It is known that hy,,, by, and ajhsoha,1h1 2 € E;"™" are permanent cycles in the
May spectral sequence and converge nontrivially to hy,, by, ¥s+3 € Ext;;’* (Zp,Zp) forn >0
respectively (see Proposition 3.1).

By (2.2), we have

di(a5hzoho1hi 1y nbap)
= dy(a3hspha,) 1 by nbag + (1) (a3 hs o ho, 1) dy (B1,1 b nba,o)
= dy(a3hsoh1)hiyhipboo+0
= [d1 (@) h3phay + (1) hyohy 2By 11y ha o
= dy(a3)h3pha, hy by nboo + (1) oo by ooy b nbayo.
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By induction on s, we can have
-1
di(a3)hsohohy1hynbog = (—1)°sa; “ashyhsoho1 by by nbay.
Thus we have that

dy(azhsohohy 1 hy nbag)
= (-1sa5 taphyphsoha by nbao + (=15 Ry gl 2 o By nbao # 0

and di (a5hsoho,1 1,1 00,0 b2,0) # b1oh1,oht,nashsoho,1 by 2 up to nonzero scalar. Thus we have
that E;*®"* = 0 for all r > 2. It follows that by ghy1hynashsohsihz € EST71* does not

ES+7, t
-

bound. Then the product by oh1,1 k1 nashsohz1hy 2 € is a permanent cycle in the May

spectral sequence and converges nontrivially to bohy h,¥si3 € Extf‘”’t/ (Zp,Zp). 1t follows
that bohy hyfss3 # 0 € Exts " (2,,2,).

P 2 _
Proposition3.4. Letp >7,n>4,0< s< p—5,2 < r < s+7, then Extj;r7 RAPTHSEIPTHSHOp D) (s=r ) Zp,Zp) =

Proof. The proof is divided into two cases.

Case 1. r = s+7 or s+6. By [4], it is easy to get that in these cases

_ n 2 _
Extj:? r,q(p"+(s+3)p°+(s+4) p+(s+1))+(s—r+1) (Zp;zp) —-0.

Case 2. 2 < r < s+6. To prove Extfq”_r’t” (Zp,Zp) = 0, it suffices to prove that in the May

Ef”‘””'* =0, where t" = g(p" + (s +3)p> + (s+4)p+ (s+ 1)) + (s— 1 + 1).

spectral sequence
—rt" .

Consider h = x1xp-+- X € Ef” ", where x; is one of ag, hyj or by, 0< k< n+1,0<

I+j<n+1,0<u+z<n,1>0,j>0,u>0,z>0. Assume thatdeg x; = (c; n p"+Ci n_1p" '+

-=-+cjo) +e;, wherec; j=0or1, e; =1if x; = ay,, or e; =0. Then

degh =Y, degx;
=g, ci)p" +--+ X i p? + E ci)p+ (X cio) + (X0 e)
= q(p"+(s+3)p2+(s+4)p+(s+1))+(s—r+1),

dimh=Y" dimx;=s+7-r.

Bydimx; =lor2and2<r<s+6, wecangetthat m < s+7-r<s+7-2=s+5<p
from dim h = Z?i1 dim x; = s+7—r. We claim that s—r + 1 > 0. Otherwise we would have
p>Y" ei=q+(s+1-r)>q—-52= pby p>7. Thatisimpossible. The claim follows. By
cij=0orl,e;=00rland m<p,wehavethat}" e;=s-r+1,X" cio=s+1, X" ci1=
s+4,3 " cio=s+3,X" ciz=-=X" cin-1=0X", cin=1 Ttis easy to see that there
exists a hy,, or by ,—1 in h. We denote hy j, or by -1 by X, then A’ = xy -+ xpy_1 € E{’ttpnq'*,
where [ = s+6—ror s+5—r. Andwehave that /" e; = s—r+ 1L, X" cio=s+1, X i1 =
s+4,X M eip=5+3.
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6-r,t"—p"q,
Subcase 2.1. If h = x1 X2+ X1 hip, W' = X122+ Xy € B0 0 P "" 'When r > 3, from

m—1 s+6-r,t"—p"q,* ..
s+6-r<s+3<} 7 ¢;1 =s+4wecan getthat ] = 0 by Proposition 2.1. When

"_n
r = 2, we can easily show that Ef+4't P74* = 0 by an argument similar to that used in Case 1

of the proof of Proposition 3.2.

e ll_ 0
Subcase 2.2. If h = x1X2++ Xpp—1b1,p-1, B = X1+ X1 € Ef+5 RESPRA*  Note that 2 <

m—1 s+5-r,t"-p"q,* ..
r<s+7.Froms+5—-r <s+3< Zi:l ¢i,1 = $+4, we have that E] = 0 by Proposition

2.1.
From Cases 1 and 2, we have that Extz+7_r't” (Zp,Zp) =0.

Proof of Theorem 1.4. From [2], (byhy, + h1b;_1) € Extf;’pn‘”pq(zp, Zp) is a permanent cy-
cle in the Adams spectral sequence and converges to a nontrivial element j¢; € Tpng1pg-3S
forn > 3. Lety: AP +PrD YV (2) — V(2) be the v3-map and consider the following composi-
tion of maps

ir e il T S+
f: sp"q+2pq-1g 11 spg-lg IBii MY s =(s+3)pPq—(s+2)pg-(s+1)q+3 g

It is known that i.(h;) € Ext;'pq(H* M, Z,) converges nontrivially to the map g = j'Bi'i €

[ZP9-1S, M] in the Adams spectral sequence. Meanwhile, up to nonzero scaler jé, is repre-

sented by (boh,, +h1b,—1) € Ex t;'* (Zp,Zp) in the Adams spectral sequence. Then the above f

is represented up to nonzero scalarby & = (j j' jy«)$*3ii") s ix (hy (bohp+h1by-1) = (' jy$t3ii'i)« (bohy hy).
From Proposition 3.1 and the knowledge of Yoneda products we know that the composi-

GJ' D r) 3G

$+3,%+(s43) p2 g+ (s+2) pg+(s+1)g+s

tion Extg'* Zp,Zp) Ext, (Zp,Zp) is a multiplica-

. - 3,(s+3)p? 2 1 7
tion up to nonzero scalar by y43 € Extf;r S+ q+isT2patist )qH(ZP,ZP). Hence, f is repre-

sented by ¢ = ¥s43boh1h, #0 € Extj”’* (Zp, Zp) up to nonzero scalar in the Adams spectral
sequence (see Proposition 3.3). Moreover, from Proposition 3.4, we can see that bghy 1,7 s+3
cannot be hit by any differential in the Adams spectral sequence and so the corresponding
homotopy element f € 7, S is nontrivial and of order p. This finishes the proof of Theorem
1.4.
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