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EXPLICIT BOUNDS ON RETARDED GRONWALL-BELLMAN

INEQUALITY

M. H. M. RASHID

Abstract. In this paper, explicit bounds on retarded Gronwall-Bellman and Bihari-like

integral inequalities are established.

1. Introduction

The integral inequalities which provide explicit bounds on unknown functions play an

important role in the development of the theory of differential and integral equations. For

instance, the explicit bounds given by the well-known Gronwall ellman [2] inequality and its

nonlinear generalization due to Bihari [4] are used to a considerable extent in the literature;

see [1, 3, 5, 6, 7] and the references cited therein. However, in certain situations the bounds

provided by the above-mentioned inequalities are not directly applicable, and it is desirable

to find some new estimates which will be equally important in order to achieve a diversity

of desired goals. The main purpose of this paper is to establish explicit bounds on retarded

Gronwall Bellman and Bihari-like inequalities which can be used to study the qualitative be-

havior of the solutions of certain classes of retarded differential equations.

2. Main results

In what follows, R denotes the set of real numbers; R+ = [0,∞[, R∗
+ =]0,∞[, R1 = [1,∞[,

J = [a,b] is the subset of R; and ′ denotes the derivative. C (J ,R+) denotes the set of all contin-

uous functions from J into R+ and C 1(J , J) denotes the set of all continuously differentiable

functions from J into J .

Theorem 2.1. Let u, g ,h ∈C (J ,R+), f ∈C (J ,R∗
+), α ∈C 1(J , J) be nondecreasing with a ≤α(t ) ≤

t on J. If the inequality

u(t )≤ f (t )+
∫t

a
g (s)u(s)d s +

∫

α(t )

a
h(s)u(s)d s. (2.1)
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holds, then

u(t )≤ f (t )exp [G(t )+H (t )] . (2.2)

where

G(t ) =
∫t

a
g (s)d s (2.3)

H (t )=
∫

α(t )

a
h(s)d s. (2.4)

Proof. Since f (t ) is positive and nondecreasing we can restate (2.1) as

u(t )

f (t )
≤ 1+

∫t

a
g (s)

u(s)

f (s)
d s +

∫

α(t )

a
h(s)

u(s)

f (s)
d s. (2.5)

Let r (t )=
u(t )

f (t )
then

r (t )≤ 1+
∫t

a
g (s)r (s)d s +

∫

α(t )

a
h(s)r (s)d s. (2.6)

Define a function z(t ) by the right-hand side of (2.6) then we have

z(t )= 1+
∫t

a
g (s)r (s)d s +

∫

α(t )

a
h(s)r (s)d s. (2.7)

Then it is clear that

r (t )≤ z(t ), z(a)= 1. (2.8)

Differentiate (2.7) with respect to t , we get

z ′(t )= g (t )r (t )+h(α(t ))α′(t )r (α(t )). (2.9)

Using (2.8), we have

z ′(t ) ≤ g (t )z(t )+h(α(t ))α′(t )z(t ). (2.10)

Hence
z ′(t )

z(t )
≤ g (t )+h(α(t ))α′(t ). (2.11)

So

z(t )≤ exp [G(t )+H (t )] , (2.12)

where G(t ) and H (t ) are defined by (2.3) and (2.4). Therefore

r (t )≤ exp [G(t )+H (t )] . (2.13)

Hence

u(t )≤ f (t )exp [G(t )+H (t )] . (2.14)

���
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Theorem 2.2. Let u, g ,h ∈C (J ,R+), f ∈C (J ,R∗
+), α ∈C 1(J , J) be nondecreasing with a ≤α(t ) ≤

t on J and p > 1 is a constant. If the inequality

up (t )≤ f p (t )+
∫t

a
g (s)u(s)d s +

∫

α(t )

a
h(s)u(s)d s. (2.15)

holds, then

u(t )≤ f (t )

[

1+ (
p −1

p
)[Q(t )+W (t )]

] 1
p−1

, (2.16)

where

Q(t )=
∫t

a
f 1−p (s)g (s)d s (2.17)

and

W (t ) =
∫t

a
f 1−p (s)h(s)d s. (2.18)

Proof. Since f (t ) is positive and nondecreasing we can rewrite (2.15) as

up (t )

f p (t )
≤ 1+

∫t

a
g (s) f 1−p (s)

u(s)

f (s)
d s +

∫

α(t )

a
h(s) f 1−p (s)

u(s)

f (s)
d s. (2.19)

Let r (t )= u(t )
f (t ) , then

r p (t )≤ 1+
∫t

a
g (s) f 1−p (s)r (s)d s +

∫

α(t )

a
h(s) f 1−p (s)r (s)d s. (2.20)

Define a function z(t ) by the right-hand side of (2.20) then we have

z(t )= 1+
∫t

a
g (s) f 1−p (s)r (s)d s +

∫

α(t )

a
h(s) f 1−p (s)r (s)d s. (2.21)

Then it is clear that

r p (t ) ≤ z(t ), z(a)= 1. (2.22)

Differentiate (2.21) with respect to t , we have

z ′(t ) = g (t ) f 1−p (t )r (t )+h(α(t )) f 1−p (α(t ))α′(t )r (α(t ))

≤ g (t ) f 1−p (t )z
1
p (t )+h(α(t )) f 1−p (α(t ))α′(t )z

1

p (t ).

Hence

z
−1
p (t )z ′(t ) ≤ g (t ) f 1−p (t )+h(α(t )) f 1−p (α(t ))α′(t ). (2.23)

Or
d z(t )

z
1
p (t )

≤ (g (t ) f 1−p (t )+h(α(t )) f 1−p (α(t ))α′(t ))d t . (2.24)
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Integrating From a to t , and making change of variable, we have

p

p −1
z

p−1

p (t )−
p

p −1
≤Q(t )+W (t )+C . (2.25)

Using z(a)= 1, we have C ≥ 0. Hence

z(t )≤

[

1+ (
p −1

p
)[Q(t )+W (t )]

]

p

p−1

, (2.26)

where Q(t ) and W (t ) are defined by (2.17) and (2.18). Therefore,

r (t )≤

[

1+ (
p −1

p
)[Q(t )+W (t )]

]
1

p−1

. (2.27)

So

u(t )≤ f (t )

[

1+ (
p −1

p
)[Q(t )+W (t )]

]
1

p−1

(2.28)

���

Theorem 2.3. Let u, g ,h ∈ C (J ,R+), f ∈ C (J ,R∗
+) be nondecreasing and p > 1 is a constant.

Suppose that α ∈C 1(J , J) nondecreasing with a ≤α(t )≤ t on J. If the inequality

u(t )≤ f (t )+
∫t

a
g (s)u(s)d s +

∫

α(t )

a
h(s)up(s)d s (2.29)

holds then

u(t )≤ f (t )z(t ), (2.30)

where

z(t )= [w (t )]
1

1−p , (2.31)

w (t )≤ e (1−p)A(t ) ×

{
∫t

a
e (p−1)A(s)[h(α(s)) f p−1(α(s))α′(s)]d s +1

}

(2.32)

and

A(t )=
∫t

a
g (s)d s. (2.33)

Proof. Since f (t ) is positive and nondecreasing we can rewrite (2.29) as

u(t )

f (t )
≤ f (t )+

∫t

a
g (s)

u(s)

f (s)
d s +

∫

α(t )

a
h(s) f 1−p (s)

up (s)

f p (s)
d s. (2.34)

If we set r (t )=
u(t )

f (t )
, then

r (t )≤ 1+
∫t

a
g (s)r (s)d s +

∫

α(t )

a
h(s) f 1−p (s)r p (s)d s. (2.35)
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Define a function z(t ) by the right-hand side of (2.35) then we have

z(t )= 1+
∫t

a
g (s)r (s)d s +

∫

α(t )

a
h(s) f 1−p (s)r p (s)d s. (2.36)

Then it is clear that

r (t )≤ z(t ), z(a)= 1. (2.37)

Differentiate both sides of (2.36) with respect to t we get

z ′(t )= g (t )r (t )+h(α(t )) f p−1(α(t ))α′(t )r p (α(t ))

≤ g (t )z(t )+h(α(t )) f p−1(α(t ))α′(t )zp (t ).

Therefore,

z ′(t )− g (t )z(t ) ≤h(α(t )) f p−1(α(t ))α′(t )zp (t ). (2.38)

Let w (t )= z1−p (t ) then w ′(t )= (1−p)z−p (t )z ′(t ). Hence

z ′(t )=
1

1−p
w ′(t )zp (t ). (2.39)

z(t )= w (t )zp(t ). (2.40)

Substitute (2.39) & (2.40) into (2.38) we have

1

1−p
w ′(t )− g (t )w (t )≤ h(α(t )) f p−1(α(t ))α′(t ). (2.23)

Therefore
[

e (p−1)A(t )w (t )
]′
≤ e (p−1)A(t ) ×

[

(p −1)h(α(t )) f p−1(α(t ))α′(t )
]

. (2.41)

Integrating from a to t we have

w (t )≤ e (1−p)A(t ) ×

{
∫t

a
e (p−1)A(s)[h(α(s)) f p−1(α(s))α′(s)]d s +C

}

. (2.42)

But w (a)= z(a)= 1 so we have C ≥ 1. Therefore

z(t )= [w (t )]
1

1−p . (2.43)

Hence

u(t )≤ f (t )z(t ). (2.44)

���

Theorem 2.4. Let u, g ,h ∈ C (J ,R+), f ∈ C (J ,R∗
+) and α ∈ C 1(J , J) be nondecreasing with a ≤

α(t ) ≤ t on J. For i = 1,2, let ψi ∈ C (R+,R+) be nondecreasing functions with ψi (u) > 0 for

u > 0 and
ψi (u(t ))

f (t )
≤ψi (

u(t )

f (t )
). If the inequality

u(t )≤ f (t )+
∫t

a
g (s)ψ1(u(s))d s +

∫

α(t )

a
h(s)ψ2(u(s))d s. (2.45)

Then for a ≤ t ≤ t1,
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(i) in case ψ1(u) ≤ψ2(u),

u(t )≤ f (t )Ψ−1
2 [Ψ2(1)+G(t )+H (t )]. (2.46)

(ii) in case ψ2(u)≤ψ1(u),

u(t )≤ f (t )Ψ−1
1 [Ψ1(1)+G(t )+H (t )], (2.47)

where G(t ) and H (t ) are defined by (2.3) and (2.4) and for i = 1,2, Ψ−1
i

are the inverse functions

of

Ψi (µ) =
∫

µ

µ0

d s

ψi (s)
, µ> 0,µ0 > 0, (2.48)

and t1 ∈ J is chosen so that

Ψi (1)+G(t )+H (t ) ∈ Dom(Ψ−1
i ),

respectively, for all t lying in the interval [a, t1].

Proof. Since f (t ) is positive and nondecreasing we can be restate (2.45) as

u(t )

f (t )
≤ 1+

∫t

a
g (s)

ψ1(u(s))

f (s)
d s +

∫

α(t )

a
h(s)

ψ2(u(s))

f (s)
d s

≤ 1+
∫t

a
g (s)ψ1(

u(s)

f (s)
)d s +

∫

α(t )

a
h(s)ψ2(

u(s)

f (s)
)d s.

Let r (t )=
u(t )

f (t )
. Hence we have

r (t )≤ 1+
∫t

a
g (s)ψ1(r (s))d s +

∫

α(t )

a
h(s)ψ2(r (s))d s. (2.49)

Define z(t ) by the right-hand side of (2.49) we have

z(t )= 1+
∫t

a
g (s)ψ1(r (s))d s +

∫

α(t )

a
h(s)ψ2(r (s))d s. (2.50)

Then it is clear that

r (t )≤ z(t ), z(a)= 1. (2.51)

Now

z ′(t )= g (t )ψ1(r (t ))+h(α(t ))α′(t )ψ2(r (α(t )))

≤ g (t )ψ1(z(t ))+h(α(t ))α′(t )ψ2(z(t )).

In case ψ1(r (t ))≤ψ2(r (t )) we have

z ′(t )≤ψ2(z(t ))[g (t )+h(α(t ))α′(t )]. (2.52)
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Therefore,
d

d t
Ψ2(z(t )) =

z ′(t )

ψ2(z(t ))
=

[

g (t )+h(α(t ))α′(t )
]

. (2.53)

Integrating (2.53) from a to t and using the condition z(a) = 1 we get

Ψ2(z(t )) =G(t )+H (t )+Ψ2(1), (2.54)

where G(t ) and H (t ) are defined by (2.3) and (2.4). Therefore

Ψ2(z(t )) =G(t )+H (t )+Ψ2(1). (2.55)

Hence

z(t )=Ψ
−1
2 [G(t )+H (t )+Ψ2(1)] . (2.56)

Using (2.51) we have the desired result. Since the proof of case (ii) is similar we omit the

details. ���

Theorem 2.5. Let u, g ,h ∈C (J ,R+) , f ∈C (J ,R∗
+)α ∈C 1(J , J) be nondecreasing with a ≤α(t ) ≤ t

on J and p > 1 is a constant. For i = 1,2, Let ψi ∈ C (R+,R+) be nondecreasing functions with

ψi (u)> 0 for u > 0 and
ψi (u(t ))

f (t )
≤ψi (

u(t )

f (t )
). If the inequality

up (t ) ≤ f p (t )+
∫t

a
g (s)ψ1(u(s))d s +

∫

α(t )

a
h(s)ψ2(u(s))d s. (2.57)

then for a ≤ t ≤ t1,

(i) in case ψ1(u)≤ψ2(u),

u(t )≤ f (t )
[

Ψ
−1
2 [Ψ2(1)+M (t )+L(t )]

]

1
p . (2.58)

(ii) in case ψ2(u) ≤ψ1(u),

u(t )≤ f (t )
[

Ψ
−1
1 [Ψ1(1)+M (t )+L(t )]

]

1
p . (2.59)

Where M (t ) and L(t ) are defined by

M (t )=
∫t

a
f 1−p (s)g (s)d s, (2.60)

L(t ) =
∫

α(t )

a
f 1−p (s)h(s)d s. (2.61)

and for i = 1,2, Ψ−1
i

are the inverse functions of

Ψi (µ) =
∫

µ

µ0

d s

ψi (s
1
p )

, µ> 0,µ0 > 0 (2.62)

and t2 ∈ J is chosen so that

Ψi (1)+G(t )+H (t ) ∈ Dom(Ψ−1
i ),

respectively, for all t lying in the interval [a, t2].
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Proof. Since f (t ) is positive and nondecreasing we can be restate (2.57) as

up (t )

f p (t )
≤ 1+

∫t

a
g (s) f 1−p (s)

ψ1(u(s))

f (s)
d s +

∫

α(t )

a
h(s) f 1−p (s)

ψ2(u(s))

f (s)
d s

≤ 1+
∫t

a
g (s) f 1−p (s)ψ1(

u(s)

f (s)
)d s +

∫

α(t )

a
h(s) f 1−p (s)ψ2(

u(s)

f (s)
)d s.

Let r (t )=
u(t )

f (t )
we have

r p (t )≤ 1+
∫t

a
g (s) f 1−p (s)ψ1(r (s))d s +

∫

α(t )

a
h(s) f 1−p (s)ψ2(r (s))d s. (2.63)

Define z(t ) by the right-hand side of (2.63) we have

z(t )= 1+
∫t

a
g (s) f 1−p (s)ψ1(r (s))d s +

∫

α(t )

a
h(s) f 1−p (s)ψ2(r (s))d s. (2.64)

Then it is clear that

r (t )≤ z
1
p (t ), z(a) = 1. (2.65)

Differentiate (2.64) we get

z ′(t )= g (t ) f 1−p (t )ψ1(r (t ))+h(α(t )) f 1−p (α(t ))α′(t )ψ2(r (α(t )))d s

≤ g (t ) f 1−p (t )ψ1(z
1
p (t ))+h(α(t )) f 1−p (α(t ))α′(t )ψ2(z

1
p (t )).

Now if ψ1(z(t )) ≤ψ2(z(t )) we have

z ′(t )≤ψ2(z
1
p (t ))

[

g (t ) f 1−p (t )+h(α(t )) f 1−p (α(t ))α′(t )
]

.

Hence

Ψ2(z(t )) ≤ [Ψ2(1)+M (t )+L(t )] ,

where M (t ),L(t ),Ψ2 are defined by (2.60), (2.61) and (2.62), respectively. Therefore

z(t )≤Ψ
−1
2 [Ψ2(1)+M (t )+L(t )] .

Hence

u(t )≤ f (t )
[

Ψ
−1
2 [Ψ2(1)+M (t )+L(t )]

]

1
p .

Since the proof of case (ii) is similar we omit the details. ���
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Theorem 2.6. Let u ∈ C (J ,R1), f ∈ C (J ,R∗
+), g ,h ∈ C (J ,R+) and α ∈ C 1(J , J) be nondecreasing

with a ≤α(t ) ≤ t for all t ∈ J . If the inequality

u(t )≤ f (t )+
∫t

a
g (s)u(s) ln(u(s))d s +

∫

α(t )

a
h(s)u(s) ln(u(s))d s (2.66)

holds then

u(t )≤ f (t )

[

1−
1

2
(X (t )+Y (t ))

]2

, (2.67)

where

X (t )=
∫t

a
g (s) f

1
2 (s)d s, (2.68)

Y (t )=
∫

α(t )

a
g (s) f

1
2 (s)d s. (2.69)

Proof. Use the fact that ln(x) <
p

x for all x ∈ (1,∞). Then (2.66) can be restate as

u(t )≤ f (t )+
∫t

a
g (s)u

3
2 (s)d s +

∫

α(t )

a
h(s)u

3
2 (s)d s. (2.70)

Since f (t ) is positive and nondecreasing function, we can be restate (2.70) as

u(t )

f (t )
≤ 1+

∫t

a
g (s) f

1
2 (s)

u
3
2 (s)

f
3
2 (s)

d s +
∫

α(t )

a
h(s) f

1
2 (s)

u
3
2 (s)

f
3
2 (s)

d s. (2.71)

Let r (t )= u(t )
f (t )

then (2.71) can be restate as

r (t )≤ 1+
∫t

a
g (s) f

1
2 (s)r

3
2 (s)d s +

∫

α(t )

a
h(s) f

1
2 (s)r

3
2 (s)d s. (2.72)

Define a function z(t ) by the right-hand side of (2.72), then we have

z(t )= 1+
∫t

a
f

1
2 (s)g (s)r

3
2 (s)d s +

∫

α(t )

a
h(s) f

1
2 (s)r

3
2 (s)d s. (2.73)

Then it is clear that

r (t )≤ z(t ), z(a)= 1. (2.74)

Differentiate (2.73) with respect to t , we have

z ′(t )= f
1
2 (t )g (t )r

3
2 (t )+h(α(t )) f

1
2 (α(t ))r

3
2 (α(t ))α′(t )

≤ f
1
2 (t )g (t )z

3
2 (t )+h(α(t )) f

1
2 (α(t ))z

3
2 (α(t ))α′(t )

≤ f
1
2 (t )g (t )z

3
2 (t )+h(α(t )) f

1
2 (α(t ))z

3
2 (t )α′(t )

Hence

z
−3
2 (t )z ′(t )≤ f

1
2 (t )g (t )+h(α(t )) f

1
2 (α(t ))α′(t ). (2.75)
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Or
d z(t )

z
3
2 (t )

≤ f
1
2 (t )g (t )+h(α(t )) f

1
2 (α(t ))α′(t ). (2.76)

Integrating from a to t and making change of variable, we have

−2z
−1
2 (t )+2 ≤ [X (t )+Y (t )+C ] .

where X (t ),Y (t ) are defined by (2.68) and (2.69) and C is a constant. using the condition

(2.74), we have C ≥ 0. Then

z(t ) ≤

[

1−
1

2
(X (t )+Y (t ))

]2

Therefore,

u(t )≤ f (t )

[

1−
1

2
(X (t )+Y (t ))

]2

���
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