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Local distance antimagic chromatic number for

the union of complete bipartite graphs

V. Priyadharshini and M. Nalliah

Abstract. Let G be a graph on p vertices and q edges with no isolated vertices. A
bijection f : V → {1, 2, 3, ..., |V (G)| = p} is called local distance antimagic labeling,
if for any two adjacent vertices u and v, we have w(u) ̸= w(v), where w(u) =∑

xϵN(u) f(x). The local distance antimagic chromatic number χlda(G) is defined
to be the minimum number of colors taken over all colorings of G induced by local
distance antimagic labelings of G. In this paper, we determine the graph G for the
local distance antimagic chromatic number is 2.

Keywords. Distance antimagic graphs, chromatic number, local distance antimagic chro-
matic number, star graphs.

1 Introduction

Let G be a simple graph with a finite number of vertices. The order and size of G are denoted
by p and q, respectively. For more graph-theoretical terms, the reader is referred to Chartrand
and Lesniak [6].

Hartsfield and Ringel [8] in their work, introduced antimagic labeling for a graph G = (V,E)
as a bijection f : E → {1, 2, ..., |E|} with the property that, for each vertex u ∈ V (G), the weight
w(u) =

∑
e∈E(u) f(e), where E(u) is the set of edges incident to u and w(u) ̸= w(v) for any two

distinct vertices u and v ∈ V (G). A graph G is called antimagic if G has antimagic labeling.

Hartsfield and Ringel [8] conjectured that (i) every connected graph with at least three ver-
tices admits antimagic labeling and (ii) every tree with at least three vertices admits antimagic
labeling. Although these two conjectures are unsolved, the works of many researchers provide evi-
dence that these conjectures are valid for several families of graphs. For a detailed and interesting
review of these conjectures, one can see chapter 6 of [5].

Arumugam et al.[3] proposed a new definition as a relaxation of the notion of antimagic la-
beling. They called a bijection f : E → {1, 2, ..., |E|} is local antimagic labeling of G if for any two
adjacent vertices u and v in V (G), the condition w(u) ̸= w(v) holds. Further, they conjectured
that every connected graph with at least three vertices admits local antimagic labeling. This
conjecture was solved partially by Bensmail et al.[21] in 2017, and later in 2018, this conjecture
was proved to be accurate by Haslegrave [19] using probabilistic tools.
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Based on the notion of local antimagic labeling, Arumugam et al.[3] introduced a new graph
coloring parameter called local antimagic chromatic number, χla(G), defined as the minimum
number of colors taken over all colorings of G induced by local antimagic labelings of G.

Arumugam et al.[3] obtained the local antimagic chromatic number for cycles, paths, friend-
ship graph, complete bipartite graphKm,n and wheel graph. Recently, several authors are studied
and investigated the local antimagic chromatic number for several families of graphs [5, 20, 22].

In 2012, Arumugam and Kamatchi[10] introduced distance antimagic labeling and obtained
some basic results on cycles, paths and friendship graph. This work extended to other family of
graphs by several authors [1, 2, 5, 9, 11, 16, 10, 13, 17, 15, 14, 12, 7, 18]. Motivated by the notion
of local antimagic labeling, Divya and Devi Yamini [4] introduced a new distance type labeling
on graphs, as follows:

Definition 1. [4] Let G be a graph of order p and size q having no isolated vertices. A bijection
f : V → {1, 2, 3, ..., |V (G)|} is called local distance antimagic labeling, if for any two adjacent
vertices u and v we have w(u) ̸= w(v), where w(u) =

∑
x∈N(u) f(x). A graph G is called local

distance antimagic if G has local distance antimagic labeling.

Definition 2. [4] The local distance antimagic chromatic number χlda(G) is defined to be the
minimum number of colors taken over all colorings of G induced by local distance antimagic
labelings of G and denotes χlda(G).

From definition 1, one can notice that, if G is distance antimagic, then G is local distance
antimagic. The authors obtained local distance antimagic chromatic number for star, subdivision
of star, complete bipartite graph, complete r-partite graph, friendship graph, corona product of
star, complete and friendship graphs.

In this paper, we characterize the class of graphs with local distance antimagic chromatic
number 2.

2 Local distance antimagic labeling of graphs

Let G = (V,E) be a graph and v ∈ V . The open neighborhood of v is defined as N(v) = {u ∈
V : uv ∈ E}.

Theorem 2.1. Let T be a tree on n ≥ 2 vertices with k leaves and let

L = {N(l),where l is a leaf}

be the the set of vertices of T . Let |L| = t. Then χlda(T ) ≥ t+ 1.

Proof. Let f be any local distance antimagic labeling of T . Then, by the coloring induced by
f, the color of a leaf l is w(l) = f(v) where 1 ≤ f(v) ≤ p and v ∈ N(l). Therefore, the leaves
receive the colors w1, w2, . . . , wt. If leaf x with f(x) = p, then its adjacent vertex y has a weight
w(y) > p + 1. Therefore, the vertex y receives a new color wt+1. If for any non-leaf x with
f(x) = p, then there exists a vertex y ̸∈ L and y is adjacent to x. Clearly, the weight of vertex
y, w(y) > p+ 1 and that, the vertex y receives a new color wt+1. Thus χlda(T ) ≥ t+ 1.

Theorem 2.2. Let G be connected graph of order p. Then χlda(G) = 2 if and only if G ∼= Km,n.
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Proof. Let G = (V,E) be a connected graph of order p. Suppose χlda(G) = 2. Then there
exists a local distance antimagic labeling f with 2-colors w1 and w2. Let V1 be the set of all
vertices which receives the color w1 and V2 be the set of all vertices which receives the color w2.
Then |V | = |V1| + |V2| and hence there is no edge in the same partite V1 and V2. Therefore,
G is bipartite. If G is a tree, then by Theorem 2.1, we get |L| = 1 and hence |V1(G)| = 1,
|V2(G)| = |V (G)| − 1. Thus G ∼= K1,|V (G)|−1. If G is not a tree and bipartite then |V1(G)| ≥ 2
and |V2(G)| = |V (G)| − |V1(G)|. Since every vertex of V1(G) weight is w1, it follows that every
vertex of V1(G) must be adjacent to every vertex of V2(G). Therefore, G is isomorphic to complete
bipartite graph with |V1(G)| = m and |V2(G)| = |V (G)| − |V1(G)| = n, m ≤ n.

Conversely, suppose G ∼= Km,n. Since χ(Km,n) = 2, it follows, we get χlda(Km,n) ≥ 2. So,
for proving χlda(Km,n) = 2 it suffices to provide a local distance antimagic labeling of Km,n that
induces a local distance antimagic vertex coloring using 2-colors. Now, we define a vertex labeling
f ′ : V (Km,n) → {1, 2, 3, . . . ,m + n} by f ′(ui) = i, 1 ≤ i ≤ m and f ′(vi) = m + i, 1 ≤ i ≤ n.

Then the vertex weights are w′(vi) =
m(m+1)

2 , 1 ≤ i ≤ m and w′(ui) =
n(n+1)

2 +mn, 1 ≤ i ≤ n.
Therefore, f ′ is a local distance antimagic labeling ofKm,n that induces a local distance antimagic
vertex coloring using 2-colors and hence χlda(Km,n) ≤ 2. Thus χlda(Km,n) = 2.

3 χlda for the union of complete bipartite graphs

In this section, we prove that the local distance antimagic chromatic number for the union of m
copies of the complete bipartite graph mKr,s is two when r + s is even for any m and r + s is
odd and m is odd. First, we present the following theorem with r = s = n.

Theorem 3.1. Let mKn,n be the union of m copies of complete bipartite graph. Then χlda(mKn,n) =
2.

Proof. Let V (mKn,n) = {uj
i , v

j
i , 1 ≤ i ≤ n, 1 ≤ j ≤ m} and let E(mKn,n) = {uj

iv
j
i , 1 ≤ i ≤

n, 1 ≤ j ≤ m}. Then |V (mKn,n)| = 2nm. Define a labeling f1 : V (mKn,n) → {1, 2, 3, . . . , 2mn}
by
Case 1: n is even

f1(u
j
i ) =

{
2m(i− 1) + 2j − 1, i is odd, 1 ≤ j ≤ m

2mi− (2j − 1), i is even, 1 ≤ j ≤ m

f1(v
j
i ) =

{
2j + 2m(i− 1), i is odd, 1 ≤ j ≤ m

2mi− (2j − 2), i is even, 1 ≤ j ≤ m

Then the vertex weights are w1(u
j
i ) = mn2 + n and w1(v

j
i ) = mn2, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Case 2: n is odd
Define a labeling f2 : V (mKn,n) → {1, 2, 3, . . . , 2mn} by

f2(u
j
i ) =



j, i = 1, 1 ≤ j ≤ m

j +m, i = 2, 1 ≤ j ≤ m

4m− (2j − 2), i = 3, 1 ≤ j ≤ m

6m+ 2j − 1 + 2m(i− 4), i ≥ 4 and i is even, 1 ≤ j ≤ m

2im− (2j − 1), i ≥ 5 and i is odd, 1 ≤ j ≤ m
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f2(v
j
i ) =



4m+ 1− 2j, i = 1, 1 ≤ j ≤ m

4m+ j, i = 2, 1 ≤ j ≤ m

5m+ j, i = 3, 1 ≤ j ≤ m

6m+ 2j + 2m(i− 4), i ≥ 4 and i is even, 1 ≤ j ≤ m

2im− (2j − 2), i ≥ 5 and i is odd, 1 ≤ j ≤ m

Then the vertex weights are w2(u
j
i ) = mn2+4m+n−2 and w2(v

j
i ) = mn2−4m+2. Therefore, f1

and f2 admit a local distance antimagic labeling of mKn,n that induces a local distance antimagic
vertex coloring using 2-colors. Hence χlda(mKn,n) ≤ 2. Since χ(Kn,n) = 2, it follows, we get
χlda(Kn,n) ≥ 2. Hence χlda(mKn,n) = 2.

Example 1. The local distance antimagic labeling with 2-colors for 3K5,5 and 4K4,4 are pre-
sented in Figures 1 and 2.
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Figure 1: 3K5,5 with vertex colors 90 and 65.
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Figure 2: 4K4,4 with vertex colors 68 and 64.

Theorem 3.2. Let mKr,s be the union of m copies of complete bipartite graph with r < s and
r, s are even. Then χlda(mKr,s) = 2.

Proof. Let V (mKr,s) = {uj
i , v

j
i , 1 ≤ i ≤ r, s, 1 ≤ j ≤ m} and let E(mKr,s) = {uj

iv
j
i , 1 ≤ i ≤

r, 1 ≤ j ≤ m, 1 ≤ i ≤ s}. Then |V (mKr,s)| = m(r + s). Define a labeling f3 : V (mKr,s) →
{1, 2, 3, . . . ,m(r + s)} by

f3(u
j
i ) =

{
m(i− 1) + j, i is odd, 1 ≤ i ≤ r, 1 ≤ j ≤ m

mi+ 1− j, i is even, 1 ≤ i ≤ r, 1 ≤ j ≤ m

f3(v
j
i ) =

{
rm+m(i− 1) + j, i is odd, 1 ≤ i ≤ s, 1 ≤ j ≤ m

rm+mi+ 1− j, i is even, 1 ≤ i ≤ s, 1 ≤ j ≤ m

Then the vertex weights are w3(u
j
i ) = mrs + s(ms+1)

2 and w3(v
j
i ) = r

2 (mr + 1). Therefore f3
admits a local distance antimagic labeling of mKr,s that induces a local distance antimagic
vertex coloring using 2-colors and hence χlda(mKr,s) ≤ 2. Since χ(Kr,s) = 2, it follows, we get
χlda(Kr,s) ≥ 2. Hence χlda(mKr,s) = 2.
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Figure 3: 4K2,4 with vertex colors 66 and 9

Example 2. The local distance antimagic labeling with 2-colors for 4K2,4 is given in Figure 3.

Theorem 3.3. Let mKr,s be the union of m copies of complete bipartite graph with r < s and
r, s ≥ 3 are odd. Then χlda(mKr,s) = 2.

Proof. Let V (mKr,s) = {uj
i , v

j
i , 1 ≤ i ≤ r, s, 1 ≤ j ≤ m} and let E(mKr,s) = {uj

iv
j
i , 1 ≤ i ≤

r, 1 ≤ j ≤ m, 1 ≤ i ≤ s}. Then |V (mKr,s)| = m(r + s). Define a labeling f4 : V (mKr,s) →
{1, 2, 3, . . . ,m(r + s)} by

f4(u
j
i ) =


m(i− 1) + j, i = 1, 2, 1 ≤ j ≤ m

4m− 2(j − 1), i = 3, 1 ≤ j ≤ m

m(i+ 1)− (j − 1), i ≥ 5 is odd, 1 ≤ i ≤ r, 1 ≤ j ≤ m

mi+ j, i ≥ 4 is even, 1 ≤ i ≤ r, 1 ≤ j ≤ m

f4(v
j
i ) =


4m− (2j − 1), i = 1, 1 ≤ j ≤ m

m(r + 2) + j, i = 3, 1 ≤ j ≤ m

m(r + i)− (j − 1), i ≥ 5 is odd, 1 ≤ i ≤ s, 1 ≤ j ≤ m

m(r − 1 + i) + j, i ≥ 2 is even, 1 ≤ i ≤ s, 1 ≤ j ≤ m

Then the vertex weights are w4(u
j
i ) =

1

2
(2mr(s − 1) + s(ms + 1) + 5m − 1) and w4(v

j
i ) =

1

2
(mr(r + 2) − 5m + r + 1). Therefore, f4 admits a local distance antimagic labeling of mKr,s

that induces a local distance antimagic vertex coloring using 2-colors and hence χlda(mKr,s) ≤ 2.
Since χ(Kr,s) = 2, it follows, we get χlda(Kr,s) ≥ 2. Thus χlda(mKr,s) = 2.

Example 3. The local distance antimagic labeling with 2-colors for 3K3,5 is given in Figure 4.
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Figure 4: 3K3,5 with vertex colors 83 and 17

Theorem 3.4. Let mKr,s be the union of m copies of complete bipartite graph with r+ s is odd
and m is odd. Then χlda(mKr,s) = 2.
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Proof. Let V (mKr,s) = {uj
i , v

j
i , 1 ≤ i ≤ r, s, 1 ≤ j ≤ m} and let E(mKr,s) = {uj

iv
j
i , 1 ≤ i ≤

r, 1 ≤ j ≤ m, 1 ≤ i ≤ s}. Then |V (mKr,s)| = m(r + s). For r is even and s is odd with r < s,
define a labeling f5 : V (mKr,s) → {1, 2, 3, . . . ,m(r + s)} by

f5(u
j
i ) =

{
m(s+ i− 1) + j, i is odd, 1 ≤ i ≤ r, 1 ≤ j ≤ m

m(s+ i) + 1− j, i is even, 1 ≤ i ≤ r, 1 ≤ j ≤ m

f5(v
j
i ) =



j+1
2 , i = 1, j is odd, 1 ≤ j ≤ m

m+j+1
2 , i = 1, j is even, 1 ≤ j ≤ m

3m+j
2 , i = 2, j is odd, 1 ≤ j ≤ m

2m+j
2 , i = 2, j is even, 1 ≤ j ≤ m

mi− j + 1, i ≥ 3 is odd, 1 ≤ i ≤ s, 1 ≤ j ≤ m

m(i− 1) + j, i ≥ 4 is even, 1 ≤ i ≤ s, 1 ≤ j ≤ m

Then the vertex weights are w5(u
j
i ) =

s(ms+1)
2 and w5(v

j
i ) = msr + r(mr+1)

2 .

If r is odd and s is even, define a labeling f ′
5 by f ′

5(u
j
i ) = f5(v

j
i ), 1 ≤ i ≤ r and f ′

5(v
j
i ) =

f5(u
j
i ), 1 ≤ i ≤ s. This labeling schemes f5 and f ′

5 admit a local distance antimagic label-
ing of mKr,s that induces a local distance antimagic vertex coloring using 2-colors and hence
χlda(mKr,s) ≤ 2. Since χ(Kr,s) = 2, it follows, we get χlda(Kr,s) ≥ 2. Thus χlda(mKr,s) = 2.

Example 4. The local distance antimagic labeling with 2-colors for 5K2,3 and 3K3,4.
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Figure 5: 5K2,3 with vertex colors 24 and 41
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Figure 6: 3K3,4 with vertex colors 62 and 15
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Now, we present an upper bound for χlda(mKr,s), where r + s is odd and m is even.

Theorem 3.5. Let mKr,s be the union of m copies of complete bipartite graph with r+ s is odd
and m is even. Then χlda(mKr,s) ≤ 3.

Proof. Let V (mKr,s) = {uj
i , v

j
i , 1 ≤ i ≤ r, s, 1 ≤ j ≤ m} and let E(mKr,s) = {uj

i , v
j
i , 1 ≤ i ≤

r, s, 1 ≤ j ≤ m}. Then |V (mKr,s)| = m(r + s). If r is even and s is odd, we define a labeling
f6 : V (mKr,s) → {1, 2, 3, ...,m(r + s)} by

f6(u
j
i ) =


2m+ 1 + (2j − 2), i = 1, 1 ≤ j ≤ m

m(s+ 2)− (2j − 2), i = 2, 1 ≤ j ≤ m
2

m(s+ i− 1) + j, i ≥ 3 is odd, 1 ≤ j ≤ m

m(s+ i)− (j − 1), i ≥ 4 is even, 1 ≤ j ≤ m

f6

(
u

m
2 +j
i

)
= m(s+ 2) + 1− 2j, i = 2 and 1 ≤ j ≤ m

2

f6(v
j
i ) =


m(i− 1) + j, i = 1, 2, 1 ≤ j ≤ m

4m− 2(j − 1), i = 3, 1 ≤ j ≤ m

m(i+ 1)− (j − 1), i ≥ 5 is odd, 1 ≤ j ≤ m

mi+ j, i ≥ 4 is even, 1 ≤ j ≤ m

Then the vertex weights are w6(u
j
i ) =

1
2 (ms(s+ 2)− 5m+ s+ 1), w6(v

j
i ) =

r
2 (mr+ 1) +ms(r−

1) + 2m, 1 ≤ j ≤ m
2 and w6(v

j
i ) = r

2 (mr + 1) + ms(r − 1) + 3m − 1, m
2 ≤ j ≤ m. If r is odd

and s is even, define a labeling f ′
6 by f ′

6(u
j
i ) = f6(v

j
i ), 1 ≤ i ≤ r and f6(v

j
i ) = f6(u

j
i ), 1 ≤ i ≤ s.

Now, f6 and f ′
6 admit a local distance antimagic labeling of mKr,s that induces a local distance

antimagic vertex coloring using 3-colors. Hence χlda(mKr,s) ≤ 3.

Finally, we obtain an exact χlda for mKr,s, where r = 2, s = 3 and m = 2.

Theorem 3.6. Let G ∼= 2K2,3 be a disconnected graph. Then χlda(2K2,3) = 3.

Proof. Suppose χlda(2K2,3) = 2. Then there exists a local distance antimagic labeling f with
2-colors. Let W = {w1, w2} be the set of colors. The minimum possible vertex weight is 3 and
the maximum possible vertex weight is at most 27. Therefore, 3 ≤ w ≤ 27, where w ∈ W. Let
w1 = w(uj

i ) and w2 = w(vji ). Then the vertex labels are partitioned into 2 three-element sets
with their sum is w1 and the rest of the four vertices labels are partitioned into 2 two-element sets
with their sum is w2. The list of all possible combinations of weights w1 and w2 are presented in
Tables 1-4. Clearly, there is no 2 two-element sets with same vertex weight w2, a contradiction.
Thus χlda(2K2,3) ≥ 3.

Let V (2K2,3) = {uj
1, u

j
2, v

j
1, v

j
2, v

j
3, j = 1, 2}.Define a bijection f7 : V (2K2,3) → {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

by f7(u
1
1) = 2, f7(u

1
2) = 6, f7(u

2
1) = 4, f7(u

2
2) = 5, f7(v

1
1) = 1, f7(v

1
2) = 8, f7(v

1
3) = 10,f7(v

2
1) =

3, f7(v
2
2) = 7, f7(v

2
3) = 9. Then the weights are w7(u

j
i ) = 19, i, j = 1, 2, w7(v

1
i ) = 8, i = 1, 2, 3

and w7(v
2
i ) = 9, i = 1, 2, 3. Thus χlda(2K2,3) ≤ 3. Hence χlda(2K2,3) = 3.

The above Theorem 3.5 and Theorem 3.6 leads to the following open problem.

Problem 3.7. Determine the local distance antimagic labeling with exact 2-colors for mKr,s,
where r + s is odd and m is even.
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Weight Partitions Others Weight Partitions Others

11 (1,3,7)(2,4,5) 6,8,9,10 12 (1,2,9)(3,4,5) 6,7,8,10

13 (1,2,10)(3,4,6) 5,7,8,9 (1,3,8)(2,4,6) 5,7,9,10

(1,3,9)(2,4,7) 5,6,8,10 (1,5,6)(2,3,7) 4,8,9,10

(1,3,9)(2,5,6) 4,7,8,10 15 (1,4,10)(2,5,8) 3,6,7,9

(1,4,8)(2,5,6) 3,7,9,10 (1,4,10)(2,6,7) 3,5,8,9

(1,5,7)(2,3,8) 4,6,9,10 (1,4,10)(3,5,7) 2,6,8,9

(1,5,7)(3,4,6) 2,8,9,10 (1,5,9)(2,3,10) 4,6,7,8

14 (1,3,10)(2,4,8) 5,6,7,9 (1,5,9)(2,6,7) 3,4,8,10

(1,3,10)(2,5,7) 4,6,8,9 (1,5,9)(3,4,8) 2,6,7,10

(1,4,9)(2,5,7) 3,6,8,10 (1,6,8)(2,3,10) 4,5,7,9

(1,4,9)(3,5,6) 2,7,8,10 (1,6,8)(2,4,9) 3,5,7,10

(1,5,8)(2,3,9) 4,6,7,10 (1,6,8)(3,5,7) 2,4,9,10

(1,6,7)(2,3,9) 4,5,8,10 (2,3,10)(4,5,6) 1,7,8,9

(1,6,7)(2,4,8) 3,5,9,10 (2,4,9)(3,5,7) 1,6,8,10

(2,8,4)(3,5,6) 1,9,7,10 (2,6,7)(3,4,8) 1,5,9,10

Table 1: Possible partitions of labels with weights 11,12,13,14 and 15.

Weight Partitions Others Weight Partitions Others

18 (1,7,10)(3,6,9) 2,4,5,8 19 (1,8,10)(3,7,9) 2,4,5,6

(1,7,10)(4,5,9) 2,3,6,8 (1,8,10)(4,6,9) 2,3,5,7

(1,7,10)(4,6,8) 2,3,5,9 (2,7,10)(4,6,9) 1,3,5,8

(1,8,9)(2,6,10) 3,4,5,7 (2,7,10)(5,6,8) 1,3,4,9

(1,8,9)(3,5,10) 2,4,6,7 (2,8,9)(3,6,10) 1,4,5,7

(1,8,9)(5,6,7) 2,3,4,10 (2,8,9)(4,5,10) 1,3,6,7

(2,6,10)(3,7,8) 1,4,5,9 (3,6,10)(4,7,8) 1,2,5,9

(2,6,10)(4,5,9) 1,3,7,8 20 (1,9,10)(5,7,8) 2,3,4,6

(2,7,9)(3,5,10) 1,4,6,8 (2,8,10)(4,7,9) 1,3,5,6

(2,7,9)(4,6,8) 1,3,5,10 (2,8,10)(5,6,9) 1,3,4,7

(3,5,10)(4,6,8) 1,2,7,9 (3,7,10)(5,6,9) 1,2,4,8

(3,7,8)(4,5,9) 1,2,6,10 (3,8,9)(4,6,10) 1,2,5,7

22 (4,8,10)(6,7,9) 1,2,3,5 (4,6,10)(5,7,8) 1,2,3,9

Table 2: Possible partitions of labels with weight 18,19,20 and 22.

Weight Partitions Others

21 (2,9,10)(6,7,8) 1,3,4,5

(3,8,10)(5,7,9) 1,2,4,6

(4,8,9)(5,6,10) 1,2,3,7

Table 3: Possible partitions of labels with weight is 21.
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Weight Partitions Others Weight Partitions Others

16 (1,5,10)(2,6,8) 3,4,7,9 17 (1,6,10)(2,7,8) 3,4,5,7

(1,5,10)(3,4,9) 2,6,7,8 (1,6,10)(3,5,9) 2,4,7,8

(1,5,10)(3,6,7) 2,4,8,9 (1,6,10)(4,5,8) 2,3,7,9

(1,6,9)(2,4,10) 3,5,7,8 (1,7,9)(2,5,8) 3,4,5,10

(1,6,9)(3,5,8) 2,4,7,10 (1,7,9)(3,4,10) 2,5,6,8

(1,6,9)(4,5,7) 2,3,8,10 (1,7,9)(3,6,8) 2,4,5,10

(1,7,8)(2,4,10) 3,5,6,9 (1,7,9)(4,5,8) 2,3,6,10

(1,7,8)(2,5,9) 3,4,6,10 (2,5,10)(3,6,8) 1,4,7,9

(1,7,8)(3,4,9) 2,5,6,10 (2,5,10)(4,6,7) 1,3,8,9

(2,5,9)(3,6,7) 1,4,8,10 (2,6,9)(3,4,10) 1,5,7,8

(2,6,8)(3,4,9) 1,5,7,10 (2,6,9)(4,5,8) 1,3,7,10

(2,6,8)(4,5,7) 1,3,9,10 (2,7,8)(3,4,10) 1,5,6,9

17 (2,7,8)(3,5,9) 1,4,6,10 (3,5,9)(4,6,7) 1,2,8,10

Table 4: Possible partitions of labels with weights 16 and 17.

4 Conclusion

In this paper, we proved that the local distance antimagic chromatic number for a connected graph
G is 2 only when G ∼= Km,n. We also established that the local distance antimagic chromatic
number for the union of m copies of complete bipartite graph mKr,s is 2 in all possible cases
except for the case r + s is odd and m is even. When r + s is odd and m is even we established
that χlda(mKr,s) ≤ 3. In particular, for r = 2, s = 3 and m = 2 we proved that χlda(2K2,3) = 3.
The problem of generalizing the result and establishing the exact bounds for χlda(mKr,s) when
r + s is odd and m is even remains open.
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