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A REVERSE HILBERT-TYPE INEQUALITY WITH

A GENERALIZED HOMOGENEOUS KERNEL

BING HE

Abstract. In this paper, by introducing a generalized homogeneous kernel and estimating

the weight function, a new reverse Hilbert-type integral inequality with some parameters

and a best constant factor is established. Furthermore, the corresponding equivalent

form is considered.

1. Introduction

If an ,bn ≥ 0, 0 <
∞∑

n=1
a2

n <∞ and 0 <
∞∑

n=1
b2

n <∞, then(see [1])

∞∑

n=1

∞∑

m=1

ambn

m +n
<π

( ∞∑

n=1

a2
n

)1/2( ∞∑

n=1

b2
n

)1/2
, (1.1)

where the constant factor π is the best possible. Inequality (1.1) is well known as Hilbert’s

inequality. It is important in analysis and its applications. It was studied extensively and

refinements, generalizations and numerous variants appeared in the literature (see [1]- [3]).

Firstly, we shall recall some Hilbert’s inequalities. If f , g ≥ 0, p > 1, 1
p +

1
q = 1, 0 <

∫
∞

0 f p (x)dx <

∞ and 0 <
∫∞

0 g q (x)dx <∞, then
∫∞

0

∫∞

0

f (x)g (y)

x + y
dxdy <

π

sin(π/p)

{∫∞

0
f p (x)dx

}1/p{∫∞

0
g q (x)dx

}1/q
; (1.2)

where the constant factor π
sin(π/p) is the best possible. Inequality (1.2) is named of Hardy-

Hilbert’s integral inequality (see [1]). Under the same condition of (1.2), we have the Hardy-

Hilbert’s type inequality (see [1, Th. 319, Th. 341]) as:
∫∞

0

∫∞

0

f (x)g (y)

max{x, y}
dxdy < pq

{∫∞

0
f p (x)dx

}1/p{∫∞

0
g q (x)dx

}1/q
; (1.3)

where the constant factor pq is also the best possible. The corresponding inequality for series

is :
∞∑

n=1

∞∑

m=1

ambn

m +n
<

π

sin(π/p)

( ∞∑

n=1

a
p
n

)1/p( ∞∑

n=1

b
q
n

)1/q
; (1.4)
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∞∑

n=1

∞∑

m=1

ambn

max{m,n}
< pq

( ∞∑

n=1

a
p
n

)1/p( ∞∑

n=1

b
q
n

)1/q
, (1.5)

where the constant factors π
sin(π/p) and pq are both the best possible.

In 2007, Yang (see [4]) gave a reverse inequality as follows: If 0 < p < 1, 1
p +

1
q = 1,α >

0,2−p < λ< 2−q , f (x), g (x) ≥ 0, such that 0 <
∫∞

0
(x1−α f (x))p

x1+α(λ−2) dx <∞,0 <
∫∞

0
(x1−αg (x))q

x1+α(λ−2) dx <∞

Then

∫
∞

0

∫
∞

0

f (x)g (y)

(xα+ yα)λ
dxdy >

1

α
kλ(p)

{∫
∞

0

(x1−α f (x))p

x1+α(λ−2)
dx

} 1
p
{∫

∞

0

(x1−αg (x))q

x1+α(λ−2)
dx

} 1
q

, (1.6)

where the constant factor 1
αkλ(p)(kλ(p) = B (

p+λ−2
λp ,

q+λ−2
λq )) is the best possible. And in 2008,

Xie (see [5]) got the following reverse form: For 0 < p < 1, a,b > 0, a 6= b and some other con-

ditions, then

∫
∞

0

∫
∞

0

f (x)g (y)

(x +a y)2(x +by)2
dxdy >K

{∫
∞

0

1

xp+1
f p (x)dx

}1/p {∫
∞

0

1

xq+1
g q (x)dx

}1/q

, (1.7)

where the constant factor K := a+b
(b−a)2

[
ln(b/a)

b−a −
2

a+b

]
is the best possible.. By the way, in recent

years, the reverse form of the Hardy-Hilbert’s inequality has been studied by Zhao(see [6]) and

other mathematicians.

Until now, we only focus on the Hilbert’s inequality with λ homogeneous and non-homo-

geneous kernel, but we are just at the beginning of the long trip on the study of the real num-

ber homogeneous kernel. Lots of related results will appear in the coming future.

The main purpose of this article is to establish the reverse form of the Hilbert’s type in-

equality with the mixed homogeneous kernel of real number degree. We hope that this work

will pave the way for the future research of the Hilbert’s inequality.

2. Main results

Lemma 1. Setting λ,µ ∈R and λ+µ> 0, define the weight function ̟λ,µ(u) as

̟λ,µ(u) :=

∫∞

0

(min{u, v})λ

(max{u, v})µ
·

u−
λ−µ

2

v 1+
λ−µ

2

dv,u ∈ (0,∞), (2.1)

then for u ∈ (0,∞), we have

̟λ,µ(u)=
4

λ+µ
, u ∈ (0,∞). (2.2)

Proof. For fixed u > 0, setting t = v
u

, we have

̟λ,µ(u) =

∫
∞

0

(min{u, v})λ

(max{u, v})µ
·

u−
λ−µ

2

v 1+
λ−µ

2

dv =

∫
∞

0

(min{1, t })λ

(max{1, t })µ
· t−1−

λ−µ

2 dt
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=

∫1

0

tλ

1
· t−1−

λ−µ

2 dt +

∫
∞

1

1

tµ
· t−1−

λ−µ

2 dt

=
4

λ+µ
.

It follows that ̟λ,µ(u)= 4
λ+µ , thus (2.2) is correct. �

In what follows, λ,µ will be real numbers such that λ+µ> 0 and p, q will be real numbers

such that −∞< q < 0, 0 < p < 1 and 1
p
+ 1

q
= 1.

Theorem 2. If f , g ≥ 0 such that 0 <

∫
∞

0
xp(1+

λ−µ

2
)−1 f p (x)dx <∞ and 0 <

∫
∞

0
xq(1+

λ−µ

2
)−1g q (x)

dx <∞, then we have the following inequality

I :=

∫
∞

0

∫
∞

0

(min{x, y})λ

(max{x, y})µ
f (x)g (y)dxdy

>
4

λ+µ

{∫
∞

0
xp(1+

λ−µ

2
)−1 f p (x)dx

}1/p {∫
∞

0
y q(1+

λ−µ

2
)−1g q (y)dy

}1/q

, (2.3)

where the constant factor 4
λ+µ is independent of p, q and 4

λ+µ is the best possible.

Proof. By the reverse Hölder’s inequality with weight[7], we obtain

∫∞

0

∫∞

0

(min{x, y})λ

(max{x, y})µ
f (x)g (y)dxdy

=

∫
∞

0

∫
∞

0

(min{x, y})λ

(max{x, y})µ

[
x(1+

λ−µ

2
)/q

y (1+
λ−µ

2
)/p

f (x)

][
y (1+

λ−µ

2
)/p

x(1+
λ−µ

2
)/q

g (y)

]
dxdy

≥

{∫
∞

0

∫
∞

0

(min{x, y})λ

(max{x, y})µ
x(p−1)(1+

λ−µ

2
)

y1+
λ−µ

2

f p (x)dxdy

}1/p

×

{∫∞

0

∫∞

0

(min{x, y})λ

(max{x, y})µ
y (q−1)(1+

λ−µ

2
)

x1+
λ−µ

2

g q (y)dxdy

}1/q

. (2.4)

If (2.4) takes the form of the equality, then there exist constants a and b, such that they

are not all zero and

ax(p−1)(1+
λ−µ

2
)

y1+
λ−µ

2

· f p (x) =
by (q−1)(1+

λ−µ

2
)

x1+
λ−µ

2

· g q (y) a.e. in (0,∞)× (0,∞).

Then we have axp(1+
λ−µ

2
) f p (x) = by q(1+

λ−µ

2
)g q (y) a.e. in (0,∞)× (0,∞). Hence there exist a

constant c , such that

axp(1+
λ−µ

2
) f p (x) = by q(1+

λ−µ

2
)g q (y)= c a.e. in (0,∞)× (0,∞).
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Without losing the generality, suppose that a 6= 0, we may get xp(1+
λ−µ

2
)−1 f p (x) = c

ax a.e. in

(0,∞), which contradicts the fact that 0 <
∫∞

0 xp(1+
λ−µ

2
)−1 f p (x)dx <∞. Hence by (2.1), (2.3)

takes a strict inequality as follows:

∫∞

0

∫∞

0

(min{x, y})λ

(max{x, y})µ
f (x)g (y)dxdy

>

{∫∞

0
̟λ,µ(x)xp(1+

λ−µ

2
)−1 f p (x)dx

} 1
p
{∫∞

0
̟λ,µ(y)y q(1+

λ−µ

2
)−1g q (y)dy

} 1
q

In view of (2.2), we have (2.3).

Assume that the constant factor 4
λ+µ in (2.3) is not the best possible, then there exists a

positive number k with k >
4

λ+µ and a > 0, such that

∫
∞

a

[∫
∞

0

(min{x, y})λ

(max{x, y})µ
f (x)g (y)dy

]
dx

> k

(∫
∞

a
xp(1+

λ−µ

2
)−1 f p (x)dx

) 1
p
(∫

∞

a
y q(1+

λ−µ

2
)−1g q (y)dy

) 1
q

. (2.5)

For 0 < ε<
(λ+µ)|q|

2 , setting

f̃ (x) =

{
0, x ∈ (0, a),

x
−(1+

λ−µ

2
)− ε

p , x ∈ [a,∞),
g̃ (y)=

{
0, y ∈ (0, a),

y
−(1+

λ−µ

2
)− ε

q , y ∈ [a,∞).

Putting f̃ (x), g̃ (y) into (2.5). For fixed y , setting t =
y
x , we find

∫∞

a

[∫∞

0

(min{x, y})λ

(max{x, y})µ
f̃ (x)g̃ (y)dy

]
dx

≤

∫
∞

a
x−1−ε

[∫
∞

0

(min{1, t })λ

(max{1, t })µ
· t

−1−
λ−µ

2
−

ε
q dt

]
dx

=
1

εaε


 1

λ+µ

2 −
ε
q

+
1

λ+µ

2 +
ε
q


 .

Multiplying by εaε for both sides of (2.5), by the above inequality, we obtain

1

λ+µ
2 −

ε
q

+
1

λ+µ
2 +

ε
q

≥ εaε

∫
∞

a

[∫
∞

0

(min{x, y})λ

(max{x, y})µ
f̃ (x)g̃ (y)dy

]
dx

> εaεk

(∫∞

a
xp(1+

λ−µ

2
)−1 f̃ p (x)dx

) 1
p
(∫∞

a
y q(1+

λ−µ

2
)−1g̃ q (y)dy

) 1
q

= k .

It follows that 4
λ+µ ≥ k (ε→ 0+), which contradicts the hypothesis. Hence the constant factor

4
λ+µ in (2.3) is the best possible. This completes the proof. �
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Theorem 3. If f ≥ 0 such that 0 <
∫
∞

0 xp(1+
λ−µ

2
)−1 f p (x)dx < ∞, then we have the following

equivalent inequality of (2.3)

J :=

∫
∞

0
y−

p(λ−µ)

2
−1

[∫
∞

0

(min{x, y})λ

(max{x, y})µ
f (x)dx

]p

dy

>

(
4

λ+µ

)p ∫
∞

0
xp(1+

λ−µ

2
)−1 f p (x)dx, (2.6)

where the constant factor
(

4
λ+µ

)p
is the best possible.

Proof. Since
∫
∞

0 xp(1+
λ−µ

2
)−1 f p (x)dx > 0, it is obvious that J > 0. If J =∞, then (2.6) is valid

naturally. We now assume J < ∞ and g (y) = y−1−
p(λ−µ)

2

[∫∞

0
(min{x,y})λ

(max{x,y})µ f (x)dx
]p−1

, y ∈ (0,∞).

By (2.3), we get

∞ >

∫
∞

0
y q(1+

λ−µ

2
)−1g q (y)dy = J = I

>
4

λ+µ

{∫∞

0
xp(1+

λ−µ

2
)−1 f p (x)dx

}1/p {∫∞

0
y q(1+

λ−µ

2
)−1g q (y)dy

}1/q

> 0,

J 1/p
=

{∫∞

0
y q(1+

λ−µ

2
)−1g q (y)dy

}1/p

>
4

λ+µ

{∫∞

0
xp(1+

λ−µ

2
)−1 f p (x)dx

}1/p

.

Hence (2.6) is valid.

On the other hand, suppose that (2.6) is valid. By the reverse Hölder’s inequality with

weight, we find

I =

∫∞

0

[
y
−

λ−µ

2
−

1
p

∫∞

0
f (x)dx

][
y

λ−µ

2
+

1
p g (y)

]
dy

≥ J 1/p

{∫∞

0
y q(1+

λ−µ

2
)−1g q (y)dy

}1/q

. (2.7)

Then by (2.6), we have (2.3). Thus (2.3) and (2.6) are equivalent.

It is of course that the constant factor in (2.6) is the best possible. Otherwise, by (2.7),

we may get a contradiction that the constant factor in (2.3) is not the best possible. This

completes the proof. �

Theorem 4. If g ≥ 0 such that 0 <
∫
∞

0 xq(1+
λ−µ

2
)−1g q (x)dx < ∞, then we have the following

equivalent inequality of (2.3)

L :=

∫∞

0
x−

q(λ−µ)

2
−1

[∫∞

0

(min{x, y})λ

(max{x, y})µ
g (y)dy

]q

dx

<

(
4

λ+µ

)q ∫
∞

0
y q(1+

λ−µ

2
)−1g q (y)dy, (2.8)

where the constant factor
(

4
λ+µ

)q
is the best possible.
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Proof. If L = 0, then (2.8) is valid naturally; If L > 0, for y ∈ (0,∞), setting

[g (y)]n =





1
n

, g (y) < 1
n

,

g (y), 1
n ≤ g (y) ≤ n,

n, g (y) > n,

then there exists n0 ∈N such that for all n ≥ n0, we have
∫n

1
n

y q(1+
λ−µ

2
)−1[g (y)]

q
ndy > 0,

L(n) :=

∫n

1
n

x−
q(λ−µ)

2
−1

(∫n

1
n

(min{x, y})λ

(max{x, y})µ
[g (y)]ndy

)q

dx > 0.

Furthermore, supposing

fn(x) := x−
q(λ−µ)

2
−1

(∫n

1
n

(min{x, y})λ

(max{x, y})µ
[g (y)]ndy

)q−1

,

I (n) :=

∫n

1
n

∫n

1
n

(min{x, y})λ

(max{x, y})µ
fn(x)[g (y)]ndxdy (n ≥n0).

By (2.3), in view of q < 0, we have

∞ >

∫n

1
n

xp(1+
λ−µ

2
)−1 f

p
n (x)dx = L(n) = I (n)

>
4

λ+µ

{∫n

1
n

xp(1+
λ−µ

2
)−1 f

p
n (x)dx

}1/p {∫n

1
n

y q(1+
λ−µ

2
)−1[g (y)]

q
ndy

}1/q

> 0,

0 <

∫n

1
n

xp(1+
λ−µ

2
)−1 f

p
n (x)dx = L(n)<

(
4

λ+µ

)q ∫
∞

0
y q(1+

λ−µ

2
)−1g q (y)dy <∞.

This shows that 0 <
∫∞

0 xp(1+
λ−µ

2
)−1 f

p
∞(x)dx <∞, when n →∞, applying (2.3), the above two

inequalities still take the form of strict inequality. Hence (2.8) is correct.

On the other hand, assume that (2.8) is valid. By the reverse Hölder’s inequality with

weight, we find

I =

∫
∞

0

[
x

λ−µ

2
+

1
q f (x)

][
x
−

λ−µ

2
−

1
q

∫
∞

0

(min{x, y})λ

(max{x, y})µ
g (y)dy

]
dx

≥ L1/q

{∫
∞

0
xp(1+

λ−µ

2
)−1 f p (x)dx

}1/p

. (2.9)

Then by (2.8), we have (2.3). Thus (2.8) and (2.3) are equivalent.

It is obviously that the constant factor in (2.8) is the best possible. Otherwise, by (2.9),

we may get a contradiction that the constant factor in (2.3) is not the best possible. This

completes the proof. �
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