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Normalized null hypersurfaces in the

Lorentz-Minkowski space satisfying Lrx = Ux+ b

Hans Fotsing Tetsing, Cyriaque Atindogbé and Ferdinand Ngakeu

Abstract. In the present paper, we classify all normalized null hypersurfaces
x : (M, g,N) → Rn+2

1 endowed with UCC-normalization with vanishing 1−form τ ,
satisfying Lrx = Ux+ b for some (field of) screen constant matrix U ∈ R(n+2)×(n+2)

and vector b ∈ Rn+2
1 , where Lr is the linearized operator of the (r + 1)th−mean

curvature of the normalized null hypersurface for r = 0, ..., n. For r = 0, L0 =
∆η is nothing but the (pseudo-)Laplacian operator on (M, g,N). We prove that
the lightcone Λn+1

0 , lightcone cylinders Λm+1
0 × Rn−m, 1 ≤ m ≤ n − 1 and (r +

1)−maximal Monge null hypersurfaces are the only UCC-normalized Monge null
hypersurface with vanishing normalization 1−form τ satisfying the above equation.
In case U is the (field of) scalar matrix λI, λ ∈ R and hence is constant on the whole
M , we show that the only normalized Monge null hypersurfaces x : (M, g,N) →
Rn+2

1 satisfying ∆ηx = λx+ b, are open pieces of hyperplanes.

Keywords. Normalized null hypersurface, Second order operator, Newton transformation,
Higher order mean curvature

1 Introduction

Isometric immersions in Euclidean spaces satisfying ∆x = Ax + b where A ∈ R(n+1)×(n+1) is a
constant matrix, b ∈ Rn+1 is a constant vector and ∆ the Laplacian operator with respect to
the induced metric have always been subject to many investigations : Tahahashi (A = λId and
b = 0 [35]), Garay ([24] for hypersurfaces), Dillen, Pas and Verstraelen ( surfaces in the specific
case n+ 1 = 3 [17]), Hasanis and Vlachos [25], and Chen and Petrovic [16].

In the work by Aĺıas and Ferrández [3] the Euclidean target space is replaced by a pseudo-
Euclidean one. They considered pseudo-Riemannian submanifolds Mn

s in pseudo-Euclidean
spaces Rn+m

t satisfying the condition ∆x = Ax+B, where A is a constant endomorphism of Rn+m
t

and B is a constant vector in Rn+m
t ,and gave a characterization theorem. For hypersurfaces they

show that Mn
s must be an open piece of a minimal hypersurface, a totally umbilical hypersurface

or a pseudo-Riemannian product of a totally umbilical and a totally geodesic submanifold.

The Laplacian operator ∆ can be seen as the first one of a sequence of n operators L0 =
∆, L1, ..., Ln−1, where Lk stands for the linearized operator of the first variation of the (k+1)−th
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mean curvature arising from normal variations of the hypersurface. These operators are given
for their action on smooth function f on M by Lk(f) = tr(Pk ◦ ∇2f), where Pk denotes the
k−th Newton transformation associated with the second fundamental form of the hypersurface
and ∇2f denotes the self-adjoint linear operator metrically equivalent to the Hessian of f . Aĺıas
and Gürbüz [1] initiated the study of hypersurfaces in Euclidean space satisfying the general
condition Lkx = Ax+b, where A ∈ R(n+1)×(n+1) is a constant matrix and b ∈ Rn+1 is a constant
vector. A first attempt to solve this question have been made by Yang and Liu [36].

Pascual Lucas and Fabián Ramı́rez [28] studied pseudo-Riemannian hypersurfaces in Lorentz-
Minkowski space satisfying the condition Lkx = Ax + b, where A ∈ R(n+1)×(n+1) is a constant
matrix and b ∈ Ln+1 is a constant vector. These authors showed that a pseudo-Riemannian
hypersurface x : M → Ln+1 satisfies this condition if and only if M is an r−maximal hypersur-
face, an open piece of the totally umbilical hypersurface Sn1 (r) or Hn(−r), or an open piece of
generalized cylinder Sm1 (r) × Rn−m or Hm(−r) × Rn−m, with k + 1 ≤ m ≤ n − 1, r > 0 is a
constant, or Lm × Sn−m(r) with r + 1 ≤ n − m ≤ n − 1. Pascual Lucas and Fabián Ramı́rez
also studied this problem in another space [29, 30]. As it can be remarkable, the case where the
hypersurface is null (lightlike) has been avoided in all of the above discussions. It is the purpose
of this paper to start filling this gap, relying on the Newton transformations that the first and the
second authors have previously introduced in [6] and on pseudo-Laplacian operator as defined in
[9].

In Section 2 we set notations and recall necessary materials on null hypersurfaces. Section 3
focuses on almost isoparametric null hypersurfaces and establishes sufficient conditions under
which there is at most two screen principal curvatures. In Section 4 we consider solving the
problem ∆ηx = λx + b in Minkowski spaces Rn+2

1 (Theorem 4.1). In Section 5 we introduce
the second-order linear differential operators Lr (0 ≤ r ≤ n) and study some of their properties.
Section 6 of the present paper focuses on Monge null hypersurfaces endowed with normalization
(2.2) with specific properties. We show that the only Monge null hypersurfaces endowed with
the normalization (2.2), satisfying Lrx = Ux+ b are the (r + 1)−maximal ones.

2 Background materials on null hypersurfaces

Throughout this work, (M, g) is an (n + 2)−dimensional Lorentzian manifold, ∇ and R will
denote respectively the Levi-Civita connection and the Riemannian curvature of g. (Tools of
the metric g will be surmounted with a line.) All manifolds are taken smooth and connected.
Let x : (M, g) −→ (M̄, ḡ) be a null hypersurface isometrically immersed. At each p ∈ M ,
the restriction gp|TpM

is degenerate, that is there exists a non-zero vector U ∈ TpM such that

g(U,X) = 0 for all X ∈ TpM . By screen distribution on Mn+1, we mean a complementary
bundle of TM⊥ in TM . It is then a rank n nondegenerate distribution over M . For reasons that
will become obvious in few lines below, let denote such a distribution by S (N). We then have,

TM = S (N)⊕Orth TM⊥, (2.1)

where ⊕Orth denotes the orthogonal direct sum. From [18], it is known that for a null hypersurface
equipped with a screen distribution, there exists a unique rank 1 vector subbundle tr(TM) of
TM over M , such that for any non-zero section ξ of TM⊥ on a coordinate neighborhood U ⊂ M ,
there exists a unique section N of tr(TM) on U satisfying

g(N, ξ) = 1, g(N,N) = g(N,W ) = 0, ∀ W ∈ S (N)|U . (2.2)
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Then TM is decomposed as follows:

TM |M = TM ⊕ tr(TM) = {TM⊥ ⊕ tr(TM)} ⊕Orth S (N). (2.3)

We call tr(TM) a (null) transversal vector bundle along M . In fact, from (2.2) and (2.3) one
shows that, conversely, a choice of a transversal bundle tr(TM) determines uniquely the screen
distribution S (N). A vector field N as in (2.2) is called a null transversal vector field of M . It is
then noteworthy that the choice of a null transversal vector field N along M determines both the
null transversal vector bundle, the screen distribution S (N) and a unique radical vector field,
say ξ, satisfying (2.2). Tangent vector fields to S (N) (resp. to TM⊥) are called horizontal (resp.
vertical). Now, to continue our discussion, we need to clarify the concept of rigging for our null
hypersurface.

Definition 1. Let M be a null hypersurface of a Lorentzian manifold. A rigging for M is a
vector field L defined on some open set containing M such that Lp /∈ TpM for each p ∈ M .

Let N be a null rigging for M (that means the restriction of N on M is a null vector field)
and θ = g(N, ·) the 1−form metrically equivalent to N defined on M . Then, take η = x⋆θ to
be its restriction to M . The normalization (M, g,N) will be said to be closed if the 1−form θ
is closed which implies that the same is for η on M . It is easy to check that S (N) = ker(η)
and that the screen distribution S (N) is integrable whenever η is closed. On a normalized null
hypersurface (M, g,N), the Gauss and Weingarten formulas are given by

∇XY = ∇XY +BN (X,Y )N, (2.4)

∇XN = −ANX + τN (X)N, (2.5)

∇XPY =
⋆

∇X PY + CN (X,PY )ξ, (2.6)

∇Xξ = −
⋆

AξX − τN (X)ξ, (2.7)

for any X,Y ∈ Γ(TM), where ∇ denotes the Levi-Civita connection on (M, g), ∇ denotes the

connection on M induced from ∇ through the projection along the rigging N and
⋆

∇ denotes the
connection on the screen distribution S (N) induced from ∇ through the projection morphism
P of Γ(TM) onto Γ

(
S (N)

)
with respect to the decomposition (2.1). Now the (0, 2) tensors BN

and CN are the second fundamental forms on TM and S (N) respectively, AN and
⋆

Aξ are the
shape operators on TM and S (N) respectively and τN a 1−form on TM defined by τN (X) =
g(∇XN, ξ). For the second fundamental forms BN and CN the following holds

BN (X,Y ) = g(
⋆

AξX,Y ), CN (X,PY ) = g(ANX,Y ) ∀X,Y ∈ Γ(TM), (2.8)

and

BN (X, ξ) = 0,
⋆

Aξξ = 0 ∀X ∈ Γ(TM). (2.9)

A null hypersurface M is said to be totally umbilical (resp. totally geodesic) if there exists
a smooth function ρ on M such that at each p ∈ M and for all u, v ∈ TpM , BN (p)(u, v) =

ρ(p)g(u, v) or equivalently
⋆

Aξ = ρP (resp. BN vanishes or equivalently
⋆

Aξ = 0). These are
intrinsic notions on any null hypersurface in the sense that they don’t depend on the chosen
null rigging. Also, the screen distribution S (N) is totally umbilical (resp. totally geodesic) if
CN (X,PY ) = λg(X,Y ) for all X,Y ∈ Γ(TM) (resp. CN = 0), which is equivalent to AN = λP
(resp. AN = 0).
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The induced connection ∇ is torsion-free, but not necessarily g−metric unless M be totally
geodesic. In fact we have for all tangent vector fields X,Y and Z in TM ,

(∇Xg)(Y, Z) = BN (X,Y )η(Z) +BN (X,Z)η(Y ). (2.10)

Also, due to the degeneracy of the induced metric g on the null hypersurface M , it is not
possible to define the natural dual (musical) isomorphisms ♭ and ♯ between the tangent vector
bundle TM and its dual T ⋆M following the usual Riemannian way. However, this construction
is made possible by setting a rigging (normalization) N . Consider a normalized null hypersurface
(M, g,N) and define

♭η : Γ(TM) −→ Γ(T ∗M), X 7−→ X♭η = g( X , • ) + η(X)η. (2.11)

Clearly, such a ♭η is an isomorphism of Γ(TM) onto Γ(T ∗M), and can be used to generalize
the usual nondegenerate theory. Define a (0, 2)−tensor by gη(X,Y ) = X♭η (Y ), for all X,Y ∈
Γ(TM), i.e

gη = g + η ⊗ η. (2.12)

Clearly, gη defines a nondegenerate metric on M which plays an important role in defining the
usual differential operators gradient, divergence, Laplacian with respect to the degenerate metric
g on null hypersurfaces (see [10] for details). It is called the associated metric to g on the rigged
null hypersurface(M, g,N). The following verifications are straightforward,

gη(ξ,X) = η(X), gη(X,Y ) = g(X,Y ) ∀X ∈ Γ(TM)), ∀Y ∈ Γ(S (N)). (2.13)

In particular gη(ξ, ξ) = 1 and last equality in (2.13) is telling us that restrict to S (N) the metrics
gη and g coincide. We will use the following member of the Gauss-Codazzi equations [18, p. 93]〈

R(X,Y )Z, ξ
〉
= (∇XBN )(Y,Z)−(∇Y B

N )(X,Z)+τN (X)BN (Y, Z)−τN (Y )BN (X,Z). (2.14)

We conclude this section by recalling some results of Atindogbé et al. (2015). A proof of
the following Lemma can be found in [6].

Lemma 2.1. For all X,Y ∈ Γ(TM),〈
ANX,Y

〉
−
〈
X,ANY

〉
= τN (X)η(Y )− τN (Y )η(X)− 2dη(X,Y ), (2.15)

where (throughout)
〈
,
〉
= g stands for the ambient Lorentzian metric.

In case the normalization is closed the (connection) 1−form τN is related to the shape
operator of M as follows.

Lemma 2.2. Let (M, g,N) be a closed normalization of a null hypersurface M in a Lorentzian
manifold.

(a) τN |S (N) = 0 iff ANξ = 0 (or equivalently CN (ξ, ·) = 0).

(b) The dual vector field of the connection one-form τN with respect to the rigging N is −ANξ,
in particular τN (ξ) = 0 iff

τN = −
〈
ANξ , ·

〉
. (2.16)
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Proof. Assume η is closed and let X, Y be tangent vector fields to M . The condition X · η(Y )−
Y · η(X) − η([X,Y ]) = 0 is equivalent to

〈
∇XN,Y

〉
=
〈
∇Y N,X

〉
. Then by the Weingarten

formula, we get
〈
−ANX,Y

〉
+ τN (X)η(Y ) =

〈
−ANY,X

〉
+ τN (Y )η(X). In this relation, take

Y = ξ to get τN (X) = −
〈
ANξ,X

〉
+ τN (ξ)η(X) and the claims follow.

As
⋆

Aξ is self-adjoint linear operator on each fiber TpM with
⋆

Aξ ξ = 0 then
⋆

Aξ is diagonal-

izable and have (n+ 1) real-valued eigenfunctions
⋆

k0= 0,
⋆

k1, ...,
⋆

kn. We denote by
( ⋆

E0= ξ,
⋆

E1

, . . . ,
⋆

En

)
the corresponding quasi-orthonormal basis of eigenvectors fields. The r − th mean

curvature of the null hypersurface with respect to the shape operator
⋆

Aξ is given by

⋆

Hr =

(
n+ 1

r

)−1

σr(
⋆

k0, ...,
⋆

kn) and
⋆

H0= 1 (constant function 1),

where σr is the r − th elementary symmetric polynomial. We set
⋆

Sr= σr(
⋆

k0, ...,
⋆

kn) and
⋆

S
α

r=

σr(
⋆

k0, ...,
⋆

kα−1,
⋆

kα+1, ...,
⋆

kn).

Definition 2 (r−maximality). Let 1 ≤ r ≤ n + 1 be an integer. A null hypersurface M with
⋆

Hr = 0 is said to be r−maximal.

For 0 ≤ r ≤ n+ 1, the r− th Newton transformation
⋆

T r with respect to the shape operator
⋆

Aξ is the End(Γ(TM)) element given by

⋆

T r=

r∑
a=0

(−1)a
⋆

Sa

⋆

A
r−a

ξ .

Inductively,
⋆

T 0= I and
⋆

T r = (−1)r
⋆

SrI+
⋆

Aξ ◦
⋆

T r−1,

where I denotes the identity of Γ(TM) and
⋆

Tn+1= 0 (from Cayley-Hamilton theorem). By
algebraic computations, one shows the following.

Proposition 2.1 ([6]). 1.
⋆

T r is self-adjoint and commute with
⋆

Aξ;

2.
⋆

T r

⋆

Eα= (−1)r
⋆

S
α

r

⋆

Eα;

3. tr(
⋆

T r) = (−1)r(n+ 1− r)
⋆

Sr;

4. tr
( ⋆

Aξ ◦
⋆

T r−1

)
= (−1)r−1r

⋆

Sr;

5. tr

(
⋆

A
2

ξ ◦
⋆

T r−1

)
= (−1)r−1

( ⋆

S1

⋆

Sr −(r + 1)
⋆

Sr+1

)
;

6. tr(
⋆

T r−1 ◦∇X

⋆

Aξ) = (−1)r−1X(
⋆

Sr).

We also proved the following two lemmas in [6], the second being derived from the first one
by taking r = 1.
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Lemma 2.3 ([6]). Let x : (M, g) ↪→ Rn+2
1 be a null hypersurface of the Euclidean space Rn+2

1 .
Then for r = 1, ..., n+ 1,

(−1)r−1ξ(
⋆

Sr) + τ(ξ)tr(
⋆

Aξ ◦
⋆

T r−1)− tr(
⋆

A
2

ξ ◦
⋆

T r−1) = 0. (2.17)

Lemma 2.4 ([6]). Let x : (M, g) ↪→ Rn+2
1 be a null hypersurface of the pseudo-Euclidean space

Rn+2
1 . Then M is maximal if and only if M is totally geodesic.

Let (X0 = ξ,X1, ..., Xn) be a gη−orthonormal basis of Γ(TM) with span{X1, ..., Xn} =

S (N). The divergence of the operator
∗
T r is the vector field div∇

( ∗
T r

)
∈ Γ(TM) define as the

trace of the End(TM)−valued operator ∇
∗
T r and given by

div∇
( ∗
T r

)
= tr(∇

∗
T r) =

n∑
a,b=0

gabη (∇
∗
T r)(Xa, Xb) =

n∑
a=0

(∇Xa

∗
T r)Xa. (2.18)

3 (Almost) Isoparametric normalized null hypersurfaces

A nondegenerate hypersurface M in a real space-form Q(c) of constant sectional curvature c is
said to be isoparametric if it has constant principal curvatures. An isoparametric hypersurface
M in Rn can have at most two different principal curvatures, and M must be an open subset of
a hyperplane, hypersphere or a spherical cylinder Sk × Rn−k−1. This was shown by Levi-Civita
[26] for n = 3 and by B. Segre [33] for arbitrary n. Similarly, E. Cartan [12] proved that an
isoparametric hypersurface M in a hyperbolic space Hn can have at most two different principal
curvatures, and M must be either totally umbilic or else be an open subset of a standard product
Sk ×Hn−k−1 in Hn.

Definition 3. • A normalized null hypersurface x : (M, g,N) → (M
n+2

, g) isometrically
immersed into a Lorentzian manifold, is said to be isoparametric if the screen principal

curvatures (eigenfunctions of
⋆

Aξ) are constants.

• A normalized null hypersurface x : (M, g,N) → (M
n+2

, g) isometrically immersed into
Lorentzian manifold, is said to be almost isoparametric if the screen distribution S (N)
is integrable and all the screen principal curvatures are constant on each leaf of S (N).

Example 1. Every totally geodesic null hypersurface is isoparametric.

In [3] it is shown that M = {(x0, ..., x5) ∈ R6 ; x0 + x1 = 0} is a null hypersurface of the
6−dimensional real space M̄ = R6 endowed with the Lorentzian metric

ḡ = −(dx0)2 + (dx1)2 + exp 2x0[(dx2)2 + (dx3)2] + exp 2x1[(dx4)2 + (dx5)2],

and for the null rigging N = − 1
2

(
∂

∂x0 + ∂
∂x1

)
with corresponding rigged vector field ξ = ∂

∂x0 − ∂
∂x1 ,

the screen distribution is S (N) = span{
⋆

E1,
⋆

E2,
⋆

E3,
⋆

E4} with

⋆

E1= e−2x0 ∂

∂x2
,

⋆

E2= e−2x0 ∂

∂x3
,

⋆

E3= e−2x1 ∂

∂x4
,

⋆

E4= e−2x1 ∂

∂x5
,

and corresponding principal curvatures are
⋆

k1= −1 =
⋆

k2,
⋆

k3= 1 =
⋆

k4 are all constant. Hence,
(M, g,N) is an (almost) isoparametric null hypersurface.
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Let us recall the following result which gives Cartan’s identity for null hypersurfaces.

Theorem 3.1. [7] Let (M, g,N) be a lightlike hypersurface of an (n+2)−dimensional Lorentzian

space-form (M(c), g) with τ = 0. Assume that E0 = ξ, E1, ..., En are eigenfunctions of
⋆

Aξ

satisfying
⋆

Aξ Ei = λiEi (i ≥ 1) and λi is constant along S (N). Then for every i ≥ 1,

n∑
j=1,λj ̸=λi

c+ λjg(ANEi, Ei) + λig(ANEj , Ej)

λi − λj
= 0.

In [32, 34] it can be seen some generalizations of these Cartan identities for null hypersurfaces.
We use Cartan’s identity to prove the following Lemma.

Lemma 3.1. Let x : (M, g,N) → M
n+2

1 (c) be an almost isoparametric normalized null hypersur-
face isometrically immersed into a Lorentzian manifold with constant sectional curvature c ≤ 0.
If there exists a conformal screen (re-)normalization with vanishing 1−form τ , then M has at
most two different screen principal curvatures. In particular when c = 0, M has at most one
non-zero screen principal curvature and when c < 0, M has exactly two or no non-zero screen
principal curvatures.

Proof. Let x : (M, g,N) → Qn+2
1 (c) be a almost isoparametric normalized null hypersurface

with conformal screen distribution (AN = ϕ
⋆

Aξ) and τ = 0. Let λ1, ..., λp be all distinct screen

principal curvatures of the sharpe operator
⋆

Aξ, with algebraic multiplicities ν1, ..., νp. By the
previous Theorem for any i = 1, ..., p Cartan identity can be write as

p∑
j=1,j ̸=i

νj
c+ 2ϕλjλi

λi − λj
= 0. (3.1)

Without loss of generalities, we may assume λ1 < λ2 < · · · < λp, and λp ≥ 0. Choose the largest
nonnegative λi such that 2ϕλiλi−1 ≤ c. Then

c+ 2ϕλjλi

λi − λj
≤ 0

for any j ̸= i. Hence 2ϕλiλj = c if i ̸= j. Therefore p ≤ 2.

The following theorem due to [7], classifies almost isoparametric normalized null hypersurface
endowed with a screen conformal normalization.

Theorem 3.2. [7] Let x : (M, g,N) → Rn+2
1 be a almost isoparametric normalized null hypersur-

face endowed with a screen conformal normalization. Then, M is either a proper totally umbilical
or totally geodesic null hyersurface or an open piece of a null triplet product C × Mn−r

λ × Rr,
where C is a null curve and Mn−r

λ is a totally umbilical spacelike submanifold of Rn+2
1 .

4 Normalized null hypersurfaces x : (M, g) → Rn+2
1 satisfy-

ing ∆ηx = λx+ b, λ ∈ R, b ∈ Rn+2
1

From now on, we set M = Rn+2
1 and

ḡ = ⟨·, ·⟩ := −(dx0)2 + (dx1)2 + · · ·+ (dxn+1)2, (4.1)
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denotes the Minkowski metric, with (x0, ..., xn+1) the usual Cartesian coordinates system of Rn+2
1 .

Let x : (M, g,N) → Rn+2
1 be a normalized null hypersurface of Rn+2

1 and f be a smooth
function on M . We define its pseudo-gradient to be its gradient with respect to the associated
(nondegenerate) metric gη and denote it ∇ηf . We also define its pseudo-Hessian to be the linear
operator ∇2

ηf : Γ(TM) → Γ(TM) defined by

∇2
ηf(X) = ∇X∇ηf, ∀X ∈ Γ(TM).

For a linear connectionD on the vector bundle TM andX ∈ Γ(TM), the trace of the Γ(TM)−endomorphism
DX : Y → DY X gives the divergence of X with respect to D, i.e

divD(X) := trace(DX). (4.2)

Definition 4. Let f be a smooth function on the normalized null hypersurface (M, g,N). The
pseudo-Laplacian of the first kind ∆η

1f and second kind ∆η
2f are defined respectively by

∆η
1f := div∇(∇ηf), (4.3)

∆η
2f := div∇

η

(∇ηf). (4.4)

Remark 1. The Laplacian of second kind of f is just its Laplacian with respect to the associated
(Riemannian) metric gη. The pseudo-Laplacian of first kind will be simply denoted ∆η.

Let a ∈ Rn+2 be a fixed vector. Then, ⟨x, a⟩ ∈ C∞(M) and ∀X ∈ Γ(TM),

gη(∇η⟨x, a⟩, X) = X · ⟨x, a⟩ = ⟨X, a⟩ = gη(Pa⊤ + ⟨ξ, a⟩ξ,X),

where a⊤ is the projection of a onto TM with respect to the decomposition (2.1). Thus,

∇η⟨x, a⟩ = Pa⊤ + ⟨ξ, a⟩ξ = a− ⟨N, a⟩ξ − ⟨ξ, a⟩N + ⟨ξ, a⟩ξ, (4.5)

and for all X ∈ Γ(TM), by using (2.6), (2.7), we get

∇X∇η⟨x, a⟩ = ⟨AN (X)−
⋆

Aξ (X)− 2τ(X)ξ, a⟩ξ

+ ⟨N, a⟩
⋆

Aξ (X) + (AN (X)− ⟨ξ, a⟩
⋆

Aξ (X)). (4.6)

It follows that

∆η⟨x, a⟩ = ⟨AN (ξ), a⟩+ (S1−
⋆

S1 −2τ(ξ))⟨ξ, a⟩+
⋆

S1 ⟨N, a⟩. (4.7)

We extend ∆η on ⊗n+2C∞(M) by

∆η(f0, ..., fn+1) = (∆ηf0, ...,∆
ηfn+1), (4.8)

for all (f0, ..., fn+1) ∈ ⊗n+2C∞(M). Let (e0, ..., en+1) be the standard orthonormal basis of Rn+2
1 .

Then by using (4.7) and (4.8),

∆ηx = (ϵ0∆
η⟨x, e0⟩, ..., ϵn+1∆

η⟨x, en+1⟩) = AN (ξ) + (S1−
⋆

S1 −2τ(ξ))ξ+
⋆

S1 N, (4.9)

where ϵA = ⟨eA, eA⟩ = ±1. We say that the normalized null hypersurface (M, g,N) is pseudo-
harmonic (of the first kind) if ∆ηx = 0. The following Lemma shows that to find a normalization
N such that (M, g,N) is pseudo-harmonic, it is necessary for M to be totally geodesic.
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Lemma 4.1. Let x : (M, g,N) → Rn+2
1 be a normalized null hypersurface of the pseudo-Euclidean

space Rn+2
1 . Then M is pseudo-harmonic of first kind if and only if M is totally geodesic and

the normalization satisfies AN (ξ) = 0 and trace(AN ) = 2τ(ξ).

Proof. As ANξ ∈ S (N) and ξ and N are linearly independent, equation (4.9) and Lemma 2.4
show that, M is pseudo-harmonic if and only if

∆ηx = 0 ⇔


⋆

S1= 0

AN (ξ) = 0

S1−
⋆

S1 −2τ(ξ) = 0

⇔


M is totally geodesic

AN (ξ) = 0

trace(AN ) = 2τ(ξ).

In [10], the first author (jointly with J.-P. Ezin and J. Tossa) considered the problem ∆ηx =
λx (that is with b = 0) under the assumption that the normalized null hypersurface in Rn+1

1

satisfies AN = 0. It is established that λ must be 0 (i.e the null hypersurface is pseudo-harmonic)

and trace
( ⋆

Aξ

)
= 0 which leads to M is totally geodesic. The following result is a generalization

of that fact.

Theorem 4.1. Let λ ∈ R and b ∈ Rn+2
1 . If a normalized null hypersurface x : (M, g,N) → Rn+2

1

satisfies ∆ηx = λx+ b then M is totally geodesic and λ = ⟨∇NAN (ξ), ξ⟩.

Proof. Suppose that x satisfies ∆ηx = λx+ b then,

AN (ξ) + (S1−
⋆

S1 −2τ(ξ))ξ+
⋆

S1 N = λx+ b. (4.10)

Taking covariant derivative of (4.10) by ξ we obtain

λξ =
⋆

∇ξ AN (ξ) + (ξ·
⋆

S1 +τ(ξ)
⋆

S1)N−
⋆

S1 AN (ξ)

+ ξ
[
C(ξ, AN (ξ)) + ξS1 − ξ

⋆

S1 −2ξτ(ξ)− S1τ(ξ)+
⋆

S1 τ(ξ) + 2τ(ξ)2
]

(4.11)

Hence, 
⋆

∇ξ AN (ξ) =
⋆

S1 AN (ξ)

ξ·
⋆

S1 +τ(ξ)
⋆

S1= 0
(2.17)
=⇒ tr

(
⋆

A
2

ξ

)
= 0

C(ξ, AN (ξ)) + ξ · S1 − ξ·
⋆

S1 −2ξ · τ(ξ)− S1τ(ξ)+
⋆

S1 τ(ξ) + 2τ(ξ)2 = λ

and M is totally geodesic. Taking covariant derivative of (4.10) by N we obtain

λN = ∇NAN (ξ)− (N ·
⋆

S1 +2N · τ(ξ)−N · S1)ξ

+ (S1−
⋆

S1 −2τ(ξ))∇Nξ +N ·
⋆

S1 N+
⋆

S1 ∇NN.

Contracting with ξ leads to λ = ⟨∇NAN (ξ), ξ⟩.
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5 The second-order linear differential operators Lr (0 ≤ r ≤
n)

Let x : (M, g,N) → Rn+2
1 be a null hypersurface furnished with a closed normalization with

vanishing τN , in the pseudo-Euclidean space Rn+2
1 . By Lemma 2.2, ANξ = 0 and

C(ξ, PY ) = 0, ∀Y ∈ Γ(TM). (5.1)

Let (X0 = ξ,X1, ..., Xn) be a gη−orthonormal basis of Γ(TM) with span{X1, ..., Xn} = S (N).
By direct calculating, (

∇ξ

⋆

T r

)
ξ = (−1)rξ

( ⋆

Sr

)
ξ. (5.2)

By defintion,

div∇(
⋆

T r ∇ηf) = trace(∇
⋆

T r ∇ηf)

=

n∑
i=1

{〈(
∇Xi

⋆

T r

)
∇ηf,Xi

〉
+
〈 ⋆

T r ∇Xi
∇ηf,Xi

〉}
+ η(∇ξ

⋆

T r ∇ηf). (5.3)

For each i, 〈(
∇Xi

⋆

T r

)
∇ηf,Xi

〉
=
〈(

∇Xi

⋆

T r

)
Xi,∇ηf

〉
− η(

⋆

T r ∇ηf)B(Xi, Xi) + η(∇ηf)B(
⋆

T r Xi, Xi)

=
〈(

∇Xi

⋆

T r

)
Xi,∇ηf

〉
+ η(∇ηf)

〈
⋆

A
2

ξ ◦
⋆

T r Xi, Xi

〉
.

Hence,

div∇(
⋆

T r ∇ηf) =
〈
∇ηf, div∇(

⋆

T r)
〉
+ η(∇ηf)tr(

⋆

A
2

◦
⋆

T r−1) + tr(
⋆

T r ◦∇2
ηf)

− η(
⋆

T r ∇ξ∇ηf) + η(∇ξ

⋆

T r ∇ηf) (5.4)

By using (2.6) and (5.1) one finds

η(∇ξ

⋆

T r ∇ηf) = (−1)rη(∇ηf)ξ(
⋆

Sr) + (−1)r
⋆

Sr η(∇ξ∇ηf), (5.5)

η(
⋆

T r ∇ξ∇ηf) = (−1)r
⋆

Sr η(∇ξ∇ηf). (5.6)

Replace (5.5) and (5.6) in (5.4) we obtain

div∇(
⋆

T r ∇ηf) =
〈
∇ηf, div∇(

⋆

T r)
〉
+ tr(

⋆

T r ◦∇2
ηf) + η(∇ηf)

(
(−1)rξ(

⋆

Sr) + tr(
⋆

A
2

◦
⋆

T r−1)

)
.

(5.7)
Thanks to [6], since the ambient manifold is the pseudo-Euclidean space form Rn+2

1 and τ iden-

tically vanishes, the divergence div∇(
⋆

T r) is TM
⊥−valued and (−1)rξ(

⋆

Sr) + tr(
⋆

A
2

◦
⋆

T r−1) = 0.
Hence (5.7) becomes

div∇(
⋆

T r ∇ηf) = tr(
⋆

T r ◦∇2
ηf). (5.8)
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Let r be an integer with 0 ≤ r ≤ n. We define de second-order linear differential operator
Lr : C∞(M) → C∞(M) by

Lrf = tr(
⋆

T r ◦∇2
ηf), ∀f ∈ C∞(M). (5.9)

It is easy to check that Lo is nothing but the first kind pseudo-Laplacian operator ∆η and that
Lr satisfies for f, g ∈ C∞(M),

Lr(fg) = fLrg + gLrf + 2
〈 ⋆

T r ∇ηf,∇ηg
〉
+ 2η(

⋆

T r ∇ηf)η(∇ηg). (5.10)

Let a ∈ Rn+2
1 be a fixed vector and X ∈ Γ(TM). We know that ⟨x, a⟩ ∈ C∞(M) and since

τ identically vanishes (4.6) becomes

∇X∇η⟨x, a⟩ = ⟨AN (X)−
⋆

Aξ (X), a⟩ξ + ⟨N, a⟩
⋆

Aξ (X) + ⟨ξ, a⟩(AN (X)−
⋆

Aξ (X)). (5.11)

Using the definition of the second-order linear operator and above relation,

Lr⟨x, a⟩ = tr(
⋆

T r ◦⟨AN−
⋆

Aξ, a⟩ξ) + ⟨N, a⟩tr(
⋆

T r ◦
⋆

Aξ) + ⟨ξ, a⟩tr(
⋆

T r ◦(
⋆

Aξ −AN )).

By using Proposition 2.1 and the fact that tr(
⋆

T r ◦⟨AN−
⋆

Aξ, a⟩ξ) = 0 we obtain

Lr⟨x, a⟩ = (−1)r(r + 1)
⋆

Sr+1 ⟨N, a⟩+ tr(
⋆

T r ◦(
⋆

Aξ −AN ))⟨ξ, a⟩. (5.12)

We extend Lr on ⊗n+2C∞(M) by

Lr(f0, ..., fn+1) = (Lrf0, ..., Lrfn+1), (5.13)

for all (f0, ..., fn+1) ∈ ⊗n+2C∞(M). Then (5.12) gives

Lrx = (−1)r(r + 1)
⋆

Sr+1 N + tr(
⋆

T r ◦(
⋆

Aξ −AN ))ξ. (5.14)

In case the normalization has conformal screen with (conformal) factor ϕ, i.e

AN = ϕ
⋆

Aξ,

it follows that

Lrx = (−1)r(r + 1)
⋆

Sr+1

(
N + (1− ϕ)ξ

)
. (5.15)

The normalized null hypersurface will said to be Lr−harmonic if Lrx = 0 (the case r = 0
represents the pseudo-harmonicity of first kind). Thus, (5.15) leads to the following.

Lemma 5.1. Let x : (M, g,N) ↪→ Rn+2
1 be a normalized null hypersurface with conformal screen

S (N) and vanishing normalization 1−form τ . Then M is Lr−harmonic if and only if M is
(r + 1)−maximal.

Definition 5. A unitary conformal closed (UCC−) normalized null hypersurface is one for which
the normalization is closed and (the integrable) screen distribution is conformal with constant
conformal factor 1.

Below, only such normalizations will be in use and (5.15) takes the form

Lrx = (−1)r(r + 1)
⋆

Sr+1 N. (5.16)

The main purpose of this paper is then to solve the unknown x equation

Lrx = (−1)r(r + 1)
⋆

Sr+1 N = Ux+ b, (5.17)

where U is some constant matrix along leaves of the associated integrable screen distribution and
b ∈ Rn+2

1 some constant vector.
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6 Monge null hypersurfaces x : (M, g,N) → Rn+2
1 satisfying

Lrx = Ux+ b

Our goal in this section is to characterize normalized Monge null hypersurfaces x : (M, g,N) →
Rn+2

1 satisfying equation (5.17).

Let x : (M, g) → Rn+2
1 be the Monge hypersurface

M =
{
x = (x0, ..., xn+1) ∈ R×D, x0 = F (x1, ..., xn+1)

}
, (6.1)

in the Minkowski space Rn+2
1 where F : D −→ R is a smooth function defined on an open subset

D of Rn+1. For a vector field X = XA ∂

∂xA
∈ Rn+2

1 a necessary and sufficient condition to be

tangent to M is that X0 = X1F ′
x1 + · · · +X1F ′

xn+1 . Then n =
∂

∂x0
+

n+1∑
a=1

F ′
xa

∂

∂xa
is normal to

M . The later is a null hypersurface if and only if n is a null vector. This is equivalent to

n+1∑
a=1

(F ′
xa)

2
= ||∇F ||2 = 1, (6.2)

where ∇F is the gradient of F with respect to the Euclidean structure || · || of Rn+1. Then, taking
partial derivative of (6.2) with respect to xb (1 ≤ b ≤ n+ 1) leads to

n+1∑
a=1

F ′
xaF ′′

xaxb = 0. (6.3)

In [19], Duggal and Bejancu proved the following

Theorem 6.1 ([19], page 122). Let x : (M, g) → Rn+2
1 be a Monge hypersurface isometrically

immersed into the Minkowski space Rn+2
1 and defined as the graph of the smooth function F :

D → R, where D is an open subset of Rn+1. Then M is totally geodesic if and if M is an open
subset of a hyperplane of Rn+2, thus

F (x1, ..., xn+1) =

n+1∑
a=1

cax
a + c, ∀(x1, ..., xn+1) ∈ D,

where {c1, ..., cn+1, c} are real numbers satisfying
n+1∑
a=1

(ca)
2 = 1.

6.1 Generic UCC−normalization on Monge null hypersurfaces

Throughout, the Monge null hypersurface will be endowed with the (physically and geometrically)
relevant rigging

NF =
1√
2

[
− ∂

∂x0
+

n+1∑
a=1

F ′
xa

∂

∂xa

]
=

1√
2
(−1,∇F ). (6.4)

The corresponding rigged vector field is then given by

ξF =
1√
2
n =

1√
2

[ ∂

∂x0
+

n+1∑
a=1

F ′
xa

∂

∂xa

]
=

1√
2
(1,∇F ). (6.5)
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We show below that this is a closed normalization with vanishing normalizing 1−form τNF

and conformal (hence integrable) screen distribution with unit conformal factor ϕ = 1. It is a
consequence of Theorem 4.1 in [10] that the induced connexion ∇ coincides with the Levi-Civita
connexion ∇η of the associated metric gη (∇η = ∇). In fact, let us consider the natural (global)
parametrization of M given by

x0 = F (u1, ..., un+1)

xa = ua (u1, ..., un+1) ∈ D

a = 1, ..., n+ 1

. (6.6)

Then Γ(TM) is spanned by { ∂
∂ua }a with

∂

∂ua
= F ′

ua

∂

∂x0
+

∂

∂xa
. (6.7)

Now take covariant derivative by the flat connection ∇ and use (6.3) to get

∇ ∂
∂ua

ξF =
1√
2

n+1∑
b=1

(
−F ′′

uaubF
′
ub

∂

∂x0
+ F ′′

uaub

∂

∂xb

)
∇ ∂

∂ua
ξF =

1√
2

n+1∑
b=1

F ′′
uaub

∂

∂ub
. (6.8)

Now we prove the following

Proposition 6.1. Let x : (M, g,NF ) −→ Rn+2
1 be a Monge null hypersurface endowed with the

rigging NF as in (6.4). Then the following hold.

1. The 1−form τNF vanishes identically.

2. The screen distribution is conformal with ϕ = 1 as conformal factor.

3. The screen distribution is integrable with leaves the level sets of the function F .

4. The induced connexion ∇F coincides with the Levi-Civita connexion of the (Riemannian)
associated metric gη, i.e

∇η = ∇.

5. The immersion satisfies the Laplace-Beltrami equation

∆x = (n+ 1)
⋆

H NF ,

which is a particular case of the more general fact

Lrx = (−1)r(r + 1)

(
n+ 1

r + 1

)
⋆

Hr+1 NF . (6.9)

6. In the natural basis { ∂
∂ua }a, the divergence (with respect to the induced connexion) of some

vector field X = Xa ∂
∂ua (as in usual Euclidean case) takes the form

divX =
∂Xa

∂ua
(6.10)
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Proof. By (6.8) and (2.7), τNF identically vanishes and

⋆

AξF

(
∂

∂ua

)
= − 1√

2

n+1∑
b=1

F ′′
uaub

∂

∂ub
. (6.11)

Also one obtains,

ANF

(
∂

∂ua

)
= − 1√

2

n+1∑
b=1

F ′′
uaub

∂

∂ub
. (6.12)

Hence,
⋆

AξF= ANF
which shows that the screen distribution is conformal with conformal factor

ϕ = 1. Let X,Y be two sections tangent to the screen structure. Then,〈
[X,Y ],NF

〉
= ⟨X,∇Y NF ⟩ − ⟨Y,∇XNF ⟩ = ⟨Y,

⋆

AξF X⟩ − ⟨X,
⋆

AξF Y ⟩ = 0.

Hence, [X,Y ] is a section of the screen distribution. Thus, the screen distribution is involutible
and by the Frobenüs theorem, it is integrable. We show later that leaves are really the level sets
of F (subsection 6.3).

Since τNF identically vanishes and
⋆

AξF= ANF
, ∇ is the Levi-Civita connexion of the (Rie-

mannian) associate metric (see theorem 4.1 in [10]). Hence, the two Laplacians of first and second
kind coincide. By (5.17), the Laplace-Beltrami equation and (6.9) hold.

Let X = Xa ∂
∂ua be some vector field.

X = Xa ∂

∂ua
= X0 ∂

∂x0
+Xa ∂

∂xa
,

with X0 = F ′
uaXa. We have, ∇∂

ub
X = ∂ub(X0)∂x0 + ∂ub(Xa)∂xa . In other side, one can write

∇∂
ub
X = ∇∂

ub
X +B(∂ub , X)NF = fa∂ua +B(∂ub , X)NF

=

(
F ′
uafa − 1√

2
B(∂ub , X)

)
∂x0 +

(
fa +

1√
2
B(∂ub , X)

)
∂xa .

After identification, we get

fa = ∂ub(Xa)− 1√
2
F ′
uaB(∂ub , X).

Hence,

∇∂
ub
X =

(
∂ub(Xa)− 1√

2
F ′
uaB(∂ub , X)

)
∂ua .

The above relation together with the fact that ||∇F || = 1 gives (6.10).

Hence on any Monge null hypersurface, the rigging NF has some outstanding properties:
the screen distribution is integrable, the 1−form τNF identically vanishes and

AN

(
∂

∂ua

)
=

⋆

Aξ

(
∂

∂ua

)
= − 1√

2

n+1∑
b=1

F ′′
uaub

∂

∂ub
. (6.13)



N. null hypersurfaces in the Lorentz-Minkowski space satisfying Lrx = Ux+ b 367

Then the matrix of
⋆

Aξ with respect to the basis { ∂
∂ua }a is given by

⋆

Aξ= − 1√
2

 F ′′
u1u1 · · · F ′′

u1un+1

...
. . .

...
F ′′
un+1u1 · · · F ′′

un+1un+1

 = − 1√
2
Hess(F ) (6.14)

and,

⋆

S1= tr(
⋆

Aξ) = − 1√
2

n+1∑
b=1

F ′′
ubub = − 1√

2
∆F (6.15)

It is then our goal to solve (5.17) with unknown x (or equivalently F taking into account
(6.1)). Following are two basic examples: the lightcone ∧n+1

0 and the lightcone cylinder Λm+1
0 ×

Rn−m.

6.2 Examples

6.2.1 The lightcone Λn+1
0

Let M be the future null cone in Rn+2
1 which is the graph of the function

F =

(
n+1∑
a=1

(xa)2

)1/2

.

This is a totally umbilical null hypersurface in Rn+2
1 and the generic UCC-normalization (6.4)

becomes

NF = − 1√
2

∂

∂x0
+

1

x0
√
2

n+1∑
a=1

(xa)
∂

∂xa
,

with corresponding rigged vector field

ξF =
1√
2

∂

∂x0
+

1

x0
√
2

n+1∑
a=1

(xa)
∂

∂xa
=

√
2x0x.

All the principal curvatures are given by

ρ = − 1

x0
√
2
.

It follows from this equality that for 0 ≤ r ≤ n, the rth−mean curvature is given by

⋆

Hr=

(
n+ 1

r

)−1
⋆

Sr= (−1)r
(
n+ 1

r

)−1(
n

r

)(
1

x0
√
2

)r

.

Hence,

Lrx = (r + 1)

(
n

r + 1

)(
1

x0
√
2

)r+2

(x0,−x1, ...,−xn+1). (6.16)

For a matrix U = (uAB) ∈ R(n+2)×(n+2) and constant vector b = (b0, ..., bn+1) ∈ Rn+2
1 ,

Ux+ b =

(
n+1∑
A=0

u0Ax
A + b0, ...,

n+1∑
A=0

u(n+1)Ax
A + bn+1

)
.
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So, setting

U = (r + 1)

(
n

r + 1

)(
1

x0
√
2

)r+2


1 0 · · · 0
0 −1 · · · 0
...

...
. . .

...
0 0 · · · −1

 and b = 0,

we see that Lrx = Ux + b where U is obviously constant on the leaves (of the integrable screen
distribution given by) x0 = constante.

6.2.2 The lightcone cylinder Λm+1
0 × Rn−m, 1 ≤ m ≤ n

The future lightcone cylinder Λm+1
0 × Rn−m is the Monge null hypersurface of Rn+2

1 , define as
the graph of the function

F =

(
m+1∑
a=1

(xa)2

)1/2

.

The generic UCC−normalization (6.4) becomes

NF = − 1√
2

∂

∂x0
+

1

x0
√
2

m+1∑
a=1

(xa)
∂

∂xa
,

with associated rigged vector field

ξF =
1√
2

∂

∂x0
+

1

x0
√
2

m+1∑
a=1

(xa)
∂

∂xa
.

The principal curvatures are given by

k0 = 0, k1 = · · · = km = − 1

x0
√
2
, km+1 = · · · = kn = 0.

Then the rth−mean curvature is given by

⋆

Hr=

(
n+ 1

r

)−1
⋆

Sr=


(−1)r

(
n+1
r

)−1(m
r

) (
1

x0
√
2

)r
for 0 ≤ r ≤ m

0 for m+ 1 ≤ r ≤ n

It follows from (6.9) that

Lrx =


(r + 1)

(
m
r+1

) (
1

x0
√
2

)r+2

(x0,−x1, ...,−xn+1) for 0 ≤ r ≤ m− 1

0 for m ≤ r ≤ n

(6.17)

Hence, for 0 ≤ r ≤ m− 1 , set

U = (r + 1)

(
m

r + 1

)(
1

x0
√
2

)r+2


1 0 · · · 0
0 −1 · · · 0
...

...
. . .

...
0 0 · · · −1

 and b = 0.
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Then, Lrx = Ux+ b, with U as required.

In view of Theorem 6.3 we establish the following.

Theorem 6.2. Let D be an open connected subset of Rn+1 (n ≥ 1) and f : D → R a non-constant
smooth function. Then the following assertions are equivalent.

1. f is affine.

2. f is harmonic and its gradient in the real space Rn+1 has constant non-zero norm.

3. The gradient of f in the real space Rn+1 has constant non-zero norm and the Monge
hypersurface graph of the function F = f/||∇f || is null and maximal.

4. The gradient of f in the real space Rn+1 has constant non-zero norm and the Monge
hypersurface graph of the function F = f/||∇f || is null and totally geodesic.

Proof. By Lemma 2.4, the third and the last item are equivalent and by Theorem 6.1 the first
and the last item are equivalent. If f is affine then f is harmonic and its gradient in the real space
Rn+1 has constant non-zero norm (since f is non-constant). If f is harmonic and its gradient
in the real space Rn+1 has constant non-zero norm, then F = f/||∇f || has unitary norm and
thus defines a Monge null hypersurface M . Endow M with the rigging (6.4). then, since F is
harmonic, equation (6.15) shows that M is maximal.

Thus, we get the following

Theorem 6.3. Let x : (M, g,N) → Rn+2
1 be a normalized Monge hypersurface isometrically

immersed into the Minkowski space Rn+2
1 defined as the graph of the smooth function F : Rn+1 ⊃

D → R, and endowed with the normalization (6.4). Then the following assertions are equivalent.

1. (M, g,N) is pseudo-harmonic.

2. (M, g,N) satisfies ∆ηx = λx+ b, with λ ∈ R and b ∈ Rn+2

3. F is harmonic.

4. M is maximal.

5. M is totally geodesic.

6. M is an open piece of a hyperplane.

Proof. Since ||∇F || = 1, Theorem 6.2 applied with f = F implies that the items 3 to 5 are
equivalent and by Theorem 6.1, the items 5 and 6 are equivalent. Now, Lemma 5.1 with r = 0
implies that the items 1 and 4 are equivalent. Also, from Theorem 4.1, the item 2 implies the
item 5 and from the item 5 of Proposition 6.1, the item 5 implies the item 2 with λ = 0 and
b = 0.

Observe that in the above theorem, only the first and the second items make use of the
normalization.
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6.3 Level sets of F

Let c ∈ Im(F ) be a regular value of F and Mc = F−1(c) the c−level set of F . Then, xc : Mc →
Rn+1 is a Riemanniann hypersurface of the Euclidean space Rn+1 and the Gauss map is the
gradient ∇F of F . We take xc to be the inclusion map and Mc is a subset of D. We then have
the following diagram

Mc
xc
↪→ D

x−→ M
i
↪→ Rn+2

1

p(u1, ..., un+1) 7→ x(x0 = F (u1, ..., un+1), x1 = u1, ..., xn+1 = un+1).

We denote by ∇◦ and ∇c the Levi-Civita connections of Rn+1 and Mc respectively. For 0 ≤
r ≤ n, we denote by sr the r−th mean curvature of Mc in Rn+1. Let s : Γ(TMc) → Γ(TMc) and
b be the Weingarten operator and the second fondamental form respectively. ∀X,Y ∈ Γ(TMc),

b(X,Y ) = ⟨s(X), Y ⟩ = −⟨∇◦
X∇F, Y ⟩ = −∇2F (X,Y ).

Hence,
b = −x⋆

cHess(F ). (6.18)

It is easy to check that for all X ∈ Γ(TMc), x⋆(xc⋆X) = x⋆(X) = (⟨X,∇F ⟩, X) = (0, X) and

⟨x⋆(X), N⟩ = ⟨x⋆(X), ξ⟩ = ⟨X,∇F ⟩ = 0.

Thus the level sets x(Mc) are leaves of the screen distribution S (N) of M (endowed with the
normalization (6.4)). Thanks to (6.14) and (6.18), and the fact that ξ is not tangent to x(Mc) and
is a eigenvector of Hess(F ) associated to the eigenvalue 0, we then have that for all 0 ≤ r ≤ n,

⋆

Sr= (1/
√
2)rsr. (6.19)

Let lr : C∞(Mc) → C∞(Mc) be the second-order linear differential operator given by.

lr(f) = trace(Pr ◦ ∇2f) (6.20)

for all f ∈ C∞(Mc), where Pr is the r−th Newton transformation with respect to the Weingarten
operator s. Thanks to [1],

lrxc = sr+1∇F. (6.21)

Using (6.16), (6.4) and (6.21) we then have on x(xc(Mc)),

Lrx|x(Mc) = (−1)r(r + 1)
⋆

Sr+1 N = (−1)r(r + 1)(1/
√
2)r+2sr+1(−1,∇F )

Lrx|x(Mc) = (−1)r(r + 1)(1/
√
2)r+2(−sr+1, lrxc) (6.22)

Let U = (uAB)0≤A,B≤n+1 ∈ R(n+2)×(n+2) be (a screen constant) matrix and b = (b0, ..., bn+1) ∈
Rn+2

1 a constant vector. We set Ũc = (uab)1≤a,b≤n+1, Uh = (u00, u01, ..., u0n+1), Ũv = (u10, ..., un+10)

and b̃v = (b1, ..., bn+1), such that

U =

(
Uh

Ũv Ũc

)
and b =

(
b0
b̃v

)
.

Then,
Ux|x(Mc) + b = (tU · x|x(Mc) + b0, Ũcxc + b̃c), (6.23)
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with b̃c = cŨv + b̃v. Hence, Lrx|x(Mc) = Ux|x(Mc) + b is equivalent to

(−1)r(r + 1)

(
1√
2

)r+2

(−sr+1, lrxc) = (tU · x|x(Mc) + b0, Ũcxc + b̃c)

that is {
(−1)r+1(r + 1)

(
1√
2

) ⋆

Sr+1=
t U · x|x(Mc) + b0

lrxc = Ucxc + bc
, (6.24)

with Uc = (−1)r(1/(r+1))(
√
2)r+2Ũcxc and bc = (−1)r(1/(r+1))(

√
2)r+2b̃c. A well-known result

by L. J. Alias and N. Gurbuz in [1] applied to the second set of (6.24) implies that the level set
Mc is a Riemannian hypersurface with sr+1 = 0 or an open piece of a round hypersphere or an
open piece of a generalized right spherical cylinder Sm(r)× Rn−m, with r + 1 ≤ m ≤ n− 1. Let
us examine each of the three cases.

1. If Mc is a hypersurface with sr+1 = 0 then, by use of (6.19) we see that
⋆

Sr+1= 0 thus M
is (r + 1)−maximal in Rn+2

1 .

2. Assume Mc is an open piece of a round hypersphere. Then, as c = x0 is a regular value
for F , there exists an interval I ⊂ Im(F ) such that for all c in I, Mc is an open piece of a
round hypersphere of radius r(x0) and (locally) we have

M =
⋃
x0∈I

{x0} × Sn(r(x0)).

An equation of the inclusion M = ∪x0∈I{x0} × Sn(r(x0)) ↪→ Rn+2
1 is

−[r(x0)]
2 + x2

1 + · · ·+ x2
n+1 = 0.

M is then the 0 level of the smooth function f(x) = −[r(x0)]
2 + x2

1 + · · ·+ x2
n+1. We have

df(x) = 2
(
− r′(x0)r(x0)dx0 + x1dx1 + · · ·+ xn+1dxn+1

)
,

and a normal vector field to M is given by ξ =
(
r′(x0r(x0), x1, · · · , xn+1

)
. Then,

0 = ∥ξ∥2 = −r′(x0)
2r(x0)

2 + x2
1 + · · ·+ x2

n+1 = r(x0)
(
1− r′(x2

0)
)
,

which leads to r(x0) = ε with ε = ±1, that is r(x0) = εx0 + k, k ∈ R. Hence, M is given
by

M : −(±x0 + k)2 + x2
1 + · · ·+ x2

n+1 = 0,

which, up to a motion in Rn+2
1 , is the lightcone ∧n+1

0 , see Figure 1.

3. If Mc is an open piece of a generalized right spherical cylinder Sm(r)× Rn−m, then

M =
⋃
x0∈I

{x0} × Sm(r(x0))× Rn−m

and by a similar argument as in previous item, M is (up to a motion in Rn+2
1 ) the lightcone

cylinder Λm+1
0 × Rn−m as saw in Example 6.2.2.
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O

x0

Rn
+1

Sn

Figure 1: The lightcone of Rn+2
1 is a stacking of hyperspheres Sn(x0) of Rn+1

So, the following is proved.

Theorem 6.4. Let x : (M, g) → Rn+2
1 be a Monge null hypersurface isometrically immersed

into the Minkowski space Rn+2
1 . Then endowed with the generic UCC−normalization N with

vanishing τ , (M, g,N) satisfies the equation Lrx = Ux + b, for some (field of) screen constant
matrix U ∈ R(n+2)×(n+2), a constant vector b ∈ Rn+2

1 and some integer 0 ≤ r ≤ n, if and
only if M is the lightcone Λn+1

0 or the lightcone cylinder Λm+1
0 × Rn−m (1 ≤ m ≤ n − 1) or a

(r + 1)−maximal Monge null hypersurface.

7 Normalized null hypersurfaces x : (M, g,N) → Rn+2
1 satis-

fying Lrx = Ux+ b

Let x : (M, g,N) → Rn+2
1 be a normalized null hypersurface (not necessarily Monge), endowed

with a Unitary Conformally Closed (UCC-)normalization with vanishing 1−form τ . As we have
seen, the r−th second order differential equation act on the position vector x by

Lrx = (−1)r(r + 1)
⋆

Sr+1 N. (7.1)

In the same manner we defined Lrf in section 5, let us introduce Lr|S f to be the trace of

the restriction of the endomorphism
⋆

T r ◦∇2
ηf : Γ(TM) → Γ(TM) on Γ(S (N)). From now on,

X,Y, Z are sections of the screen distribution S (N). Since g and gη coincide on Γ(S (N)), one

has ∇η =
⋆

∇. Then, Lr|S can be viewed as the r − th second order linear operator on the screen
distribution and one has

Lr|S f = trace

(
⋆

T r ◦
⋆

∇
2

f

)
(7.2)

Now, we must compute Lr|S (x), Lr|S (N) and Lr|S (Lrx).

• Lr|S (x)

⟨
⋆

∇ ⟨a, x⟩, X⟩ = X · ⟨a, x⟩ = ⟨Pa⊤, x⟩ ⇒
⋆

∇ ⟨a, x⟩ = Pa⊤ = a− ⟨a,N⟩ξ − ⟨a, ξ⟩N.
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Take covariant derivative, use the fact that the normalization is unitary conformally and

use Gauss formula,
⋆

∇X

⋆

∇ ⟨a, x⟩ = ⟨a,N + ξ⟩
⋆

Aξ(X). And then,

Lr|S (x) = (−1)r(r + 1)
⋆

Sr+1 (N + ξ). (7.3)

• Lr|S (N)
⋆

∇ ⟨a,N⟩ =
⋆

Aξ(a
⊤). (7.4)

Take covariant derivative, use the fact that the normalization is unitary conformally, use
Gauss formula and Gauss-Codazzi equation and Proposition 2.1 to get

Lr|S (N) = (−1)r+1
⋆

∇
⋆

Sr+1 +(−1)r+1
( ⋆

S1

⋆

Sr+1 −(r + 2)
⋆

Sr+2

)
. (7.5)

• Lr|S (Lrx)

Applying Lr|S to equality (7.1) and using (5.10) and (7.4) one gets

Lr|S (Lrx) = (−1)rLr|S

( ⋆

Sr+1

)
N − (r + 1)

⋆

Sr+1

( ⋆

S1

⋆

Sr+1 −(r + 2)
⋆

Sr+2

)
ξ

− (r + 1)
⋆

Sr+1

⋆

∇
⋆

Sr+1 +2(−1)r(r + 1)
( ⋆

Aξ◦
⋆

T r

)( ⋆

∇
⋆

Sr+1

)
(7.6)

Since U and b are constants on the leaves of the screen distribution, taking covariant on
(5.17) and using (7.1) one has

UX = (−1)r+1(r + 1)
⋆

Sr+1

⋆

Aξ(X) + (−1)r(r + 1)⟨
⋆

∇
⋆

Sr+1, X⟩N (7.7)

Applying Lr|S to (5.17), and taking into account the fact that U and b are screen distribution
constants, one has Lr|S (Lrx) = ULr|S (x). And identify this with (7.6) and (7.3),

(−1)r(r + 1)
⋆

Sr+1 (UN + Uξ) = (−1)rLr|S

( ⋆

Sr+1

)
N + 2(−1)r(r + 1)

( ⋆

Aξ◦
⋆

T r

)( ⋆

∇
⋆

Sr+1

)
− (r + 1)

[ ⋆
Sr+1

⋆

∇
⋆

Sr+1 +
⋆

Sr+1

( ⋆

S1

⋆

Sr+1 −(r + 2)
⋆

Sr+2

)
ξ
]

(7.8)

By using (7.7), it is easy to check that ⟨UX,Y ⟩ = ⟨X,UY ⟩. Taking covariant derivative of this
by Z, and observe by (7.7) that ⟨UX,N⟩ = 0, one obtains

(⟨Uξ + UN,Y ⟩ − ⟨UY, ξ⟩)
⋆

Aξ(X) = (⟨Uξ + UN,X⟩ − ⟨UX, ξ⟩)
⋆

Aξ(Y ). (7.9)

Lemma 7.1. Let x : (M, g,N) → Rn+2
1 be a normalized null hypersurface furnished with a UCC-

normalization N with vanishing 1−form τ . If the immersion x satisfies the equation (5.17) for

some r = 1, ..., n then, the (r + 1)−th mean curvature
⋆

Hr+1 is screen constant.

Proof. Let L be a leaf of S (N). Let us consider the open set

Ur+1 = {p ∈ L;
⋆

∇
⋆

H
2

r+1 (p) = 0}.

We need to show that Ur+1 is empty. If Ur+1 is not empty then, from (7.8),

⟨UN + Uξ,X⟩ = −(−1)r
〈 ⋆

Sr+1, X
〉
+

2
⋆

Sr+1

〈( ⋆

Aξ◦
⋆

T r

)( ⋆

∇
⋆

Sr+1

)
, X
〉
.
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Related this with (7.7) and (7.9) one has,〈
Pr

( ⋆

∇
⋆

Sr+1

)
, Y
〉 ⋆

Aξ(X) =
〈
Pr

( ⋆

∇
⋆

Sr+1

)
, X
〉 ⋆

Aξ(Y ), (7.10)

with Pr = (−1)r+1(r+2)I + 2
⋆
Sr+1

⋆

Aξ◦
⋆

T r . We claim that Pr

( ⋆

∇
⋆

Sr+1

)
= 0 on Ur+1. Otherwise,

there exists a open set on which Pr

( ⋆

∇
⋆

Sr+1

)
̸= 0 and we can find a pseudo-orthonormal basis

such that
⋆

E1 is in the direction of Pr

( ⋆

∇
⋆

Sr+1

)
and that give us

⋆

Aξ(
⋆

Ei) = 0 for all i ≥ 2 and

this implies that
⋆

Hr+1= 0 since r ≥ 1, which is a contradiction. Therefore, Pr

( ⋆

∇
⋆

Sr+1

)
= 0 on

Ur+1 which implies that( ⋆

Aξ◦
⋆

T r

)( ⋆

∇
⋆

Sr+1

)
=

(−1)r(r + 2)

2

⋆

Sr+1

⋆

∇
⋆

Sr+1 on Ur+1.

By using inductive definition of Newton transformations,

⋆

T r+1

( ⋆

∇
⋆

Sr+1

)
=

(−1)rr

2

⋆

Sr+1

⋆

∇
⋆

Sr+1 on Ur+1. (7.11)

Consider {
⋆

E0= ξ,
⋆

E1, ...,
⋆

En} a local pseudo-orthonornal basis of principal direction of
⋆

Aξ. One

can write
⋆

∇
⋆

Sr+1=
∑n

i=1

〈 ⋆

∇
⋆

Sr+1,
⋆

Ei

〉 ⋆

Ei, and by using Proposition 2.1,

⋆

T r+1

( ⋆

∇
⋆

Sr+1

)
= (−1)r+1

n∑
i=1

〈 ⋆

∇
⋆

Sr+1,
⋆

Ei

〉 ⋆

S
i

r+1

⋆

Ei . (7.12)

Then, (7.11) is equivalent to〈 ⋆

∇
⋆

Sr+1,
⋆

Ei

〉( ⋆

S
i

r+1 +(r/2)
⋆

Sr+1

)
= 0 on Ur+1,

for every i = 1, ..., n. Therefore, for every i such that ⟨
⋆

∇
⋆

Sr+1,
⋆

Ei⟩ ≠ 0, one gets

⋆

S
i

r+1= −(r/2)
⋆

Sr+1 on Ur+1. (7.13)

We claim that ⟨
⋆

∇
⋆

Sr+1,
⋆

Ei⟩ = 0 for some i. Otherwise, (7.13) holds for every i, which implies
that

tr
(
P◦

⋆

T r+1

)
= (−1)r+1

n∑
i=1

⋆

S
i

r+1= (−1)rn(r/2)
⋆

Sr+1 on Ur+1. (7.14)

Bearing in mind Proposition 2.1, the last equation yields
⋆

Hr+1= 0 on Ur+1, which is a contra-
diction.

Now re-arranging the local pseudo-orthonormal basis if necessary or even taking another
pseudo-orthonormal basis of principal directions, we may assume that there exists some m ∈
{1, ..., n− 1} such that

〈 ⋆

∇
⋆

Sr+1,
⋆

Ei

〉
̸= 0 for i = 1, ...,m, and

⋆

k1< · · · <
⋆

km〈 ⋆

∇
⋆

Sr+1,
⋆

Ei

〉
= 0 for i = m+ 1, ..., 1

. (7.15)
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By induction on the cardinality, we will prove that for every subset J ⊂ {1, ...,m},

⋆

S
J

r+1= −(r/2)
⋆

Sr+1 on Ur+1. (7.16)

For card(J) = 1, (7.16) is nothing but (7.13). Let us assume that (7.16) holds for every set J
with card(J) = 1, 2, ..., p < m and take a set J0 = {j1, ..., jp+1} ⊂ {1, ...,m}. Let J1 and J2 be
the two sets of cardinality p such that

J0 = {j1, j3, ..., jp+1}︸ ︷︷ ︸
J2

∪{j2} = {j2, j3, ..., jp+1}︸ ︷︷ ︸
J1

∪{j1}.

By using the induction hypothesis applied to J1 and J2 one has
⋆

S
J1

r+1=
⋆

S
J2

r+1= −(r/2)
⋆

Sr+1. Now,
bearing in mind Proposition 2.1, from the first equality of last equation we obtain

kj2
⋆

S
J0

r +
⋆

S
J0

r+1= kj2
⋆

S
J0

r +
⋆

S
J0

r+1,

and then (kj1 − kj2)
⋆

S
J0

r = 0. From here and (7.15) one has
⋆

S
J0

r = 0, and then,

(2 + r/2)
⋆

Sr+1=
⋆

S
J1

r+1=
⋆

S
J2

r+1=
⋆

S
J0

r+1 .

Thus (7.16) holds. From (7.7) and (7.15) one has U
⋆

Ei= ηi
⋆

Ei for i = 1, . . . ,m, where

ηi = (−1)r+1(r + 1)
⋆

Sr+1

⋆

ki is screen constant as eigenvalue of the screen constant matrix U .
from (7.16) for the set J = {1, ...,m} we get

−(r/2)
⋆

Sr+1=
∑

m<i1<···<ir+1<n

⋆

ki1 · · ·
⋆

kir+1
= (−1)r+1

∑
m<i1<···<ir+1<n

ηi1 · · · ηir+1

(r + 1)r+1
⋆

S
r+1

r+1

,

showing that
⋆

Hr+1 is locally constant on Ur+1, which is a contradiction. This finishes the
proof.

7.1 The classification theorem

Theorem 7.1. Let x : (M, g,N) → Rn+2
1 be a normalized null hypersurface which carries a

UCC-normalization N with vanishing 1−form τ , and let Lr be the linearized operator of the
(r + 1)−mean curvature of M , for some fixed r = 1, ..., n. Then the immersion x satisfies the
equation Lrx = Ux + b, for some field of screen constant matrix U ∈ R(n+2)×(n+2) and field
of screen constant vector b ∈ Rn+2, if and only if (M, g,N) is either an (r + 1)−maximal null
hypersurface or an almost isoparametric normalized null hypersurface with N = U0x+b0, for some
field of screen constant matrix U0 ∈ R(n+2)×(n+2) and field of screen constant vector b0 ∈ Rn+2.

Proof. If (M, g,N) is one of the null hypersurfaces mentioned then, equality (7.1) show that
(M, g,N) satisfies Lrx = Ux + b. Conversely, let us assume that x : (M, g,N) → Rn+2

1 satisfies
the condition Lrx = Ux+ b, for some field of screen constant matrix U ∈ R(n+2)×(n+2) and field

of screen constant vector b ∈ Rn+2. By Lemma 7.1 we know that
⋆

Hr+1 is screen constant. Let
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us assume that
⋆

Hr+1 is a non-zero constant (otherwise, there is nothing to prove). Then, from
(7.7) and (7.8), one obtains

UX = (−1)r+1(r + 1)
⋆

Sr+1

⋆

Aξ(X), (7.17)

UN + Uξ = −tr

(
⋆

A
2

ξ ◦
⋆

T r

)
ξ = αξ. (7.18)

Covariant derivative of (7.18) gives us ∇X(UN + Uξ) = ⟨
⋆

∇ α,X⟩ξ − α
⋆

Aξ (X), and by using

(7.17), ∇X(UN + Uξ) = −2U
⋆

Aξ(X) = 2(−1)r(r + 1)
⋆

Sr+1

⋆

Aξ
2(X). Hence, α is screen constant

and
⋆

Aξ

( ⋆

Aξ−λI
)
= 0,

where λ = (−1)r+1 α

2(r+1)
⋆
Sr+1

=
tr

(
⋆
A

2

ξ◦
⋆
T r

)
2tr

(
⋆
Aξ◦

⋆
T r

) is screen constant. Then (M, g,N) has at most one

non-zero principal curvature which is screen constant. Thus x : (M, g,N) → Rn+2
1 is an almost

isoparametric normalized null hypersurface of Rn+2
1 .
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[2] L. J. Aĺıas, A. Brasil Jr and A. Gervasio Colares, Integral formulae for spacelike hypersurfaces in
conformally stationary spacetimes and applications, Proc. Edinb. Math. Soc. 46 (2003), 465-488, DOI:
10.1017/S0013091502000500.
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[7] C. Atindogbé and M. H. Mahamane and J. Tossa, Lightlike hypersurfaces in Lorentzian manifolds with
constant screen principal curvatures, African Diaspora Journal of Mathematics, 16(2) (2014), 31-45.
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[20] K. L. Duggal and A. Giménez, Lightlike hypersurfaces of Lorentzian manifolds with distinguished screen,
Journal of Geometry and Physics. 55 (2005), 107-122, DOI: 10.1016/j.geomphys.2004.12.004.

[21] H. Fotsing Tetsing, Normalized null hypersurfaces in nonflat Lorentzian space forms satisfying Lrx = Ux+b,
Turk J Math 45 (2021) 1809-1834, DOI: 10.3906/mat-2102-37.

[22] Junhong Dong and Ximin Liu, Totally Umbilical Lightlike Hypersurfaces in Robertson-Walker Spacetimes,
ISRN Geometry (2014), DOI: 10.1155/2014/974695.

[23] M. Gutierrez and B. Olea, Lightlike hypersurfaces in Lorentzian manifolds, arXiv: 1207.1030v1 [math.DG]
4 jul 2012.

[24] O. J. Garay, An extension of Takahashi’s theorem, Geometria Dedicata, 34 (1990), 105-112, DOI:
10.1007/BF00147319.

[25] T. Hasanis and T. Vlachos, Hypersurfaces of En+1 satisfying ∆x = Ax+B J. Austral. Math. Soc. Ser 53(3)
(1992), 377-384, DOI: 10.1017/S1446788700036545.

[26] T. Levi-Civita, Famiglie di superficie isoparametrische nell’ordinario spacio euclideo, Atti. Accad. naz. Lin-
cei. Rend. Cl. Sci. Fis. Mat. Natur, 26 (1937), 355-362, NII10007411271.

[27] C. C. Hsiung, Some integral formulas for closed hypersurfaces, Math. Scand. 2 (1954), 286-294.

[28] P. Lucas and H. F. Ramı́rez-Ospina Hypersurfaces in the Lorentz-Minkowski space satisfying Lkx = Ax+ b
Geom. Dedicata 153 (2011), 151-175, DOI: 10.1007/s10711-010-9562-z.

[29] P. Lucas and H. F. Ramı́rez-Ospina, Hypersurfaces in non-flat Lorentzian space forms satisfying Lkx = Ax+b
Taiwanese Journal Of Mathematics 16 (2012), 1173-1203, DOI: 10.11650/twjm/1500406685.

[30] P. Lucas and H. F. Ramı́rez-Ospina, Hypersurfaces in non-flat pseudo-Riemannian space forms satisfying a
linear condition in the linearized operator of a higher order mean curvature Taiwanese Journal Of Mathe-
matics 17(1) (2013), 15-45, DOI: 10.11650/tjm.17.2013.1738.

[31] S. Montiel, An integral inequality for compact spacelike hypersurfaces in De Sitter space and applications to
the case of constant mean curvature, Indiana Univ. Math. J. (1988) 37, 907-917, NII10014601731.

[32] M. Navarro, O. Palmas and D. A. Solis, Null screen quasi-conformal hypersurfaces in semi-Riemannian
manifolds and applications; Math. Nachr. 293 (2020), no. 8, 1534-1553.

[33] B. Segre, Famiglie di ipersuperficie isoparametrische negli spazi euclidei ad un qualunque numero di deme-
sioni, Atti. Accad. naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur., 27 (1938), 203-207, NII10010575403.

[34] S. Ssekajja, Geometry of isoparametric null hypersurfaces of Lorentzian manifolds; J. Korean Math. Soc., 57
(2020), no. 1, 195-213.

http://dx.doi.org/10.1007/BF01580289
https://doi.org/10.1017/S0004972700029518
https://doi.org/10.2996/kmj/1138039155
http://link.springer.com/book/10.1007%2F978-94-017-2089-2
http://dx.doi.org/10.1016/j.geomphys.2004.12.004
https://doi.org/10.3906/mat-2102-37
http://dx.doi.org/10.1155/2014/974695
http://arxiv.org/abs/1207.1030v1
https://doi.org/10.1007/BF00147319
https://doi.org/10.1007/BF00147319
https://doi.org/10.1017/S1446788700036545
https://ci.nii.ac.jp/naid/10007411271/
https://doi.org/10.1007/s10711-010-9562-z
https://doi.org/10.11650/twjm/1500406685
https://doi.org/10.11650/tjm.17.2013.1738
https://ci.nii.ac.jp/naid/10014601731/
https://ci.nii.ac.jp/naid/10010575403


378 H. Fotsing Tetsing, C. Atindogbé and F. Ngakeu
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