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Biconservative Lorentz hypersurfaces with at
least three principal curvatures

Firooz Pashaie

Abstract. Biconservative submanifolds, with important role in mathematical physics
and differential geometry, arise as the conservative stress-energy tensor associated to
the variational problem of biharmonic submanifolds. Many examples of biconserva-
tive hypersurfaces have constant mean curvature. A famous conjecture of Bang-Yen
Chen on Euclidean spaces says that every biharmonic submanifold has null mean
curvature. Inspired by Chen conjecture, we study biconservative Lorentz subman-
ifolds of the Minkowski spaces. Although the conjecture has not been generally
confirmed, it has been proven in many cases, and this has led to its spread to various
types of submenifolds. As an extension, we consider a advanced version of the con-
jecture (namely, L1-conjecture) on Lorentz hypersurfaces of the pseudo-Euclidean
space M5 := E5

1 (i.e. the Minkowski 5-space). We show every L1-biconservative
Lorentz hypersurface of M5 with constant mean curvature and at least three princi-
pal curvatures has constant second mean curvature.

Keywords. Lorentz hypersurface, L1-biconservative, isoparametric, Newton transforma-
tion

1 Introduction
From mathematical point of view, the biharmonic surfaces appear as solutions of strongly el-
liptic semilinear differential equations of order four. Also, the biharmonic Bezier surfaces play
important roles in computational geometry. From physical points of view, the biharmonic sur-
faces play central roles in elastics and fluid mechanics. A differential geometric motivation of the
matter of biharmonic maps is a well-known conjecture of Bang-Yen Chen which states that each
biharmonic submanifold of an Euclidean space in minimal. Later on, Dimitrić proved that any
biharmonic hypersurface in Em with at most two distinct principal curvatures is minimal ([7]).
An equivalent statement say that every biharmonic hypersurface in Em with at most two distinct
principal curvatures is harmonic, which means that there is no proper biharmonic hypersurface in
Em with at most two distinct principal curvatures. Remember that, a biharmonic hypersurface
which is not harmonic is called proper biharmonic.

Clearly, harmonic maps are biharmonic but not vis versa. In the homotopy class of Brower
of degree ±1, one cannot find a harmonic map as T2 → S2, although, there exists a biharmonic
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one [8]. From a geometric point of view, the variational problem associated to the bienergy
functional on the set of Riemannian metrics on a domain has given rise to the biharmonic stress-
energy tensor. In 1995, Hasanis and Vlachos affirmed Chen’s conjecture on hypersurfaces in
Euclidean 4-spaces ([10]). In 2013, Akutagawa and Maeta ([1]) have studied Chen’s conjecture
on biharmonic submanifolds in Euclidean n-space. On the other hand, Chen himself had found
a good relation between the finite type hypersurfaces and biharmonic ones. The theory of finite
type hypersurfaces is a well-known subject interested by Chen (for instance, in [5, 6]) and also
L.J. Alias, S.M.B. Kashani and others. In [11], Kashani has studied the notion of L1-finite type
Euclidean hypersurfaces as an extension of finite type ones. One can see main results in Chapter
11 of Chen’s book ([5]).

The linearized operator L1 is an extension of the Laplace operator L0 = ∆, which stands
for the linearized map of the first variation of the 2th mean curvature of the hypersurface (see,
for instance, [2, 12, 16, 17, 19]). This operator is defined by L1(f) = tr(P1 ◦ ∇2f) for any
f ∈ C∞(M), where P1 = nHI − S denotes the first Newton transformation associated to the
second fundamental from of the hypersurface and ∇2f is the hessian of f . It is interesting to
generalize the definition of biharmonic hypersurface by replacing ∆ by L1. Recently, in [14], we
have studied the L1-biharmonic spacelike hypersurfaces in 4-dimentional Minkowski space M4.
In this paper, we study the L1-biharmonic Lorentzian hypersurfaces in M5. We show that, every
L1-biconservative Lorentzian hypersurface x : M4

1 → M5, with constant mean curvature and
three distinct principal curvatures is L1-harmonic.

Now we present the structure of paper. In section 2 we remember some notations and
definitions which will be needed in paper. In section 3, we study the L1-biconservative Lorentzian
hypersurfaces with constant mean curvature, separately according to four possible types of shape
operator of hypersurfaces in four subsections. In subsection 3.1, by three propositions, we show
that if a hypersurface M4

1 of type I has constant ordinary mean curvature and three distinct
principal curvatures, then it has constant second mean curvature. In subsection 3.2, we study on
L1-biconservative Lorentzian hypersurfaces M4

1 with non-diagonal shape operator and at least
three distinct principal curvatures.

2 Preliminaries
In this section, we recall some preliminaries from [2, 12, 13] and [15]-[18]. The 5-dimensional
Minkowski space, M5, is the Euclidean 5-space E5 equipped with a scalar product as

⟨x, y⟩ := −x1y1 +Σ5
i=2xiyi,

for every x, y ∈ E5.
Throughout the paper, we study the Lorentzian hypersurface of M5, defined by an isometric

immersion x :M4
1 → M5.

The symbols ∇̃ and ∇̄ stand for the Levi-Civita connection on M4
1 and M5, respectively.

For every tangent vector fields X and Y on M , the Gauss formula is given by ∇̄XY = ∇̃XY +
⟨AX, Y ⟩n, for every X,Y ∈ χ(M), where, n is a (locally) unit normal vector field on M and
A is the shape operator of M relative to n. For each non-zero vector X ∈ M5, the real value
⟨X,X⟩ may be a negative, zero or positive number and then, the vector X is said to be time-like,
light-like or space-like, respectively.

Definition 1. For a 4-dimensional Lorentzian vector space V 4
1 , a basis B := {e1, · · · , e4} is said

to be orthonormal if it satisfies ⟨ei, ej⟩ = ϵiδ
j
i for i, j = 1, · · · , 4, where ϵ1 = −1 and ϵi = 1 for
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i = 2, 3, 4. As usual, δji stands for the Kronecker function. B is called pseudo-orthonormal if it
satisfies ⟨e1, e1⟩ = ⟨e2, e2⟩ = 0, ⟨e1, e2⟩ = −1 and ⟨ei, ej⟩ = δji , for i = 1, 2, 3, 4 and j = 3, 4.

As well-known, the shape operator A of the Lorentzian hypersurface M4
1 in M5, as a self-

adjoint linear map on the tangent bundle of M4
1 , locally can be put into one of four possible

canonical matrix forms, usually denoted by I, II, III and IV . Where, in cases I and IV , with
respect to an orthonormal basis of the tangent space of M4

1 , the matrix representation of the
induced metric on M4

1 is

G1 =

( −1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
and the shape operator of M4

1 can be put into matrix forms

B1 =

( λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4

)
and B4 =

 κ λ 0 0

−λ κ 0 0

0 0 η1 0

0 0 0 η2

, (λ ̸= 0)

respectively. For cases II and III, using a pseudo-orthonormal basis of the tangent space of
M4

1 , the induced metric on which has matrix form

G2 =

(
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

)

and the shape operator of M4
1 can be put into matrix forms

B2 =

( κ 0 0 0
1 κ 0 0

0 0 λ1 0

0 0 0 λ2

)
and B3 =

 κ 0 0 0

0 κ 1 0

−1 0 κ 0

0 0 0 λ

,

respectively. In case IV , the matrix B4 has two conjugate complex eigenvalues κ ± iλ, but
in other cases the eigenvalues of the shape operator are real numbers.

Remark 1. In two cases II and III, one can substitute the pseudo-orthonormal basis B :=
{e1, e2, e3, e4} by a new orthonormal basis B̃ := {ẽ1, ẽ2, e3, e4} where ẽ1 := 1

2 (e1 + e2) and
ẽ2 := 1

2 (e1− e2). Therefore, we obtain new matrix representations B̃2 and B̃3 (instead of B2 and
B3, respectively) as

B̃2 =


κ + 1

2
1
2

0 0

− 1
2

κ − 1
2

0 0

0 0 λ1 0

0 0 0 λ2

 and B̃3 =


κ 0

√
2

2
0

0 κ −
√

2
2

0

−
√

2
2

−
√

2
2

κ 0

0 0 0 λ


After this changes, to unify the notations we denote the orthonormal basis by B in all cases.

Notation: According to four possible matrix representations of the shape operator of M4
1 ,

we define its principal curvatures, denoted by unified notations κi for i = 1, · · · , 4, as follow. In
case I, we put κi := λi, for i = 1, · · · , 4, where λi’s are the eigenvalues of B1.

In cases II, where the matrix representation of A is B̃2, we take κi := κ for i = 1, 2, and
κi := λi−2, for i = 3, 4.

In case III, where the shape operator has matrix representation B̃3, we take κi := κ for
i = 1, 2, 3, and κ4 := λ.
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Finally, in the case IV , where the shape operator has matrix representation B̃4, we put
κ1 = κ+ iλ, κ2 = κ− iλ, and κi := ηi−2, for i = 3, 4.

The characteristic polynomial ofA onM4
1 is of the formQ(t) =

∏4
i=1(t−κi) =

∑4
j=0(−1)jsjt

4−j ,
where, s0 := 1, si :=

∑
1≤j1<···<ji≤4 κj1 · · ·κji for i = 1, 2, 3, 4.

For j = 1, · · · , 4, the jth mean curvature Hj of M4
1 is defined by Hj = 1

(4j )
sj . When Hj is

identically null, M4
1 is said to be (j − 1)-minimal.

Definition 2. (i) A timelike hypersurface x : M4
1 → M5, with diagonalizable shape operator,

is said to be isoparametric if all of it’s principal curvatures are constant.
(ii) A timelike hypersurface x : M4

1 → M5, with non-diagonalizable shape operator, is said to
be isoparametric if the minimal polynomial of it’s shape operator is constant.

Remark 2. Here we remember Theorem 4.10 from [13], which assures us that there is no isopara-
metric timelike hypersurface of M5 with complex principal curvatures.

The well-known Newton transformations Pj : χ(M) → χ(M) on M4
1 , is defined by

P0 = I, Pj = sjI −A ◦ Pj−1, (j = 1, 2, 3, 4), (2.1)

where, I is the identity map. Using its explicit formula, Pj =
∑j

i=0(−1)isj−iA
i (where A0 = I),

which gives, by the Cayley-Hamilton theorem (stating that any operator is annihilated by its
characteristic polynomial), that P4 = 0. It can be seen that, Pj is self-adjoint and commutative
with A (see [2, 16]).

Now, we define a notation as

µi;k =
∑

1≤j1<···<jk≤4;jl ̸=i

κj1 · · ·κjk , (i = 1, 2, 3, 4; 1 ≤ k ≤ 3). (2.2)

Corresponding to four possible forms B̃i (for 1 ≤ i ≤ 4) of A, the Newton transformation Pj has
different representations. In the case I, where A = B̃1, we have Pj = diag[µ1;j , · · · , µ4;j ], for
j = 1, 2, 3.

When A = B2 (in the case II), we have

P1 =


λ1 + λ2 + κ − 1

2
− 1

2
0 0

1
2

λ1 + λ2 + κ + 1
2

0 0

0 0 2κ + λ2 0

0 0 0 2κ + λ1

,

P2 =


λ1λ2 + (κ − 1

2
)(λ1 + λ2) − 1

2
(λ1 + λ2) 0 0

1
2
(λ1 + λ2) λ1λ2 + (κ + 1

2
)(λ1 + λ2) 0 0

0 0 κ(κ + 2λ2) 0

0 0 0 κ(κ + 2λ1)

.
In the case III, we have A = B3, and

P1 =


2κ + λ 0 −

√
2

2
0

0 2κ + λ
√

2
2

0

√
2

2

√
2

2
2κ + λ 0

0 0 0 3κ

, P2 =


2κλ + κ2 − 1

2
− 1

2
−

√
2

2
(κ + λ) 0

1
2

2κλ + κ2 + 1
2

√
2

2
(κ + λ) 0

√
2

2
(κ + λ)

√
2

2
(κ + λ) 2κλ + κ2 0

0 0 0 3κ2

.
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In the case IV , A = B4,

P1 =


κ + η1 + η2 −λ 0 0

λ κ + η1 + η2 0 0

0 0 2κ + η2 0

0 0 0 2κ + η1

,

P2 =


κ(η1 + η2) + η1η2 −λ(η1 + η2) 0 0

λ(η1 + η2) κ(η1 + η2) + η1η2 0 0

0 0 κ2 + λ2 + 2κη2 0

0 0 0 κ2 + λ2 + 2κη1

.
Fortunately, in all cases we have the following important identities, similar to those in [2, 16].

µi,1 = 4H1 − λi, µi,2 = 6H2 − λiµi,1 = 6H2 − 4λiH1 + λ2i , (1 ≤ i ≤ 4), (2.3)

tr(P1) = 12H1, tr(P2) = 12H2, tr(P1 ◦A) = 12H2, tr(P2 ◦A) = 12H3, (2.4)

trA2 = 4(4H2
1 − 3H2), tr(P1 ◦A2) = 12(2H1H2 −H3), tr(P2 ◦A2) = 4(4H1H3 −H4). (2.5)

The linearized operator of the (j+1)th mean curvature of M , Lj : C∞(M) → C∞(M) is defined
by the formula Lj(f) := tr(Pj ◦∇2f), where, ⟨∇2f(X), Y ⟩ = ⟨∇X∇f, Y ⟩ for every X,Y ∈ χ(M).

Associated to the orthonormal frame {e1, · · · , e4} of tangent space on a local coordinate
system in the hypersurface x :M4

1 → M5 , L1(f) has an explicit expression as

L1(f) =

4∑
i=1

ϵiµi,1(eieif −∇eieif). (2.6)

For a Lorentzian hypersurface x : M4
1 → M5, with a chosen (local) unit normal vector field

n, for an arbitrary vector a ∈ M5 we use the decomposition a = aT + aN where aT ∈ TM is the
tangential component of a, aN ⊥ TM , and we have the following formulae from [2, 16].

∇⟨x, a⟩ = aT , ∇⟨n,a⟩ = −SaT . (2.7)

L1x = 12H2n, L1n = −6∇(H2)− 12[2H1H2 −H3]n, (2.8)

L2
1x = 12L1(H2n) = 24[P2∇H2 − 9H2∇H2] + 12[L1H2 − 12H2(2H1H2 −H3)]n. (2.9)

Assume that a hypersurface x :M4
1 → M5 satisfies the condition L2

1x = 0, then it is said to be L1-
biharmonic. By equalities (2.8) and (2.9), from the condition L1(H2n) = 0 (which is equivalent
to L1-biharmonicity) we obtain simpler conditions on M4

1 to be a L1-biharmonic hypersurface in
M5, as:

(i) L1H2 = 12H2(2H1H2 −H3) = H2tr(P1 ◦A2), (ii) P2∇H2 = 9H2∇H2. (2.10)

The hypersurface x :M4
1 → M5 is said to be L1-biconservative if it satisfies condition (2.10)(ii).

The well-known structure equations on M5 are given by dωi =
5∑

j=1

ωij ∧ ωj , ωij + ωji = 0

and dωij =
5∑

l=1

ωil ∧ ωlj . Restricted on M , we have ω5 = 0 and then, 0 = dω5 =
4∑

i=1

ω5,i ∧ ωi.

So, by Cartan’s lemma, there exist functions hij such that ω5,i =
4∑

j=1

hijωj and hij = hji Which
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give the second fundamental form of M , as B =
∑
i,j

hijωiωje5. The mean curvature H is given

by H = 1
4

4∑
i=1

hii. Therefore, we obtain the structure equations on M as follow.

dωi =

4∑
j=1

ωij ∧ ωj , ωij + ωji = 0, (2.11)

dωij =

4∑
k=1

ωik ∧ ωkj −
1

2

4∑
k,l=1

Rijklωk ∧ ωl, (2.12)

for i, j = 1, 2, 3, and the Gauss equations Rijkl = (hikhjl − hilhjk), where Rijkl denotes the
components of the Riemannian curvature tensor of M . Denoting the covariant derivative of hij
by hijk, we have

dhij =

4∑
k=1

hijkωk +

4∑
k=1

hkjωik +

4∑
k=1

hikωjk, (2.13)

and by the Codazzi equation we get hijk = hikj .

3 Biconservative hypersurfaces in Minkowski 5-space with
different types of shape operators

This section is followed in several subsections by considering different possible cases for the shape
operator of hypersurfaces.

3.1 Diagonal shape operator

The next lemma can be proved by the same manner of similar one in [19].

Lemma 3.1. Let M4
1 be a Lorentz hypersurface in M5 with diagonal shape operator and real

principal curvatures of constant multiplicities. Then distribution generated by principal directions
is completely integrable. In addition, if a principal curvature be of multiplicity greater than one,
then it will be constant on each integral submanifold of its corresponding distribution.

Proposition 3.1. Let M4
1 be a L1-biconservative orientable Lorentz hypersurface in M5 having

diagonal shape operator A, constant 1st mean curvature and non-constant 2nd mean curvature.
Then, M4

1 has a non-constant principal curvature of multiplicity one.

Proof. By assumption, there exists an open connected subset U of M , on which we have ∇H2 ̸= 0.
By the biconservativity condition (2.10)(ii), e1 := ∇H2

||∇H2|| is an eigenvector of P2 with the corre-
sponding eigenvalue 9H2, on U . Without loss of generality, we can take a suitable orthonormal
local basis {e1, e2, e3, e4} for the tangent bundle of M , consisting of the eigenvectors of the shape
operator A such that Aei = λiei and P2ei = µi,2ei, (for i = 1, 2, 3, 4) and then

µ1,2 = 9H2. (3.1)

By the polar decomposition ∇H2 =
4∑

i=1

ei(H2)ei, we get

e1(H2) ̸= 0, e2(H2) = e3(H2) = e4(H2) = 0. (3.2)
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By (2.3) and (3.1) we have
H2 =

1

3
λ1(λ1 − 4H). (3.3)

Then, having assumed H to be constant, from (3.2) we get

e1(λ1) ̸= 0, e2(λ1) = e3(λ1) = e4(λ1) = 0, (3.4)

which gives that λ1 is non-constant. Now, putting ∇eiej =
∑4

k=1 ω
k
ijek (for i, j = 1, 2, 3, 4), the

identity ek < ei, ej >= 0 gives ϵjωj
ki = −ϵiωi

kj (for i, j, k = 1, 2, 3, 4). Furthermore, for distinct
i, j, k = 1, 2, 3, 4, the Codazzi equation implies

ei(λj) = (λi − λj)ω
j
ji, (λi − λj)ω

j
ki = (λk − λj)ω

j
ik. (3.5)

Since by (3.4) we have e1(λ1) ̸= 0, we claim λj ̸= λ1 for j = 2, 3, 4. Because, assuming
λj = λ1 for some integer j ̸= 1, we have e1(λj) = e1(λ1) ̸= 0. On the other hand, from (3.5) we
obtain 0 = (λ1 − λj)ω

j
j1 = e1(λj) = e1(λ1). So, we get a contradiction.

One can find the similar ordinary version of Proposition 3.1 in [9] and [20].

Proposition 3.2. Let M4
1 be a L1-biconservative Lorentz hypersurface in M5 with diagonal shape

operator, which has exactly three distinct principal curvatures, constant 1st mean curvature and
non-constant 2nd mean curvature. Then, there exists a locally moving orthonormal tangent frame
{e1, e2, e3, e4} of principal vectors of M4

1 with associated principal curvatures λ1, λ2 = λ3, λ4,
which satisfy the following equalities:

(i)∇e1e1 = 0, ∇e2e1 = αe2, ∇e3e1 = αe3, ∇e4e1 = −βe4,
(ii)∇e2e2 = −αe1 + ω3

22e3 + γe4, ∇eie2 = ω3
i2e3 for i = 1, 3, 4 ;

(iii)∇e3e3 = −αe1 − ω3
32e3 + γe4, ∇eie3 = −ω3

i2e2 for i = 1, 2, 4 ,

(iv)∇e1e4 = 0, ∇e2e4 = −γe2, ∇e3e4 = −γe3, ∇e4e4 = βe1,

(3.6)

where α := e1(λ2)
λ1−λ2

, β := e1(λ1+2λ2)
λ1−λ4

, γ := e4(λ2)
λ2−λ4

.

Proof. Similar to the proof of Proposition 3.1, taking a suitable local basis {e1, e2, e3, e4} for
TM , one can see that the equalities (3.1)− (3.5) occur and λ1 is of multiplicity one. Also, direct
calculations give [e2, e3](λ1) = [e3, e4](λ1) = [e2, e4](λ1) = 0, which yields

ω1
23 = ω1

32, ω1
34 = ω1

43, ω1
24 = ω1

42. (3.7)

Now, having assumed M4
1 to has three distinct principal curvatures, (without loss of generality)

we can take λ2 = λ3, and then λ4 = 4H1 −λ1 − 2λ2. Hence, applying equalities (3.5) for distinct
positive integers i, j and k less than 5, we get e2(λ2) = e3(λ2) = 0 and then,

(i) ω1
11 = ω1

12 = ω1
13 = ω1

14 = ω2
31 = ω3

21 = ω2
34 = ω3

24 = ω4
42 = ω4

43 = 0,

(ii) ω2
21 = ω3

31 =
e1(λ2)

λ1 − λ2
, ω4

41 =
−e1(λ1 + 2λ2)

λ1 − λ4
, ω2

24 = ω3
34 =

−e4(λ2)
λ2 − λ4

,

(iii) (λ1 − λ4)ω
1
24 = (λ1 − λ2)ω

1
42, (λ1 − λ4)ω

1
34 = (λ1 − λ2)ω

1
43.

(3.8)

From (3.7) and (3.8) we get ω1
24 = ω1

42,= ω1
34 = ω1

43 = ω4
12 = ω4

13 = 0. Therefore, all items of the
proposition obtain from the above results.



228 F. Pashaie

Proposition 3.3. Let M4
1 be a L1-biconservative orientable Lorentz hypersurface in the Minkowski

5-space M5 with diagonal shape operator, which has three distinct principal curvatures, constant
1st mean curvature and non-constant 2nd mean curvature. Then, there exists an orthonormal (lo-
cal) tangent frame {e1, e2, e3, e4} of principal vectors of M4

1 with associated principal curvatures
λ1, λ2 = λ3, λ4, satisfying e4(λ2) = 0 and

e1(λ2)e1(λ1 + 2λ2) =
1

2
λ2(λ1 − λ2)(λ4 − λ1)(2λ1 + 4λ2 + λ4). (3.9)

Proof. From Gauss curvature tensor R(X,Y )Z = ∇X∇Y Z−∇Y ∇XZ−∇[X,Y ]Z, by substituting
X, Y and Z by different choices from e1, e2, e3 and e4, using the results of Proposition 3.2, we
get the following equalities:

(i) e1(α) + α2 = −λ1λ2, β2 − e1(β) = −λ1λ4;

(ii) e1

(
e4(λ2)

λ2 − λ4

)
+ α

e4(λ2)

λ2 − λ4
= 0;

(iii) e4(α)− (α+ β)
e4(λ2)

λ2 − λ4
= 0;

(iv) e4

(
e4(λ2)

λ2 − λ4

)
+ αβ −

(
e4(λ2)

λ2 − λ4

)2

= λ2λ4.

(3.10)

Now, from (2.6) and (2.10), applying Proposition (3.2) we obtain

(λ1 − 4H1)e1e1(H2)− (2(λ2 − 4H1)α+ (λ1 + 2λ2)β)e1(H2)

= 12H2(2H1H2 −H3),
(3.11)

where α := e1(λ2)
λ1−λ2

and β := e1(λ1+2λ2)
λ1−λ4

.
On the other hand, from (3.2) and (3.6), we obtain

eie1(Hk+1) = 0, (3.12)

for i = 2, 3, 4. Also, by differentiating α and β along e4, we get

(λ1 − λ2)e4(α)− αe4(λ2) = e4e1(λ2) =
1

2
(λ1 − λ4)e4(β) + βe4(λ2),

then
1

2
(λ1 − λ4)e4(β) = (λ1 − λ2)e4(α)− (α+ β)e4(λ2),

which, by substituting the value of e4(α) from (3.10), gives

e4(β) =
−8e4(λ2)(α+ β)(λ2 −H1)

(λ1 − λ4)(λ2 − λ4)
.

Again, differentiating (3.11)along e4 and using (3.12), (3.10) and the last value of e4(β), we
get e4(λ2) = 0 or

4(α+ β)[−H1(8λ1 + 12λ2) + λ1
2 + 3λ1λ2 + 16H2

1 ]e1(H2)

λ4 − λ1
+ 6H2(λ2 − λ4)

2
= 0. (3.13)

Finally, we claim that e4(λ2) = 0.
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Indeed, if the claim be false, then we have

4(α+ β)γe1(H2)

λ1 − λ4
= 6H2(λ2 − λ4)

2
, (3.14)

where γ = −8H1λ1 + λ1
2 + 3λ1λ2 − 12H1λ2 + 16H2

1 . Differentiating (3.14) along e4, we get

2(α+ β) [6γ(λ2 −H1) + (3λ1 − 12H1)(λ1 + λ2 − 2H1)(λ1 + 3λ2 − 4H1)] e1(H2)

(λ1 + λ2 − 2H1)
2

= 36H2(4H1 + λ1 + 3λ2)
2
.

(3.15)

Eliminating e1(H2) from (3.14) and (3.15), we obtain

γ(2λ1 − 2H1) = (λ1 − 4H1)(λ1 + λ2 − 2H1)(−4H1 + λ1 + 3λ2). (3.16)

By differentiating (3.16) along e4, we get 4H1 = λ1, which is not possible since λ1 is not
constant. Consequently, e4(λ2) = 0. Therefore, the latest equality in (3.10) gives the main
result.

Theorem 3.1. Let x : M4
1 → M5 be a L1-biconservative Lorentz hypersurface with diagonal

shape operator and constant 1st mean curvature which has three distinct principal curvatures.
Then it has constant 2nd mean curvature.

Proof. We assume H2 is non-constant on M and try to get a contradiction.
By differentiating (3.3) in direction of e1 and using the definition of β, we get

e1(H2) =
4

3
(2H1 − λ1)e1(λ2) +

4

3
(λ1 + λ2 − 2H1)(λ1 − 2H1)β. (3.17)

By Proposition 3.3 and equalities (3.10), from (3.17) we obtain

e1e1(H2) =
4

3
λ1λ2(λ1 − λ2)(λ1 + 2H1)

+
4

3
(4H1 − λ1 − 2λ2)(λ1 − 2H1)(4λ1λ2 + λ1

2 − 4H1λ2 − 2H1λ1)

+

[
3β − 4α+ 2

(λ1 + λ2 − 2H1)β − (λ1 − λ2)α

λ1 − 2H1

]
e1(H2).

(3.18)

Combining (3.11) and (3.18), we get

(P1,2α+ P2,2β)e1(H2) = P3,6, (3.19)

where P1,2, P2,2 and P3,6 are polynomials in terms of λ1 and λ2 of degrees 2, 2 and 6, respectively.
Differentiating (3.19) along e1 and using equalities (3.9), (3.10)-(i) and (3.19), we get the

following equality
P4,8α+ P5,8β = P6,5e1(H2), (3.20)

where P4,8, P5,8 and P6,5 are polynomials in terms of λ1 and λ2 of degrees 8, 8 and 5, respectively.
Combining (3.17) and (3.20), we obtain(

P4,8 +
4

3
P6,5(λ1 − λ2)(λ1 − 2H1)

)
α

+

(
P5,8 −

4

3
P6,5(λ1 + λ2 − 2H1)(λ1 − 2H1)

)
β = 0.

(3.21)
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On the other hand, combining (3.17) with (3.19) and using Proposition 3.3, we get

P2,2(λ1 + λ2 − 2H1)(λ1 − 2H1)β
2 − P1,2(λ1 − λ2)(λ1 − 2H1)α

2 = ζ, (3.22)

where ζ is given by

ζ = λ2(4H1 − λ1 − 2λ2)(λ1 − 2H1)
(
P2,2(λ1 − λ2)− P1,2(λ1 + λ2 − 2H1)

)
+

3

4
P3,6.

Using Proposition 3.3 and equality (3.21), we get

α2 =
2
3P6,5(λ1 − λ4)(λ1 − 2H1) + P5,8

P4,8 +
4
3P6,5(λ1 − λ2)(λ1 − 2H1)

λ2λ4,

β2 =
4
3P6,5(λ1 − λ2)(λ1 − 2H1)− P4,8

P5,8 − 2
3P6,5(λ1 − λ4)(λ1 − 2H1)

λ2λ4.

(3.23)

Eliminating α2 and β2 from (3.22), we obtain

− λ2λ4(λ1 + 2H1)(λ2 − λ1)P1,2

(
P5,8 −

2

3
P6,5(λ1 − λ4)(λ1 − 2H1)

)2

− 1

2
λ2λ4(λ1 + 2H1)(λ1 − λ4)P2,2

(
P4,8 +

4

3
P6,5(λ1 − λ2)(λ1 − 2H1)

)2

= ζ

(
P5,8 −

2

3
P6,5(λ1 − λ4)(λ1 − 2H1)

)(
P4,8 +

4

3
P6,5(λ1 − λ2)(λ1 − 2H1)

)
,

(3.24)

which is a polynomial equation of degree 22 in terms of λ2 and λ1.
Now consider an integral curve of e1 passing through p = γ(t0) as γ(t), t ∈ I. Since

ei(λ1) = ei(λ2) = 0 for i = 2, 3, 4 and e1(λ1), e1(λ2) ̸= 0, we can assume λ2 = λ2(t) and
λ1 = λ1(λ2) in some neighborhood of λ0 = λ2(t0). Using (3.21), we have

dλ1
dλ2

=
dλ1
dt

dt

dλ2
=
e1(λ1)

e1(λ2)

= 2
(λ1 + λ2 − 2H1)β − (λ1 − λ2)α

(λ1 − λ2)α

=
2
(
P4,8 +

4
3P6,5(λ1 − λ2)(λ1 − 2H1)

)
(λ1 + λ2 − 2H1)(

4
3P6,5(λ1 + λ2 − 2H1)(λ1 − 2H1)− P5,8

)
(λ1 − λ2)

− 2

(3.25)

Differentiating (3.24) with respect to λ2 and substituting dλ1

dλ2
from (3.25), we get

f(λ1, λ2) = 0, (3.26)

another algebraic equation of degree 30 in terms of λ1 and λ2.
We rewrite (3.24) and (3.26) respectively in the following forms

22∑
i=0

fi(λ1)λ
i
2 = 0,

30∑
i=0

gi(λ1)λ
i
2 = 0, (3.27)

where fi(λ1) and gj(λ1) are polynomial functions of λ1. We eliminate λ302 between these two
polynomials of (3.27) by multiplying g30λ82 and f22 respectively on the first and second equations
of (3.27), we obtain a new polynomial equation in λ2 of degree 29. Combining this equation with
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the first equation of (3.27), we successively obtain a polynomial equation in λ2 of degree 28. In
a similar way, by using the first equation of (3.27) and its consequences we are able to gradually
eliminate λ2. At last, we obtain a non-trivial algebraic polynomial equation in λ1 with constant
coefficients. Therefore, we get that the real function λ1 is constant and then by (3.3), H2 is
constant, which contradicts with the first assumption. Hence, H2 is constant on M4

1 .

3.2 Non-diagonal shape operator

Proposition 3.4. Let x :M4
1 → M5 be a L1-biconservative connected orientable Lorentz hyper-

surface with non-diagonal shape operator of form II, which has three distinct principal curvatures
and constant 1st mean curvature. Then, its 2nd mean curvature has to be constant.

Proof. Assuming H2 to be non-constant, we try to get a contradiction. We show that the
open subset U = {p ∈ M : ∇H2

k+1(p) ̸= 0} is empty. By the assumption, with respect to a
suitable (local) orthonormal tangent frame {e1, · · · , e4} on M , the shape operator A has the
matrix form B̃2, such that Ae1 = (κ + 1

2 )e1 − 1
2e2, Ae2 = 1

2e1 + (κ − 1
2 )e2, Ae3 = λ1e3 and

Ae4 = λ2e4, and then, for j = 1, 2, 3 we have Pje1 = [µ1,2;j + (κ − 1
2 )µ1,2;j−1]e1 +

1
2µ1,2;j−1e2,

P2e2 = − 1
2µ1,2;j−1e1 + [µ1,2;j + (κ− 1

2 )µ1,2;j−1]e2, and P2e3 = µ3;je3 and P2e4 = µ4;je4.

Using the polar decomposition ∇H2 =
4∑

i=1

ϵiei(H2)ei, from conditions (2.10)(ii), we get

(i) [λ1λ2 + (κ− 1

2
)(λ1 + λ2)− 9H2]ϵ1e1(H2) =

1

2
(λ1 + λ2)ϵ2e2(H2),

(ii) [λ1λ2 + (κ+
1

2
)(λ1 + λ2)− 9H2]ϵ2e2(H2) = −1

2
(λ1 + λ2)ϵ1e1(H2),

(iii) (κ2 + 2κλ2 − 9H2)ϵ3e3(H2) = 0,

(iv) (κ2 + 2κλ1 − 9H2)ϵ3e4(H2) = 0.

(3.28)

Now, we prove the following claim.
Claim: ei(H2) = 0 for i = 1, 2, 3, 4.

If e1(H2) ̸= 0, then by dividing both sides of equalities (3.28(i, ii)) by ϵ1e1(H2) we get

(i) λ1λ2 + (κ− 1

2
)(λ1 + λ2)− 9H2 =

1

2
(λ1 + λ2)u,

(ii) [λ1λ2 + (κ+
1

2
)(λ1 + λ2)− 9H2]u = −1

2
(λ1 + λ2),

(3.29)

where u := ϵ2e2(H2)
ϵ1e1(H2)

. By substituting (i) in (ii), we obtain (λ1+λ2)(1+u)
2 = 0, then λ1+λ2 = 0

or u = −1.
If λ1 + λ2 = 0, then, from (3.29)-(i) we obtain 9H2 = −λ21, which gives 3κ2 = −λ21. Since
H1 is assumed to be constant on M , then κ = 2H1 is constant on M . Hence, λ1 and λ2 are
also constant on M . Therefore, M4

1 is an isoparametric Lorentz hypersurface of real principal
curvatures in E5

1 , which by Corollary 2.7 in [13], cannot has more than one nonzero principal
curvature contradicting with the assumptions. So, λ1 + λ2 ̸= 0 and then u = −1.

From u = −1, we get λ1λ2 + κ(λ1 + λ2) = 9H2, then

3κ2 + 4κ(λ1 + λ2) + λ1λ2 = 0.

Since 4H1 = 2κ + λ1 + λ2 is assumed to be constant on M , by substituting which in the last
equality, we get λ2 − H1λ − 3H2

1 = 0, which means λ, κ and the kth mean curvatures (for
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k = 2, 3, 4) are constant on M . So, we got a contradiction and therefore, the first part of the
claim is proved.

By a similar manner, each of assumptions ei(H2) ̸= 0 for i = 2, 3, 4, gives the equality
λ2 + 2κλ = 9H2, which implies the contradiction that H2 is constant on M . So, the claim is
affirmed.

Proposition 3.5. Let x : M4
1 → M5 be a L1-biconservative connected orientable lorentz hyper-

surface with shape operator of type II which has one constant principal curvature. Then its 2nd
mean curvature is constant. Furthermore, M4

1 is isoparametric and its principal curvatures are
constant.

Proof. Suppose that, H2 be non-constant. Considering the open subset U = {p ∈M : ∇H2
2 (p) ̸=

0}, we try to show U = ∅. By the assumption, with respect to a suitable (local) orthonormal
tangent frame {e1, · · · , e4} on M , the shape operator A has the matrix form B̃2, such that
Ae1 = (κ+ 1

2 )e1 −
1
2e2, Ae2 = 1

2e1 + (κ− 1
2 )e2, Ae3 = λ1e3 and Ae4 = λ2e4, and then, we have

P2e1 = [λ1λ2+(κ− 1
2 )(λ1+λ2)]e1+

1
2 (λ1+λ2)e2, P2e2 = − 1

2 (λ1+λ2)e1+[λ1λ2+(κ+ 1
2 )(λ1+λ2)]e2,

and P2e3 = (κ2 + 2κλ2)e3 and P2e4 = (κ2 + 2κλ1)e4.

Using the polar decomposition ∇H2 =
4∑

i=1

ϵiei(H2)ei, from condition (2.10(ii)) we get

(i) [λ1λ2 + (κ− 1

2
)(λ1 + λ2)− 9H2]ϵ1e1(H2) =

1

2
(λ1 + λ2)ϵ2e2(H2),

(ii) [λ1λ2 + (κ+
1

2
)(λ1 + λ2)− 9H2]ϵ2e2(H2) =

1

2
(λ1 + λ2)ϵ1e1(H2),

(iii) (κ2 + 2κλ2 − 9H2)ϵ3e3(H2) = 0,

(iv) (κ2 + 2κλ1 − 9H2)ϵ3e4(H2) = 0.

(3.30)

Now, we prove some simple claims.
Claim: e1(H2) = e2(H2) = e3(H2) = e4(H2) = 0.

If e1(H2) ̸= 0, then by dividing both sides of equalities (3.30(i, ii)) by ϵ1e1(H2) we get

(i) λ1λ2 + (κ− 1

2
)(λ1 + λ2)− 9H2 =

1

2
(λ1 + λ2)u,

(ii) [λ1λ2 + (κ+
1

2
)(λ1 + λ2)− 9H2]u = −1

2
(λ1 + λ2),

(3.31)

where u := ϵ2e2(H2)
ϵ1e1(H2)

. By substituting (i) in (ii), we obtain 1
2 (λ1+λ2)(1+u)

2 = 0, Then λ1+λ2 = 0

or u = −1. If λ1 + λ2 = 0, then, by assumption we get that κ = 2H1 is constant, and also, from
(3.29(i)) we obtain H2 = −1

9 λ
2
1 which gives 1

6 (κ
2 − λ21) =

−1
9 λ

2
1 and then λ21 = 3κ2. Hence, we

get H2 = −1
3 κ

2, which means H2 is constant.
Also, by assumption λ1+λ2 ̸= 0 we get u = −1, which, using (3.31(i)) and 4H1 = 2κ+λ1+λ2,

gives 5κ2 − 16κH1 − λ1(4H1 − 2κ − λ1) = 0. Without loss of generality, we assume that λ1 is
constant on M . So, from the last equation we get that κ, λ2 and H2 are constant on U , which is
a contradiction. Therefore, the first claim is proved. The second claim (i.e. e2(H2) = 0) can be
proven by a similar manner.

Now, if e3(H2) ̸= 0, then using (3.30(iii)) and 4H1 = 2κ + λ1 + λ2 and by assuming λ1 to
be constant on M , we get

κ2 − (
16

3
H1 −

2

3
λ1)κ− 4λ1H1 + λ21 = 0,
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which gives that κ, λ2 and H2 are constant on U , which is a contradiction. Therefore, the third
claim is proved.

The forth claim (i.e. e4(H2) = 0) can be proven by a manner exactly similar to third one.

Theorem 3.2. Let x :M4
1 → E5

1 be a L1-biconservative Lorentz hypersurface with non-diagonal
shape operator of form II, which has one constant principal curvature and constant ordinary
mean curvature. Then, it is 1-minimal.

Proof. By Proposition 3.5, all of principal curvatures of M3
1 are constant and M3

1 is isoparametric.
We claim that H2 is null. Since, by Corollary 2.7 in [13], an isoparametric Lorentz hypersurface of
real principal curvatures in E5

1 has at most one nonzero principal curvature, we get H2 = 0.

Proposition 3.6. Let x :M4
1 → M5 be a L1-biconservative connected orientable Lorentz hyper-

surface with non-diagonal shape operator of form III, then it has constant 2nd mean curvature.

Proof. Suppose that, H2 be non-constant. Considering the open subset U = {p ∈M : ∇H2
2 (p) ̸=

0}, we try to show U = ∅. By the assumption, with respect to a suitable (local) orthonormal
tangent frame {e1, · · · , e4} on M , the shape operator A has the matrix form B̃3, such that
Ae1 = κe1 −

√
2
2 e3, Ae2 = κe2 −

√
2
2 e3, Ae3 =

√
2
2 e1 −

√
2
2 e2 + κe3 and Ae4 = λe4 and then, we

have P2e1 = (κ2+2κλ− 1
2 )e1+

1
2e2+

√
2
2 (κ+λ)e3, P2e2 = −1

2 e1+(κ2+2κλ+ 1
2 )e2+

√
2
2 (κ+λ)e3,

P2e3 = −
√
2

2 (κ+ λ)e1 +
√
2
2 (κ+ λ)e2 + (κ2 + 2κλ)e3 and P2e4 = 3κ2e4.

Using the polar decomposition ∇H2 =
4∑

i=1

ϵiei(H2)ei, from condition (2.10(ii)) we get

(i) (κ2 + 2κλ− 1

2
− 9H2)ϵ1e1(H2)−

1

2
ϵ2e2(H2)−

√
2

2
(κ+ λ)ϵ3e3(H2) = 0,

(ii)
1

2
ϵ1e1(H2) + (κ2 + 2κλ+

1

2
− 9H2)ϵ2e2(H2) +

√
2

2
(κ+ λ)ϵ3e3(H2) = 0,

(iii)

√
2

2
(κ+ λ)(ϵ1e1(H2) + ϵ2e2(H2)) + (κ2 + 2κλ− 9H2)ϵ3e3(H2) = 0,

(iv) (3κ2 − 9H2)ϵ4e4(H2) = 0.

(3.32)

Now, we prove some simple claims.
Claim: e1(H2) = e2(H2) = e3(H2) = e4(H2) = 0.

If e1(H2) ̸= 0, then by dividing both sides of equalities (3.32(i, ii, iii)) by ϵ1e1(H2), and using
the identity 2H2 = κ2 + κλ in Case III, putting u1 := ϵ2e2(H2)

ϵ1e1(H2)
and u2 := ϵ3e3(H2)

ϵ1e1(H2)
, we get

(i) − 1

2
− 7

2
κ2 − 5

2
κλ− 1

2
u1 −

√
2

2
(κ+ λ)u2 = 0,

(ii)
1

2
+ (

1

2
− 7

2
κ2 − 5

2
κλ)u1 +

√
2

2
(κ+ λ)u2 = 0,

(iii)
−
√
2

2
(κ+ λ)(1 + u1)− (

7

2
κ2 +

5

2
κλ)u2 = 0,

(3.33)

which, by comparing (i) and (ii), gives −1
2 κ(7κ + 5λ)(1 + u1) = 0. If κ = 0, then H2 = 0.

Assuming κ ̸= 0, we get u1 = −1 or λ = − 7
5κ. If u1 ̸= −1 then λ = − 7

5κ, then by (3.33(iii)) we
obtain u1 = −1, which is a contradiction. Hence we have u1 = −1, which by (3.33(i, iii)) implies
u2 = 0.
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Now we discuss on two cases λ = − 7
5κ or λ ̸= − 7

5κ. If λ = − 7
5κ, then, κ = 5

2H1, H2 = −1
5 κ

2,
H3 = −4

5 κ
3 and H4 = −7

5 κ
4 are all constants on U . Also, the case λ ̸= − 7

5κ is in contradiction
with (3.33(ii)).

Hence, the first claim e1(H2) ≡ 0 is affirmed. Similarly, the second claim (i.e. e2(H2) = 0)
can be proved.

Now, applying the results e1(H2) = e2(H2) = 0, from (3.33(ii, iii)) we get e3(H2) = 0.
The final claim (i.e. e2(H2) = 0), can be proved using (3.33(iv)), in a straightforward

manner.

Proposition 3.7. Let x : M4
1 → M5 be an L1-biconservative connected orientable Lorentz

hypersurface with non-diagonal shape operator of form IV . If M4
1 has constant mean curvature

and a constant real principal curvature. Then its 2nd mean curvature has to be constant.

Proof. Suppose that, H2 be non-constant. Considering the open subset U = {p ∈M : ∇H2
2 (p) ̸=

0}, we try to show U = ∅. By assumption, the shape operator A of M4
1 is of type IV , then, with

respect to a suitable (local) orthonormal tangent frame {e1, · · · , e4} on M , the shape operator
A has the matrix form B4, such that Ae1 = κe1 − λe2, Ae2 = λe1 + κe2, Ae3 = η1e3, Ae4 = η2e4
and then, we have P2e1 = [κ(η1 + η2) + η1η2]e1 + λ(η1 + η2)e2, P2e2 = −λ(η1 + η2)e1 + [κ(η1 +
η2) + η1η2]e2, P2e3 = (κ2 + λ2 + 2κη2)e3 and P2e4 = (κ2 + λ2 + 2κη1)e4.

Using the polar decomposition ∇H2 =
4∑

i=1

ϵiei(H2)ei, from condition (2.10(ii)) we get

(i) (κη1 + κη2 + η1η2 − 9H2)ϵ1e1(H2)− λ(η1 + η2)ϵ2e2(H2) = 0,

(ii) λ(η1 + η2)ϵ1e1(H2) + (κη1 + κη2 + η1η2 − 9H2)ϵ2e2(H2) = 0,

(iii) (κ2 + λ2 + 2κη2 − 9H2)ϵ3e3(H2) = 0,

(iv) (κ2 + λ2 + 2κη1 − 9H2)ϵ4e4(H2) = 0,

(3.34)

Now, assuming H1 and η1 to be constant on M , the we prove four simple claims.
Claim: e1(H2) = e2(H2) = e3(H2) = e4(H2) = 0.

If e1(H2) ̸= 0, then by dividing both sides of equalities (3.34(i, ii)) by ϵ1e1(H2) and putting
u := ϵ2e2(H2)

ϵ1e1(H2)
we get

(i) κ(η1 + η2) + η1η2 − 9H2 = λ(η1 + η2)u,

(ii) (κ(η1 + η2) + η1η2 − 9H2)u = −λ(η1 + η2),
(3.35)

which, by substituting (i) in (ii), gives λ(η1 + η2)(1 + u2) = 0, then λ(η1 + η2) = 0. Since by
assumption λ ̸= 0, we get η1 + η2 = 0. So, by (3.35(i)), we obtain κ2 + λ2 = 1

3η
2
1 . Since one of

real principal curvatures η1 and η2 is assumed to be constant, we get that 9H2 = −η21 = −η21
is constant. Also, since H1 = 1

2κ is assumed to be constant, we get that H3 = −1
2 κη

2
1 and

H4 = −1
3 η

4
1 are constant. These results are in contradiction with the assumption e1(H2) ̸= 0.

Hence, the first claim is proved.
Similarly, if e2(H2) ̸= 0, then by dividing both sides of equalities (3.34(i, ii)) by ϵ2e2(H2)

and taking v := ϵ1e1(H2)
ϵ2e2(H2)

, we get λ(η1 + η2)(1 + v2) = 0, which by a similar way gives the same
results in contradiction with the assumption e2(H2) ̸= 0. Hence, the second claim is satisfied.

Now, in order to prove the third claim, we assume that e3(H2) ̸= 0. From equality (3.34(iii))
we have κ2 + λ2 + 2κη2 = 9H2, and by a straightforward computation we get

−3κ2 + 2(4H1 − η1)κ+ 3η1(4H1 − η1) = −λ2 < 0,
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then,
−2[2κ2 + (η1 − 4H1)κ+ 2η1(η1 − 3H1)] = −(λ2 + κ2 + η21) < 0.

Remember that the last inequality occurs if and only if we have δ < 0 where

δ = (η1 − 4H1)
2 − 16η1(η1 − 3H1) = −15η21 + 40η1H1 + 16H2

1 .

The condition δ < 0 is equivalent to a new inequality δ̄ < 0 where

δ̄ = (40H1)
2 + (4× 15× 16)H2

1 = 2560H2
1 ,

which is a contradiction. So, the third claim is proved.
To prove the final part of the claim, we assume that e4(H2) ̸= 0. From equality (3.34(iv))

we have κ2 + λ2 + 2κη1 = 9H2, and by a straightforward computation we get

−11κ2 + (24H1 − 10η1)κ+ 12η1H1 − 3η21 = −λ2 < 0,

then,
−2[6κ2 + (5η1 − 12H1)κ+ 2η1(η1 − 3H1)] = −(λ2 + κ2 + η21) < 0.

Remember that the last inequality occurs if and only if we have δ < 0 where

δ = (5η1 − 12H1)
2 − 48η1(η1 − 3H1) = −23η21 + 24η1H1 + 144H2

1 .

The condition δ < 0 is equivalent to a new inequality δ̄ < 0 where

δ̄ = (24H1)
2 + (4× 23× 144)H2

1 = 13824H2
1 ,

which is a contradiction. So, the 4th claim is proved. The final result is that H2 is constant on
M .
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