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On the Bari basis property for even-order

differential operators with involution

Dmitry M. Polyakov

Abstract. By using the method of similar operators we study even-order differential
operators with involution. The domain of these operators are defined by periodic
and antiperiodic boundary conditions. We obtain estimates for spectral projections
and we prove the Bari basis property for the system of eigenfunctions and associated
functions.
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1 Introduction and the main result

We consider the operator Sθ : D(Sθ) ⊂ L2(−1, 1) → L2(−1, 1), θ ∈ {0, 1}, given by

(Sθy)(x) = (−1)ky(2k)(−x)− p(x)y(x)− q(x)y(−x), k > 1,

where p and q are complex-valued functions and belong to L2(−1, 1). The domain D(Sθ) = {y ∈
H2k(−1, 1)}, k > 1, is defined by the following boundary conditions:
(a) periodic (θ = 0): y(j)(−1) = y(j)(1), j = 0, 1, . . . , 2k − 1;
(b) antiperiodic (θ = 1): y(j)(−1) = −y(j)(1), j = 0, 1, . . . , 2k − 1.

The differential operator Sθ contains the transformation of involution. Recall that the func-
tion φ such that φ(φ(x)) = x on a set X is called an involution on X. In this paper we consider
only the involution of the reflection φ(x) = −x.

Differential equations with an involution are a separate class of problems in the theory
of functional differential equations. The algebraic and analytic aspects of such equations were
studied by [1] and [2]. Spectral problems for differential operators with involution have been
investigated in most detail for first order differential operators (see [3] – [5] and the references
therein). The spectral properties of second-order differential operators were studied for particular
operators

(Ly)(x) = −y′′(−x), (L̃y)(x) = −y′′(x) + αy′′(−x), α ∈ (−1, 1),

acting in L2(−1, 1), with various boundary conditions. If α ̸= 0, then the spectral problems
require a special approach, since the term with involution is not subordinate to the term without
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involution. The basis property of the system of eigenfunctions and associated functions (SEAF)

for the operator L̃ was investigated in [6] – [10]. Inverse spectral problem for this operator was
solved in [11]. The convergence of spectral decompositions and basis property of the SEAF for
the operator L were established in [12] – [14].

Spectral properties of higher-order operators with involution are much less investigated. The
classification of general ordinary differential operators with involution depending on the type of
boundary conditions can be found in [15]. Theorems about unconditional basis property of the
SEAF with parentheses in L2(−1, 1) of general ordinary differential operators with involution
and regular boundary conditions were proved in [16].

In the present work we determine the estimates of spectral projections. In order to obtain
these estimates we apply the method of similar operators [17], [18], [19] to the operator Sθ. The
main idea of this method is to construct a similarity transform of the operator Sθ to an operator
of block-diagonal form. Using the estimates of spectral projections, we prove that the SEAF of
the operator Sθ forms the Bari basis in L2(−1, 1). Recall that the basis generated by projection
systems quadratically close to complete and minimal systems of orthogonal projections is called
the Bari basis. The Bari basis is a special class and the study of such bases has separate interest.

We have the following result.

Theorem 1.1. The system of eigenfunctions and associated functions of the operator Sθ, θ ∈
{0, 1}, forms the Bari basis in the space L2(−1, 1).

Note that any basis quadratically close to an orthogonal basis is the Riesz basis by the Bari-
Markus theorem (see [20, Ch. VI, Theorem 5.2]). Thus, the result on the Bari basis property is
a stronger than the Riesz basis property.

2 Auxiliary results and research technique

2.1 The unperturbed case.

Let θ ∈ {0, 1}. If p = q = 0, then Sθ is an unperturbed operator. We denote this operator by Aθ.
Direct verification shows that the operator Aθ with periodic (antiperiodic) boundary conditions
is self-adjoint operator with discrete spectrum. The eigenvalues λn = λn,θ, n ∈ Z, of the operator
Aθ are simple and have the form:

λn = −
(π
2
θ + πn

)2k

, for n < 0, λn =
(π
2
θ + πn

)2k

, for n ≥ 0.

We index these eigenvalues by the following way

· · · < λ−n−1 < λ−n < · · · < λ−1 < λ0 < λ1 < · · · < λn < λn+1 < . . . .

The eigenvalues λn, n < 0, correspond to the eigenfunctions en(x) = sin
(
πθ/2 + πn

)
x, x ∈

L2(−1, 1), n < 0, and the eigenvalues λn, n > 0, correspond to the eigenfunctions en(x) =
cos

(
πθ/2 + πn

)
x, x ∈ L2(−1, 1), n > 0. These eigenfunctions form orthonormal basis in

L2(−1, 1). The Riesz projections Pn, n ∈ Z, are defined by

Pnx = (x, en)en, n ∈ Z, (2.1)

for any vector x ∈ L2(−1, 1).
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We represent the operator Sθ in the form Sθ = Aθ − B, where Aθ is the unperturbed self-
adjoint operator and B is the operator of multiplication by p and q. In order to study the operator
Sθ we use the method of similar operators (see [17], [18], [19]). We describe the scheme of this
method in the next subsection.

2.2 The method of similar operators

Now we present the scheme of the method of similar operators. The theoretical facts of this
method can be found in [18, Sec. 2], [19, Sec. 3.1]. Note that our presentation will be adapted to
the operator Aθ.

We denote the space L2(−1, 1) by H with respect to norm ∥ · ∥. Moreover, we denote the
space of all linear bounded operators acting in H and the ideal of the Hilbert-Schmidt operators
by B(H) and S2(H) with respect to norm ∥·∥B(H) and ∥·∥2, respectively. We introduce the space
LAθ

(H) of all Aθ-bounded linear operators with the domain equal D(Aθ). This space is a Banach

space with respect to the norm ∥ · ∥A. Recall that a linear operator B̃ : D(B̃) ⊂ H → H is Aθ-

bounded if D(B̃) ⊇ D(Aθ) and ∥B̃∥A = inf{C > 0 : ∥B̃x∥ ≤ C(∥x∥+ ∥Aθx∥), x ∈ D(Aθ)} <∞.
Here and below we denote different positive constants by the general symbol C > 0.

The spectral properties Sθ are well-known for the operator Aθ, but the operator Sθ is not
similar to the operator Aθ. We select a Banach space U from LAθ

(H) such that it is possible

to transform the operator Sθ to an operator Aθ − B̃, where B̃ ∈ U. Furthermore, the operator
Aθ − B̃ has the block-diagonal structure and its spectral properties are easy to study. Since the
operators Sθ and Aθ − B̃ are similar, the operator Sθ has the same properties as Aθ − B̃. In
order to realize this idea, we need some technical tools.

Further in this section, we investigate the operator Aθ − B̃, where B̃ ∈ U.

Definition 1 ([19]). Let U be a linear subspace of LAθ
(H), and let J : U → U, Γ : U → B(H) be

linear operators. A triple (U, J,Γ) is called an admissible for the operator Aθ and U is the space
of admissible perturbations, if the following properties hold:

1) U is a Banach space with norm ∥ · ∥∗ such that there is a constant C > 0 that gives
∥X∥A ≤ C∥X∥∗ for any X ∈ U;

2) J and Γ are bounded linear operators, J is a projection;

3) (ΓX)D(Aθ) ⊂ D(Aθ) and

Aθ(ΓX)x− (ΓX)Aθx = (X − JX)x, x ∈ D(Aθ), X ∈ U, (2.2)

where ΓX ∈ B(H) is a unique solution of the equation AθY − Y Aθ = X − JX that satisfies
JY = 0;

4) XΓY , (ΓX)Y ∈ U for all X,Y ∈ U and there is a constant γ > 0 such that

∥Γ∥ ≤ γ, max{∥XΓY ∥∗, ∥(ΓX)Y ∥∗} ≤ γ∥X∥∗∥Y ∥∗;

5) for every X ∈ U and ε > 0 there exists a number λε ∈ ρ(Aθ) such that

∥X(Aθ − λεI)
−1∥ < ε,

where ρ(Aθ) is the resolvent set of the operator Aθ.

To get an idea about this definition, one should think of the operators involved in terms
of their matrices. The operator Aθ is represented by a diagonal matrix. The operator B̃ has a
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matrix with some kind of off-diagonal decay. The operator J acts as projection that picks out
the main (block) diagonal of an infinite matrix of the operator B̃. The operator Γ annihilates the
main (block) diagonal thereby enhancing the off-diagonal decay. Therefore, using the operators J
and Γ, we construct a sequence of transformations that yields to a stronger off-diagonal decrease
in the matrix of the operator B̃.

Now we formulate the main theorem of the method of similar operators for operator Aθ− B̃.
Introduce the function Φ : U → U by

Φ(X) = BΓX − (ΓX)(JB) +B. (2.3)

Theorem 2.1. Let (U, J,Γ) be an admissible triple for the operator Aθ and B̃ ∈ U. Assume that

γ∥J∥∥B̃∥∗ <
1

4
,

where γ comes from Definition 1. Then the operator Aθ − B̃ is similar to the operator Aθ −JX∗,
where X∗ is a unique fixed point of the map Φ : U → U given by (2.3) in the ball

B = {X ∈ U : ∥X − B̃∥∗ ≤ 3∥B̃∥∗}.

The similarity transform of Aθ − B̃ into A− JX∗ is given by I + ΓX∗.

The proof of this theorem can be found in [19, Theorem 3.1].

3 Preliminary similarity transformation

3.1 Construction of admissible triple

In this Section we apply the scheme of the method of similar operators to study the basis prop-
erties of the operator Sθ = Aθ − B. Recall that the operator Aθ is the unperturbed operator
and B is the operator of the multiplication on the function p and q. Note that the operator B is
Aθ-bounded. Therefore, B ∈ LAθ

(H).

Now we construct an admissible triple for the operator Aθ. We introduce a space U and
two operators J and Γ. Note that the admissible triple may be not unique. We choose the ideal
S2(H) of the Hilbert-Schmidt operators as the space of admissible perturbations U. We define
the operators J and Γ : U → U by

JX =
∑
j∈Z

PjXPj , ΓX =
∑
s,j∈Z
s̸=j

PsXPj

λs − λj
, X ∈ U, (3.1)

where Pj , j ∈ Z are defined by (2.1). These operators are well-defined, bounded, and the series
in (3.1) unconditionally converge in the uniform operator topology (see [19, Sec. 3.2]).

The extensions of the operators J and Γ to the space LAθ
(H) (which will be denoted by the

same symbols) are defined by

JX = J(X(Aθ − ψI)−1)(Aθ − ψI), X ∈ LAθ
(H),

ΓX = Γ(X(Aθ − ψI)−1)(Aθ − ψI), X ∈ LAθ
(H),

(3.2)

where ψ ∈ ρ(Aθ). These definitions are well-defined and independent on the choice of ψ.
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We need to consider resolutions of the identity given by

I =
∑

|j|≥m+1

Pj + P(m), P(m) =
∑

|j|≤m

Pj , m ∈ Z+.

We define two sequences of operators Jm and Γm, m ∈ Z+, as follows

JmX = JX − P(m)(JX)P(m) + P(m)XP(m) = P(m)XP(m) +
∑

|j|≥m+1

PjXPj ,

ΓmX = ΓX − P(m)(ΓX)P(m) =
∑

max{|s|,|j|}≥m+1
s ̸=j

PsXPj

λs − λj
.

(3.3)

Obviously, the operators J0 and Γ0 coincide with the operators J and Γ, respectively, and JmX
and ΓmX, m ∈ Z+, are finite-rank perturbations of JX and ΓX, X ∈ U. Furthermore,

lim
m→∞

ΓmX = 0

in the topology U. Therefore, ∥ΓmX∥∗ < 1 for m ∈ Z+ large enough. Moreover, the formulas
(3.2) imply that the operators JmX and ΓmX are well-defined for the operator X ∈ LAθ

(H).
Therefore, JmB and ΓmB also are well-defined for the perturbation B.

Thus, we construct the triple (U, Jm,Γm). It remains to prove that this triple is admissible.

Lemma 3.1. Assume that U = S2(H) and the operators Jm and Γm are defined by (3.3). Then
(U, Jm,Γm) is admissible triple for the operator Aθ.

Proof. We prove that all properties of Definition 1 hold. Property 1) immediately follows from
the definition of the space U. Property 2) holds by the definitions of Jm, Γm, and [19, Lemma 3.4].

We prove Property 3). Let x ∈ D(Aθ) and ψ ∈ ρ(Aθ). There exists y ∈ H such that

x = (Aθ − ψI)−1y =
∑
j∈Z

1

λj − ψ
Pjy,

where Pj , j ∈ Z, are defined by (2.1). Then

(ΓX)x = (ΓX)(Aθ − ψI)−1y =
∑
s,j∈Z
s̸=j

PsXPjy

(λs − λj)(λj − ψ)

=
∑
s,j∈Z
s̸=j

PsXPjy

(λs − λj)(λs − ψ)
+

∑
s,j∈Z
s̸=j

PsXPjy

(λs − ψ)(λj − ψ)

= (Aθ − ψI)−1(ΓX)y + (Aθ − ψI)−1(ΓX)(Aθ − ψI)−1y

= (Aθ − ψI)−1(ΓX)(x+ y) ∈ D(Aθ).

Therefore, (ΓX)D(Aθ) ⊂ D(Aθ). Moreover, for X ∈ S2(H) and x ∈ D(Aθ) we get

Aθ(ΓX)x− (ΓX)Aθx =
∑
s,j∈Z
s ̸=j

λsPsXPjx

λs − λj
−

∑
s,j∈Z
s̸=j

λjPsXPjx

λs − λj
=

∑
s,j∈Z
s ̸=j

PsXPjx = (X − JX)x.
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Thus, the identity (2.2) holds. It follows from (3.1) that J(ΓX) = 0 for allX ∈ S2(H). Obviously,
this proof holds for the operators Jm and Γm. Property 3) is proved.

We establish Property 4). Let X, Y ∈ S2(H). We prove that XΓY belongs to S2(H).
Recall that the operator Γ is bounded. Then

∥XΓY ∥22 =
∑
s,j∈Z
s̸=j

∥XPsY Pj∥22
|λs − λj |2

≤ γ2∥X∥22
∑
s,j∈Z
s̸=j

∥PsY Pj∥22 ≤ γ2∥X∥22∥Y ∥22,

where γ has the form

γ =
(
max
s∈Z

∑
j∈Z\{s}

|λs − λj |−2
)1/2

.

These estimates give ∥XΓY ∥2 ≤ γ∥X∥2∥Y ∥2. The same inequality for the operator (ΓX)Y is
established by a similar way. Obviously, this proof holds for the operators Jm and Γm. Property
4) is proved.

Property 5) is easily established by direct computation. We put θ = 0 for simplicity. Assume
that X ∈ S2(H), ε > 0, and λε = π2kn. Then

∥X(Aθ − λεI)
−1∥ ≤ ∥X∥2 max

s∈Z

1

|λs − π2kn|
≤ C∥X∥2

(
max
s≥0

1

|(πs)2k − π2kn|

)
≤ C

n
.

Therefore, by these estimates and an appropriate choice of n, we get the inequality ∥X(Aθ −
λεI)

−1∥ < ε. In the case θ = 1 this estimate is established in a similar way. Property 5) is
proved. Therefore, (U, Jm,Γm) is admissible triple for the operator Aθ.

3.2 Preliminary similarity transformation for the operator Sθ

We constructed the admissible triple for the operator Aθ in the previous subsection. The operator
Aθ satisfies the assumptions of Theorem 2.1, but the perturbation B does not belong to the space
U. Therefore, we can’t directly use Theorem 2.1. We need to transform the operator Sθ = Aθ−B
to the operator Aθ − B̃, where B̃ ∈ U. In the method of similar operators this procedure is
preliminary similarity transformation. Then we can apply the results of Theorem 2.1.

Now we study the properties of the operators B, JmB, and ΓmB. Introduce the Fourier
coefficients of a function f ∈ L2(−1, 1) by

f̂0 =

∫ 1

−1

f(x) dx, f̂cn,n =

∫ 1

−1

f(x) cosπnx dx, f̂sn,n =

∫ 1

−1

f(x) sinπnx dx, n ∈ Z.

Without loss of generality we assume that p̂0 = q̂0 = 0 for the functions p and q. Since the
eigenvalues of the operator Aθ are simple, the corresponding matrix has size 1 × 1. Therefore,
the matrix (Bsj)s,j∈Z of the perturbation B has the same size and Bsj = (Bej , es). We consider
all possible situations.
1) Let s, j ≥ 0. Then

B1
sj = (Bej , es) =

∫ 1

−1

(
p(x) cos

(π
2
θ + πj

)
x+ q(x) cos

(π
2
θ + πj

)
x
)
cos

(π
2
θ + πs

)
x dx

=
1

2

∫ 1

−1

(
p(x) + q(x)

)(
cosπ(j − s)x+ cosπ(j + s+ θ)x

)
dx

=
1

2

(
p̂cn,j−s + q̂cn,j−s + p̂cn,j+s+θ + q̂cn,j+s+θ

)
.

(3.4)
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2) Let s, j < 0. Then

B2
sj = (Bej , es) =

∫ 1

−1

(
p(x) sin

(π
2
θ + πj

)
x− q(x) sin

(π
2
θ + πj

)
x
)
sin

(π
2
θ + πs

)
x dx

=
1

2

∫ 1

−1

(
p(x)− q(x)

)(
cosπ(j − s)x− cosπ(j + s+ θ)x

)
dx

=
1

2

(
p̂cn,j−s − q̂cn,j−s − p̂cn,j+s+θ + q̂cn,j+s+θ

)
.

(3.5)

3) Let s ≥ 0, j < 0. Then

B3
sj = (Bej , es) =

∫ 1

−1

(
p(x) sin

(π
2
θ + πj

)
x− q(x) sin

(π
2
θ + πj

)
x
)
cos

(π
2
θ + πs

)
x dx

=
1

2

∫ 1

−1

(
p(x)− q(x)

)(
sinπ(j − s)x+ sinπ(j + s+ θ)x

)
dx

=
1

2

(
p̂sn,j−s − q̂sn,j−s + p̂sn,j+s+θ − q̂sn,j+s+θ

)
.

(3.6)

4) Let s < 0, j ≥ 0. Then

B4
sj = (Bej , es) =

∫ 1

−1

(
p(x) cos

(π
2
θ + πj

)
x+ q(x) cos

(π
2
θ + πj

)
x
)
sin

(π
2
θ + πs

)
x dx

=
1

2

∫ 1

−1

(
p(x) + q(x)

)(
sinπ(s− j)x+ sinπ(s+ j + θ)x

)
dx

=
1

2

(
p̂sn,s−j + q̂sn,s−j + p̂sn,s+j+θ + q̂sn,s+j+θ

)
.

(3.7)

Since the matrix of the operator B has different values depending on the sign s and j, we use the
general symbol Bsj to denote the matrix of the operator B. Moreover, the identities (3.1) imply
that the elements of matrices of operators JB and ΓB have the form

(JB)sj = δs−jBsj , (ΓB)sj =
Bsj

λs − λj
, s, j ∈ Z. (3.8)

Now we proceed to preliminary similarity transformation of the operator Sθ. The next
auxiliary lemma is basis of this procedure.

Lemma 3.2. Let m ∈ Z+ be large enough. The operators B, JmB, and ΓmB satisfy the following
properties:
(a) ΓmB ∈ S2(H) and ∥ΓmB∥2 < 1. Moreover,

∥Pn(ΓmB)∥2 ≤ C

n2k−1
, ∥(ΓmB)Pn∥2 ≤ C

n2k−1
, (3.9)

where C > 0 is some constant;
(b) (ΓmB)D(Aθ) ⊂ D(Aθ);
(c) BΓmB, (ΓmB)JmB ∈ U;
(d) Aθ(ΓmB)x− (ΓmB)Aθx = (B − JmB)x, x ∈ D(Aθ);
(e) for any ε > 0 there is λε ∈ ρ(Aθ) such that ∥B(Aθ − λεI)

−1∥ < ε.
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Proof. We prove Property (a). Recall that (see [20, Sec. 9]) a operator X is the Hilbert-Schmidt
operator if ∑

s,j∈Z
|(Xej , es)|2 <∞

for some orthonormal basis {ej}j∈Z. Now we establish this condition for the operator ΓB. Using
the second identity from (3.8), we have∑

s,j∈Z
s ̸=j

|(ΓBej , es)|2

=
24k

π4k

( ∑
s,j≥0
s̸=j

|B1
sj |2

|(2s+ θ)2k − (2j + θ)2k|2
+

∑
s,j<0
s̸=j

|B2
sj |2

|(2s+ θ)2k − (2j + θ)2k|2

+
∑

s≥0,j<0
s ̸=j

|B3
sj |2

|(2s+ θ)2k + (2j + θ)2k|2
+

∑
s<0,j≥0

s̸=j

|B4
sj |2

|(2s+ θ)2k + (2j + θ)2k|2

)
,

(3.10)

where Bi
sj , i = 1, 2, 3, 4, are defined by the definitions (3.4) – (3.7). Now we estimate the first

sum in (3.10). We get∑
s,j≥0
s̸=j

|B1
sj |2

|(2s+ θ)2k − (2j + θ)2k|2
=

∑
s,j≥0
s̸=j

|B1
sj |2(

(2s+ θ)k − (2j + θ)k
)2(

(2s+ θ)k + (2j + θ)k
)2

≤ 1

4

∑
s>0

1

(2s+ θ)2k

∑
j≥0
j ̸=s

|B1
sj |2

(s− j)2((2s+ θ)k−1 + (2s+ θ)k−2(2j + θ) + · · ·+ (2j + θ)k−1)2

≤ ∥p∥2 + ∥q∥2

4

∑
s>0

1

(2s+ θ)4k−2
<∞.

We estimate the other terms in the right-hand side of (3.10) by a similar way. Therefore, ΓB is
the Hilbert-Schmidt operator. The formula (3.3) shows that the operator ΓmB differs from ΓB
by a finite-rank operator. Therefore, ΓmB ∈ S2(H) and ∥ΓmB∥2 < 1 for m ∈ Z+ large enough
(see also (3.3)).

Now we prove the inequalities (3.9). Fix a number n ≥ 0. The case n < 0 is considered by
a similar way. Then

∥Pn(ΓmB)∥22 ≤ ∥Pn(ΓB)∥22 =
∑
s,j∈Z
s̸=j

|(Pn(ΓB)ej , es)|2

=
24k

π4k

(∑
j≥0
j ̸=n

|B1
nj |2

|(2n+ θ)2k − (2j + θ)2k|2
+

∑
j<0
j ̸=n

|B3
nj |2

|(2n+ θ)2k + (2j + θ)2k|2

)
,

(3.11)

where Bi
sj , i = 1, 3, are defined by the definitions (3.4) and (3.6). Now we estimate the first sum

in (3.11). We have∑
j≥0
j ̸=n

|B1
nj |2

|(2n+ θ)2k − (2j + θ)2k|2
=

∑
j≥0
j ̸=n

|B1
nj |2(

(2n+ θ)k − (2j + θ)k
)2(

(2n+ θ)k + (2j + θ)k
)2
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≤ 1

4(2n+ θ)2k

∑
j≥0
j ̸=n

|B1
nj |2

(n− j)2((2n+ θ)k−1 + (2n+ θ)k−2(2j + θ) + · · ·+ (2j + θ)k−1)2

≤ ∥p∥2 + ∥q∥2

4(2n+ θ)4k−2
.

Similar arguments yield the same estimate for the second sum in (3.11). Therefore,

∑
j≥0
j ̸=n

|B1
nj |2

|(2n+ θ)2k − (2j + θ)2k|2
≤ ∥p∥2 + ∥q∥2

4(2n+ θ)4k−2
,

∑
j<0
j ̸=n

|B3
nj |2

|(2n+ θ)2k + (2j + θ)2k|2
≤ ∥p∥2 + ∥q∥2

4(2n+ θ)4k−2
.

Substituting these inequalities into (3.11), we obtain the first estimate in (3.9). Using similar
arguments for the operator (ΓmB)Pn, we get the second estimate in (3.9). Property (a) is proved.

The proof of Property (b) completely repeats the proof of Lemma 3.1 (Condition 3).

We prove Property (c). Show that the operator JmB is the Hilbert-Schmidt operator. Using
the first definition from (3.8), and the identities (3.4), (3.5), and p̂0 = q̂0 = 0, we have∑

j∈Z
|Bjj |2 =

∑
j≥0

|B1
jj |2 +

∑
j<0

|B2
jj |2

≤ 1

4

∑
j≥0

∣∣p̂cn,2j+θ + q̂cn,2j+θ

∣∣2 + 1

4

∑
j<0

∣∣− p̂cn,2j+θ + q̂cn,2j+θ

∣∣2 ≤ ∥p∥2 + ∥q∥2.

Therefore, JB ∈ S2(H). It follows from (3.3) that the operator JmB differs from JB by a
finite-rank operator. Thus, JmB ∈ S2(H).

Now we establish that the operator BΓB is the Hilbert-Schmidt operator. Using the second
definition from (3.8), we get

(BΓB)sj =
∑
l∈Z
l ̸=j

BslBlj

λl − λj
, s, j ∈ Z.

Recall that Bsj is the matrix of operator B. We prove that
∑

s,j∈Z |(BΓB)sj |2 < ∞. It follows
from [17, Lemma 7] that ∑

s,j≥0

∣∣∣∣∑
l≥0
l ̸=s

B1
slB

1
lj

l2 − j2

∣∣∣∣2 <∞.

Obviously, all terms in the representation of the matrix (BΓB)sj in our case are reduced to this
form. Therefore, BΓB ∈ S2(H). It follows from (3.3) that the operator ΓmB differs from ΓB by
a finite-rank operator. Thus, BΓmB ∈ S2(H). Property (c) is proved.

Property (d) is proved by direct computations. Consider the matrix of the operator (ΓB)(Aθ−
ψI)−1 − (Aθ − ψI)−1(ΓB) for ψ ∈ ρ(Aθ). We have

Bsj

(λs − λj)(λj − ψ)
− Bsj

(λs − ψ)(λs − λj)
=

Bsj

(λj − ψ)(λs − ψ)
.
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Note that the last representation is the matrix of the operator (Aθ−ψI)−1(B−JB)(Aθ−ψI)−1.
Therefore, the matrices of the operators (ΓB)(Aθ−ψI)−1−(Aθ−ψI)−1(ΓB) and (Aθ−ψI)−1(B−
JB)(Aθ − ψI)−1 coincide. Thus, Aθ(ΓB)x − (ΓB)Aθx = (B − JB)x, x ∈ D(Aθ). Using this
identity and the formula (3.3), we have

Aθ(ΓmB)x = Aθ(ΓB)x−AθP(m)(ΓB)P(m)x = Aθ(ΓB)x− P(m)(Aθ(ΓB))P(m)x

= (B − JB)x+ (ΓB)Aθx− P(m)(B − JB)P(m)x− P(m)((ΓB)Aθ)P(m)x

= (B − JmB)x+ (ΓmB)Aθx.

Property (d) is proved.

Using similar arguments as [17, Lemma 8], we obtain Property (e).

We establish that the operator Sθ is similar to the operator Aθ − B̃, where B̃ is the Hilbert-
Schmidt operator, i. e. B̃ ∈ U. Directly from Lemma 3.2 and [19, Theorem 3.3], we have the
following result.

Theorem 3.1. The operator Sθ = Aθ −B is similar to Aθ − B̃, where B̃ ∈ U and has the form

B̃ = JmB + (I + ΓmB)−1(BΓmB − (ΓmB)JmB). (3.12)

The similarity transform is given by I + ΓmB such that

(Aθ −B)(I + ΓmB) = (I + ΓmB)(Aθ − B̃).

4 The proof of the main result

In this section we prove Theorem 1.1. In order to obtain this result we use the scheme of Section 2.

Proof of Theorem 1.1. By Theorem 3.1 the operator Sθ is similar to the operator Aθ − B̃, where
B̃ ∈ U and has the form (3.12). Moreover, the similarity transform is given by I + ΓmB.

Now we consider the operator Aθ − B̃. Applying Theorem 2.1 to this operator, we see that
the operator Aθ − B̃ is similar to the operator A−JmX∗, where X∗ is a unique fixed point of the
map Φ : U → U given by (2.3). The similarity transformation is the operator I + ΓmX∗. Then

Sθ = (I + ΓmB)(Aθ − B̃)(I + ΓmB)−1

= (I + ΓmB)(I + ΓmX∗)(Aθ − JmX∗)(I + ΓmX∗)
−1(I + ΓmB)−1

= (I + Vm)(Aθ − JmX∗)(I + Vm)−1,

(4.1)

where Vm is defined by

Vm = ΓmB + ΓmX∗ + (ΓmB)(ΓmX∗). (4.2)

Recall that the Riesz projections Pn, n ∈ Z, are defined by (2.1). These projections are con-
structed for the set {λn}, where λn, n ∈ Z, are eigenvalues of the operator Aθ. Consider the

operator Sθ. It follows from [21] that the eigenvalues λ̃n, n ∈ Z, of the operator Sθ are simple
and labeled by

· · · ≤ Re λ̃−n−1 ≤ Re λ̃−n ≤ · · · ≤ Re λ̃−1 ≤ Re λ̃0 ≤ Re λ̃1 ≤ · · · ≤ Re λ̃n ≤ Re λ̃n+1 ≤ . . . .
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Introduce the Riesz projections P̃n, n ∈ Z, constructed for the sets {λ̃n}. The similarity of the

operators Sθ and A−JmX∗ and [18, Lemma 1] imply that the projections P̃n and Pn are similar.
Moreover, the relations (4.1) and [18, Lemma 1] yield the following identity

P̃n = (I + Vm)Pn(I + Vm)−1,

where Vm is defined by (4.2). Therefore,

P̃n − Pn = (I + Vm)Pn(I + Vm)−1 − Pn = (VmPn − PnVm)(I + Vm)−1.

Now we estimate this representation. Using (4.2), we get

∥P̃n − Pn∥22 = ∥(VmPn − PnVm)(I + Vm)−1∥22 ≤ C∥VmPn − PnVm∥22
≤ C

(
∥VmPn∥22 + ∥PnVm∥22

)
≤ C

(
∥
(
ΓmB + ΓmX∗ + (ΓmB)(ΓmX∗)

)
Pn∥22

+ ∥Pn

(
ΓmB + ΓmX∗ + (ΓmB)(ΓmX∗)

)
∥22
)

≤ C
(
∥(ΓmB)Pn∥22 + ∥(ΓmX∗)Pn∥22 + ∥Pn(ΓmB)∥22 + ∥Pn(ΓmX∗)∥22

)
.

(4.3)

Here we used that the operators ΓmX∗ and ΓmB are bounded. Thus, we need to estimate
∥(ΓmX∗)Pn∥2. We have

∥(ΓmX∗)Pn∥22 ≤ ∥(ΓX∗)Pn∥22

=

∥∥∥∥∑
j∈Z

PjX∗Pn

λj − λn

∥∥∥∥2
2

≤ sup
j∈Z

1

|λj − λn|2
∑
j∈Z

∥PjX∗Pn∥22

≤ C∥X∗∥22 sup
j≥0

1

|(2j + θ)2k − (2n+ θ)2k|2

≤ C∥X∗∥22 sup
j≥0

1(
(2j + θ)k − (2n+ θ)k

)2(
(2j + θ)k + (2n+ θ)k

)2
≤ C∥X∗∥22

4(2n+ θ)2k
sup
j≥0

1

(j − n)2((2j + θ)k−1 + (2j + θ)k−2(2n+ θ) + · · ·+ (2n+ θ)k−1)2

≤ C

n4k−2
.

Using similar arguments, we obtain the same estimate for ∥Pn(ΓmX∗)∥22. Therefore,

∥(ΓmX∗)Pn∥22 ≤ C

n4k−2
, ∥Pn(ΓmX∗)∥22 ≤ C

n4k−2
. (4.4)

Substituting (3.9) and (4.4) into (4.3), we obtain

∥P̃n − Pn∥22 ≤ C

n4k−2
.

Therefore, ∑
|n|≥m+1

∥P̃n − Pn∥22 <∞.

This estimate and the Bari-Markus theorem (see [20, Ch. VI, Theorem 5.2]) imply that the
system of eigenfunctions and associated functions forms the Bari basis in L2(−1, 1).
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