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ANOTE ON SOLVABILITY OF THREE-POINT BOUNDARY
VALUE PROBLEMS FOR THIRD-ORDER DIFFERENTIAL
EQUATIONS WITH p-LAPLACIAN

XINGYUAN LIU AND YUJI LIU

Abstract. Third-point boundary value problems for third-order differential equation

[GOGE (O + kx' (1) + gt x(0), /(1) = p(8), t€ (0,1),
O =x' 1) =x(m)=0

is considered. Sufficient conditions for the existence of at least one solution of above problem are established. Some
known results are improved.

1. Introduction

In [1], the solvability of problem

{ X" (1) + K2X (D) + g(x, x') = p(1), te(0,m),
(1)

X)) =x'(m)=x(m) =0

was studied, where 0 <7 < 7 and

(B1). g(u, v) is continuous in R?, has continuous partial derivatives g, and g,, bounded in
R?;

(B2). 11=gyl++/7lgul < 2k for k€ N\{1}, |1-g|+v7lgul <2for k =1, and lim)|—co vg (1, v) =
1 # 0 uniformly for u € R.

Problem (1) when k = 1 was also studied by Nagle and Pothoven [2] and by Rovderova [4]
under the condition

(B3). g is bounded on one side and continuous.

In [3], Gupta studied the existence of solutions to boundary value problems similar to (1)
of the type

{ (O +7%x (1) + g(t,x, %', X" = p(1), te(0,1),
)

x'(0) = x'(1) = x(m) =0,
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where g is a Caratheodory function and p € L'10,1], under the conditions
(©). fol p(t)sinmtdt =0, and g satisfies

gt,u,v,w)v=0, fortel0,1], u,v,weR,

and
lim g(t,u,v,w)

<372 uniformly for (¢, u, w) € [0,1] x R?.
|v]—o00 v

The purpose of this paper is to establish new sufficient conditions for the existence of at
least one solution of problem

{ [q(OPx" (O] + kx' (1) + g(t, x(8), x' (1)) = p(1), t€(0,1), -

x'(0)=x'(1)=x(m =0,

where k € R, g,p € L'[0,1] and g is a Caratheodory function, ¢(x) = |x|P~2x for x # 0 and
¢(0) =0, which is called p-Laplacian.

In Section 2, we establish existence results for problem (3). The examples, which can not
be solved by result in [1-3], to illustrate the main theorems will be given in Section 4.

2. Main Result

Let X = C'[0,1] x C°[0,1], Y = L'[0,1] x L'[0,1], their norms are defined by ||(x, y)|| =
max{|| /oo, [1x'lloo, [1¥lloo} for (x, y) € X and |I(u, v)|| = max{fy [u(s)lds, fy [v(s)lds} for (u,v) €
Y, respectively. Then X and Y are Banach spaces.

Let D(L) = {(x,y) € X : x"" € L'(0,1), (g¥)" € L' (0, 1) with x'(0) = x'(1) = x(n)) = 0}. Define the
linear operator L: D(L)n X — Y by

x(1) X" (1) )
L = forall (x,y) € D(L) N X.
(y(t)) ((q(t)y(t))’ orall (x,y) € D(L)n

Define the nonlinear operator N: X — Y by

x(0) _ (¢ y@)
(y(t)) - (—kx’(t) — g, x(0, (D) + p(py) A BV € X
It is easy to show that KerL = {(0,¢/q(#)) : c € R}; ImL = {(4,v) € Y : fol u(s)ds =0}; Lis a
Fredholm operator of index zero; There are projectors P: X — X and Q: Y — Y such that
KerL = ImP and KerQ = ImL. In fact, we have

x(1) 0
P = f . X,
(ym) (yw)/qm) or(x.y)e

un)) _ folu(t)dt)
Q(v(t))_(o for (u,v) € Y.
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Furthermore, let Q < X be an open bounded subset with QnD(L) # @, then N is L-compact
on Q; (x, ¥) € D(L) is a solution of the operator equation L(x,y) = N(x, y) implies that x is a
solution of problem (3).

Suppose

(A}). There are bounded functions a € L' (0, 1), bounded function b € L' (0, 1) and function
r e L1(0,1) such that g(t,x,y) = h(t,x,y)+ f(t,x,y), and there are positive constants 3,0 such
that h(t,x,y)y < —ﬁ|y|9+1, and |f(t,x, )| < a(z‘)lxl‘9 + b(t)|y|9 + (1), forall (x,y) € R? and a.e.
tel0,1].

(Ap).If6 > 1, then

SN S
[1Dlloo + fo la(t)| "o dt) <p;

if @ =1, then
1
1 2
B+ bl + [ |a(t)|2dt) <p.
0

(As3). There is a constant ¢ > 0 such that g(¢) = 6 forall £ € [0, 1].
Now, consider L(x,y) = AN(x, y) with A € (0,1). We have

{x”(t) = oL (y(1)),
(q(y®) =A—kx' (1) — g(t,x,x') + p(D).

It follows that
[g(DP" (N = pMA(—kX (1) — g(t, x, x') + p(1)). (4)

Thus
[P ()X (1) = pA(=kx' (1) — g(t, x, X') + p(£) X' ().

Since x'(0) = x'(1) = 0 implies that

1 1
f [q(Pp" ("X (Ddt = —f g@p("(0)x"(Hdt <0,
0 0

we get
1 1 1
—kf [x'(t)]zdt+f p(t)x'(t)dtsf g(t,x(0),x' ()X (ndr.
0 0 0

(A;) implies that
1 1 1 1
ﬁf |x’(t)|9+1dtskf [x'(t)]zdt—f p(t))x'(t)dt+f f(t,x(0),x' ()X (Hdt
0 0 0 0
1 1 1
skfo [x’(mzdwfo |p(t)||x’(t)|dt+f0 la(®)l1x(0)|°1x (1)l dt
1 1
+ [Ciboix oaes [ oo
0 0

1
< kf X (012dt
0
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0 1
1 N 7+1 1 o+1
+(f (|p<r)|+|r(t)|>%dt) (f |x’m|9“dr) 1
0 0

1 1 1 0
+||b||oof IX'(t)IBHdHf Ia(t)IIX'(t)Idt(f IX'(t)Idt)
0 0 0

1
< kf X (0)%dt
0

0 1
1 . 751 ( 1 7T
+(f (|p<r)|+|r(t)|>%dt) (f |x’m|9“dr) 1
0 0

1
+||b||oof X' (0% dr
0

0 1 0

1 . 71 [ 1 71 (1 =

+(f |am|%ldt) (f |x’m|9“dr) (f |x'(t)|9+1dt) 1
0 0 0

1
< kf (X' (D)%dt
0

0 1
1 + o+1 1 0+1
+(f (|p(t)|+|r(t)|)%dr) (f |x’(r)|9“dt) 1
0 0

1
+||b||oof (010 dr
0

1 041
+(f la(t)| o dt)
0
1 3\ p1
(ﬁ—k—||b||oo—(f |a(t)|2dr) )f I/ (1) dt
0 0

1 50l 3
s(fo (Ip(t)|+|r(t)|)2dt) (fo |x'm|2dr) .

If6 >1and k <0, then

0
1 N o+ 1
(ﬁ—nbnoo—(f |am|971dr) )f (0P de
0 0

0 1
1 o \7T ([l T
s(f (|p(t)|+|r(r)|)%dt) (f |x’m|9”dt) y
0 0

If6 >1and k >0, then

0
0+1

1
f 1% (00 dz.
0

If6 =1, then

1 ’ T
(ﬁ— 1blleo - (f |a(t)|%dt)g 1 )f (0P de
0 0

0 1 2
1 . o+1 1 7+1 1 o+1
s(f (|p(t)|+|r(r)|)%dt) (f |x’(t)|9+1dt) 1+kf |x’m|9“dt) n
0 0 0
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It follows from (A») that there is a constant M > 0 such that fol Ix' (019 1dr < M.
It is easy from (A3) to get

1 1
6[ |x”(t)|Pdtsf qg(ex" ) x"(dt
0 0
1 1 1
=¢>(/1)/l(kf [x’(t)]zdt+f g(t,x(t),x’(t))x’(t)dt—f p(t)x'(t)dt)
0 0 0
1 1 1
slklf [x’(t)]zdt+f h(t,x(t),x’(t))x’(t)dHf Lf (2, x(0), X (NIX (1) d ¢t
0 0 0
1
+f0 IO (ldt
1 1 1
slklf0 [x’(t)]zdwfo |f(t,x(t),x’(t))||x’(t)|dt+f0 Ip(Ollx'()|dt
1 1
S|k|f [x’(t)]zdwf IGIEAGINE
0 0
1 1 1
+f |a(t)||x(t)|"|x’(t)|dt+[ |b(t)|x’(t)|"“dr+f Ir(Ollx ()ldt
0 0 0

1
|k|+[f01 (o) dt)’ +||b||00] Jo 1X'(02dt

1
+(f01(|p(t)|+|r(t)|)2dt) (/o |x(t)|2dt)2
0
|k|(f01|x’(t)|9+1dt)0“ (o ap@1+1r@nF ar) ™ 1@ ar
0 1
+(Jo1anF ad) T (g 120 )™
+||b||oof(}|x'<r)|9+1dt.

1
M+ (3 Upol+Irn?de)” M

1+ 1aPd)* +1blle

6
=\ KM +(fo Up@]+ 10D+ ar) ™ ma

0
0+1 T
+( 1@ de) T M+ 1Bl M.

Hence thereisa constant M; > 0such that fo |x"(8)|Pdt < M;. It follows that |x' ()] < fol Ix"(0)|dt <

(/o |x”(t)|Pdt)” < M’” for all £ € [0,1]. Thus |x(5)] < [} 1x'(D)ldt < M” for all ¢ € [0,1]. and

X' (0)| = Ml” forall r€10,1].
Since x'(0) = x'(1) = 0, there is € € [0, 1] such that y(£) = 0. Then

t
lg(t)y(0)] = ‘Q(E)J/(EHj; (q(9)y(s)'ds

1 1 1
s|k|f |x’(t)|dt+[ |g(r,x(t>,x’<r))|dt+f \p(0)|dt
0 0 0
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1 1
< |kIM] + max X |g(t,x,y)|+f Ip(n)ldt.
te(0,1),lx1=M/ lyl=M] 0
Hence
B 1
|kIM,” + max 1 gt x, I+ [y Ip(nlde
te(0,1],1xlsM” lylsMm
ly(D)] = 5 for all t€0,1].
Let

Q1 ={(x,y) e D)X :L(x,y») =AN(x,y), A€ (0,1)}.
It follows from above discussion that ; is bounded.
Now, for (x,y) = (0,¢/q(t)) € KerL, if N(0,c/q(¢)) € ImL, then fol (p‘l(c/q(t))dt =0, it fol-
lows that ¢ = 0. Let
Qp ={(x,y) €KerL: N(x,y) € ImL}.

Then Q, = {0}.
Let
Qs ={xeKerL: AAx+(1-1)QNx=0, A€]0,1]},

where A : Y/ImL — KerL is given by A" e, 0) = (0, c/q(t)). For (0,c/q(1)) € Q3, and A € [0,1],
we have
—(1-1)Q(¢p(c/q(1), f(£,0,0)) =AA(0,c/q(1)).

It follows that .
- —/1)] ¢lclq())dt = Ac.
0

IfA=1,thenc=0.If 1 €[0,1), then

1
0<Ac?=-(1 —/l)cgb(c)f $(/q(1)dr <0,
0

a contradiction. So Q3 = {0}.
Let X and Y be Banach spaces, L: D(L) c X — Y be a Fredholm operator of index zero,
P: X— X, Q:Y — Y be projectors such that

ImP=KerL KerQ=ImL, X=KerLeKerP, Y=ImL&ImQ.

It follows that
LipynKerp: P NKer P—1Im L

is invertible, we denote the inverse of that map by K.
If Q is an open bounded subset of X, D(L) n Q # @, the map N : X — Y will be called
L-compact on Q if QN(Q) is bounded and K, (/1 - Q)N : Q — X is compact.

Theorem 2.1.([5]) Let L be a Fredholm operator of index zero and let N be L-compact on Q.
Assume that the following conditions are satisfied:



ANOTE ON SOLVABILITY OF THREE-POINT BOUNDARY VALUE PROBLEMS 101

(i) Lx# ANx forevery (x,A) € [(domL\ KerL) n0Q] x (0,1);
(ii) Nx ¢ ImL for every x € KerL N 0%);
(iii) deg(AQN | Ker » 2N KerL,0) #0, where A: Y /ImL — KerL is the isomorphism.
Then the equation Lx = Nx has at least one solution in D(L) N Q.

Theorem L. Suppose that (A1) — (A3z) hold. Then problem (3) has at least one solution.

Proof. Set Q2 be a open bounded subset of X such that (0,0) € Q2 Q;. We know that L is
a Fredholm operator of index zero and N is L-compact on Q. By the definition of Q, we have
Lx# ANx for xe (D(L)/KerL)noQ and A € (0,1); Nx ¢ ImL for x € KerL N 0Q. _
In fact, let H(x,A) = A A x+ (1 - ))QNx. According the definition of Q, we know Q > Qg3,
thus H(x, 1) # 0 for x € 0Q nKerL, thus by homotopy property of degree,
deg(QNI|KerL,QnKerL,0) = deg(H(-,0),QnKerL,0)
=deg(H(-,1),Q2NKerL,0) =deg(n,Q2nKerL,0) #0.

Thus by Theorem 2.1, L(x, y) = N(x, y) has atleast one solution in D(L) NQ, then x is a solution
of problem (3). The proofis completed.

3. Examples
In this section, we present an example to illustrate the main result.
Example 3.1. Consider the problem

{[uz+mx%nr+kMU)=ﬁggﬁ%%%+aunxunz“1+bunx%nﬁ“*+ruxte(alx -

x@0)=xP(1), i=0,1,2,

where >0, k € R, | is a positive integer, a,b,r € LY0,1]. Corresponding to problem (3), let
I+
o(x)=x,8(t,x,y)=-P W a2ttt - b(H)y** 1 —r(t), p() =0 and set

2+sinx?

21+1

ht,x,y) = —p—2 5 f(tx,y) = —a®x* " = by - r (1),

2+sinx

It is easy to show from Theorem L that problem (5) has at least one solution if / > 0, and

L
HM@+‘£Imnlﬂd4 <B

orif/ =0and )

1 :
f Ia(t)lzdt) <B.
0

The equation in problem (5) can be transformed into

k+11Dlloo +

X" () +

/ 21+1 21+1 ! 21+1
t 0+ K1) = Blx'(1)] + a(t)[x(1)] +b(5)[x'(1)] +r(t).
12+2 2+2 12+2
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It is easy to find that (B;), (B2), (B3), (C) are not satisfied. So Example 3.1 can not be solved by
theorems in papers [1-4].
Example 3.2. Consider the problem

{[u%nﬁr=ﬁu%ﬂﬁ+aunﬂﬂﬁ+mnu%m3+mmtewJL ©

x@0)=xP(1), i=0,1,2,

where > 0, ] is a positive integer, a, b, r € Lo,1j, o(x) = |x]?x. Itis easy to find that problem
(6) has at least one solution if

3

1 R
f |a(t)|§dt) <p.
0

[1Dlloo +
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