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A NOTE ON SOLVABILITY OF THREE-POINT BOUNDARY

VALUE PROBLEMS FOR THIRD-ORDER DIFFERENTIAL

EQUATIONS WITH p-LAPLACIAN

XINGYUAN LIU AND YUJI LIU

Abstract. Third-point boundary value problems for third-order differential equation







[q(t )φ(x ′′(t ))]′+kx ′(t )+g (t , x(t ), x ′(t )) = p(t ), t ∈ (0, 1),

x ′(0)= x ′(1) = x(η) = 0

is considered. Sufficient conditions for the existence of at least one solution of above problem are established. Some

known results are improved.

1. Introduction

In [1], the solvability of problem

{

x′′′(t)+k2x′(t)+ g (x, x′) = p(t), t ∈ (0,π),

x′(0) = x′(π)= x(η) = 0
(1)

was studied, where 0 < η<π and

(B1). g (u, v) is continuous in R2, has continuous partial derivatives gu and gv , bounded in

R2;

(B2). |1−gv |+
√

π|gu | ≤ 2k for k ∈ N \{1}, |1−gv |+
p
π|gu | ≤ 2 for k = 1, and lim|v |→∞ v g (u, v) =

µ 6= 0 uniformly for u ∈ R.

Problem (1) when k = 1 was also studied by Nagle and Pothoven [2] and by Rovderova [4]

under the condition

(B3). g is bounded on one side and continuous.

In [3], Gupta studied the existence of solutions to boundary value problems similar to (1)

of the type
{

x′′′(t)+π2x′(t)+ g (t , x, x′, x′′) = p(t), t ∈ (0,1),

x′(0) = x′(1) = x(η) = 0,
(2)
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where g is a Caratheodory function and p ∈ L1[0,1], under the conditions

(C).
∫1

0 p(t)sinπtd t = 0, and g satisfies

g (t ,u, v, w)v ≥ 0, for t ∈ [0,1], u, v, w ∈ R,

and

lim
|v |→∞

g (t ,u, v, w)

v
< 3π2 uniformly for (t ,u, w) ∈ [0,1]×R2 .

The purpose of this paper is to establish new sufficient conditions for the existence of at

least one solution of problem

{

[q(t)φ(x′′(t))]′+kx′(t)+ g (t , x(t), x′(t)) = p(t), t ∈ (0,1),

x′(0) = x′(1) = x(η) = 0,
(3)

where k ∈ R, q, p ∈ L1[0,1] and g is a Caratheodory function, φ(x) = |x|p−2x for x 6= 0 and

φ(0) = 0, which is called p-Laplacian.

In Section 2, we establish existence results for problem (3). The examples, which can not

be solved by result in [1-3], to illustrate the main theorems will be given in Section 4.

2. Main Result

Let X = C 1[0,1] ×C 0[0,1], Y = L1[0,1] × L1[0,1], their norms are defined by ||(x, y)|| =
max{||x||∞, ||x′||∞, ||y ||∞} for (x, y) ∈ X and ||(u, v)|| = max{

∫1
0 |u(s)|d s,

∫1
0 |v(s)|d s} for (u, v) ∈

Y , respectively. Then X and Y are Banach spaces.

Let D(L) = {(x, y) ∈ X : x′′ ∈ L1(0,1), (q y)′ ∈ L1(0,1) with x′(0) = x′(1) = x(η) = 0}. Define the

linear operator L : D(L)∩X → Y by

L

(

x(t)

y(t)

)

=
(

x′′(t)

(q(t)y(t))′

)

for all (x, y) ∈D(L)∩X .

Define the nonlinear operator N : X → Y by

N

(

x(t)

y(t)

)

=
(

φ−1(y(t))

−kx′(t)− g (t , x(t), x′(t))+p(t)

)

for all (x, y) ∈ X .

It is easy to show that KerL = {(0,c/q(t)) : c ∈ R}; ImL = {(u, v) ∈ Y :
∫1

0 u(s)d s = 0}; L is a

Fredholm operator of index zero; There are projectors P : X → X and Q : Y → Y such that

KerL = ImP and KerQ = ImL. In fact, we have

P

(

x(t)

y(t)

)

=
(

0

y(0)/q(t)

)

for (x, y) ∈ X ,

Q

(

u(t)

v(t)

)

=
(∫1

0 u(t)d t

0

)

for (u, v) ∈ Y .
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Furthermore, let Ω ⊂ X be an open bounded subset with Ω∩D(L) 6= ;, then N is L-compact

on Ω; (x, y) ∈ D(L) is a solution of the operator equation L(x, y) = N (x, y) implies that x is a

solution of problem (3).

Suppose

(A1). There are bounded functions a ∈ L1(0,1), bounded function b ∈ L1(0,1) and function

r ∈ L1(0,1) such that g (t , x, y) = h(t , x, y)+ f (t , x, y), and there are positive constants β,θ such

that h(t , x, y)y ≤−β|y |θ+1, and | f (t , x, y)| ≤ a(t)|x|θ +b(t)|y |θ+ r (t), for all (x, y) ∈ R2 and a.e.

t ∈ [0,1].

(A2). If θ > 1, then

||b||∞+
(∫1

0
|a(t)|

θ+1
θ d t

)

θ
θ+1

<β;

if θ = 1, then

k +||b||∞+
(∫1

0
|a(t)|2d t

)
1
2

<β.

(A3). There is a constant δ> 0 such that q(t)≥ δ for all t ∈ [0,1].

Now, consider L(x, y) =λN (x, y) with λ∈ (0,1). We have

{

x′′(t) =λφ−1(y(t)),

(q(t)y(t))′ =λ(−kx′(t)− g (t , x, x′)+p(t)).

It follows that

[q(t)φ(x′′(t))]′ =φ(λ)λ(−kx′(t)− g (t , x, x′)+p(t)). (4)

Thus

[q(t)φ(x′′(t))]x′(t)=φ(λ)λ(−kx′(t)− g (t , x, x′)+p(t))x′(t).

Since x′(0) = x′(1) = 0 implies that

∫1

0
[q(t)φ(x′′(t))]′x′(t)d t =−

∫1

0
q(t)φ(x′′(t))x′′(t)d t ≤ 0,

we get

−k

∫1

0
[x′(t)]2d t +

∫1

0
p(t)x′(t)d t ≤

∫1

0
g (t , x(t), x′(t))x′(t)d t .

(A1) implies that

β

∫1

0
|x′(t)|θ+1d t ≤ k

∫1

0
[x′(t)]2d t −

∫1

0
p(t))x′(t)d t +

∫1

0
f (t , x(t), x′(t))x′(t)d t

≤ k

∫1

0
[x′(t)]2d t +

∫1

0
|p(t)||x′(t)|d t +

∫1

0
|a(t)||x(t)|θ |x′(t)|d t

+
∫1

0
|b(t)||x′(t)|θ+1d t +

∫1

0
|r (t)||x′(t)|d t

≤ k

∫1

0
[x′(t)]2d t



98 XINGYUAN LIU AND YUJI LIU

+
(∫1

0
(|p(t)|+ |r (t)|)

θ+1
θ d t

)
θ

θ+1
(∫1

0
|x′(t)|θ+1d t

)
1

θ+1

+||b||∞
∫1

0
|x′(t)|θ+1d t +

∫1

0
|a(t)||x′(t)|d t

(∫1

0
|x′(t)|d t

)θ

≤ k

∫1

0
[x′(t)]2d t

+
(∫1

0
(|p(t)|+ |r (t)|)

θ+1
θ d t

)
θ

θ+1
(∫1

0
|x′(t)|θ+1d t

)
1

θ+1

+||b||∞
∫1

0
|x′(t)|θ+1d t

+
(∫1

0
|a(t)|

θ+1
θ d t

)
θ

θ+1
(∫1

0
|x′(t)|θ+1d t

)
1

θ+1
(∫1

0
|x′(t)|θ+1d t

)
θ

θ+1

≤ k

∫1

0
[x′(t)]2d t

+
(∫1

0
(|p(t)|+ |r (t)|)

θ+1
θ d t

)
θ

θ+1
(∫1

0
|x′(t)|θ+1d t

)
1

θ+1

+||b||∞
∫1

0
|x′(t)|θ+1d t

+
(∫1

0
|a(t)|

θ+1
θ d t

)
θ

θ+1
∫1

0
|x′(t)|θ+1d t .

If θ = 1, then

(

β−k −||b||∞−
(∫1

0
|a(t)|2d t

)
1
2

)

∫1

0
|x′(t)|2d t

≤
(∫1

0
(|p(t)|+ |r (t)|)2d t

)
1
2
(∫1

0
|x′(t)|2d t

)
1
2

.

If θ > 1 and k ≤ 0, then

(

β−||b||∞−
(∫1

0
|a(t)|

θ+1
θ d t

)
θ

θ+1
)∫1

0
|x′(t)|θ+1d t

≤
(∫1

0
(|p(t)|+ |r (t)|)

θ+1
θ d t

)

θ
θ+1

(∫1

0
|x′(t)|θ+1d t

)

1
θ+1

.

If θ > 1 and k > 0, then

(

β−||b||∞−
(∫1

0
|a(t)|

θ+1
θ d t

)
θ

θ+1
)∫1

0
|x′(t)|θ+1d t

≤
(∫1

0
(|p(t)|+ |r (t)|)

θ+1
θ d t

)
θ

θ+1
(∫1

0
|x′(t)|θ+1d t

)
1

θ+1

+k

(∫1

0
|x′(t)|θ+1d t

)
2

θ+1

.
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It follows from (A2) that there is a constant M > 0 such that
∫1

0 |x′(t)|θ+1d t ≤ M .

It is easy from (A3) to get

δ

∫1

0
|x′′(t)|p d t ≤

∫1

0
q(t)φ(x′′(t))x′′(t)d t

= φ(λ)λ

(

k

∫1

0
[x′(t)]2d t +

∫1

0
g (t , x(t), x′(t))x′(t)d t −

∫1

0
p(t)x′(t)d t

)

≤ |k|
∫1

0
[x′(t)]2d t+

∫1

0
h(t , x(t), x′(t))x′(t)d t+

∫1

0
| f (t , x(t), x′(t))||x′(t)|d t

+
∫1

0
|p(t)||x′(t)|d t

≤ |k|
∫1

0
[x′(t)]2d t +

∫1

0
| f (t , x(t), x′(t))||x′(t)|d t +

∫1

0
|p(t)||x′(t)|d t

≤ |k|
∫1

0
[x′(t)]2d t +

∫1

0
|p(t)||x′(t)|d t

+
∫1

0
|a(t)||x(t)|θ|x′(t)|d t +

∫1

0
|b(t)|x′(t)|θ+1d t +

∫1

0
|r (t)||x′(t)|d t

≤



















































[

|k|+
(

∫1
0 |a(t)|2d t

) 1
2 +||b||∞

]

∫1
0 |x′(t)|2d t

+
(

∫1
0 (|p(t)|+ |r (t)|)2d t

) 1
2
(

∫1
0 |x′(t)|2d t

) 1
2

,

|k|
(

∫1
0 |x′(t)|θ+1d t

) 2
θ+1 +

(

∫1
0 (|p(t)|+ |r (t)|)

θ+1
θ d t

)
θ

θ+1 ∫1
0 |x′(t)|θ+1d t

+
(

∫1
0 |a(t)|

θ+1
θ d t

)
θ

θ+1
(

∫1
0 |x′(t)|θ+1d t

) 1
θ+1

+||b||∞
∫1

0 |x′(t)|θ+1d t .

≤



























[

|k|+
(

∫1
0 |a(t)|2d t

) 1
2 +||b||∞

]

M +
(

∫1
0 (|p(t)|+ |r (t)|)2d t

) 1
2

M
1
2 ,

|k|M
2

θ+1 +
(

∫1
0 (|p(t)|+ |r (t)|)

θ+1
θ d t

)
θ

θ+1
M

1
θ+1

+
(

∫1
0 |a(t)|

θ+1
θ d t

)
θ

θ+1
M +||b||∞M .

Hence there is a constant M1 > 0 such that
∫1

0 |x′′(t)|p d t ≤ M1. It follows that |x′(t)| ≤
∫1

0 |x′′(t)|d t ≤
(

∫1
0 |x′′(t)|p d t

) 1
p ≤ M

1
p

1 for all t ∈ [0,1]. Thus |x(t)| ≤
∫1

0 |x′(t)|d t ≤ M
1
p

1 for all t ∈ [0,1]. and

|x′(t)| ≤ M
1
p

1 for all t ∈ [0,1].

Since x′(0) = x′(1) = 0, there is ξ ∈ [0,1] such that y(ξ) = 0. Then

|q(t)y(t)| =
∣

∣

∣

∣

q(ξ)y(ξ)+
∫t

ξ
(q(s)y(s))′d s

∣

∣

∣

∣

≤ |k|
∫1

0
|x′(t)|d t +

∫1

0
|g (t , x(t), x′(t))|d t +

∫1

0
|p(t)|d t
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≤ |k|M
1
p

1 + max

t∈[0,1],|x|≤M
1
p

1 ,|y |≤M
1
p

1

|g (t , x, y)|+
∫1

0
|p(t)|d t .

Hence

|y(t)| ≤
|k|M

1
p

1 +max
t∈[0,1],|x|≤M

1
p

1 ,|y |≤M
1
p

1

|g (t , x, y)|+
∫1

0 |p(t)|d t

δ
for all t ∈ [0,1].

Let

Ω1 =
{

(x, y) ∈D(L)
⋂

X : L(x, y) = λN (x, y), λ ∈ (0,1)
}

.

It follows from above discussion thatΩ1 is bounded.

Now, for (x, y) = (0,c/q(t)) ∈ KerL, if N (0,c/q(t)) ∈ ImL, then
∫1

0 φ−1(c/q(t))d t = 0, it fol-

lows that c = 0. Let

Ω2 =
{

(x, y) ∈KerL : N (x, y) ∈ ImL
}

.

ThenΩ2 = {0}.

Let

Ω3 = {x ∈ KerL : λ∧ x + (1−λ)QN x = 0, λ ∈ [0,1]},

where ∧ : Y /ImL → KerL is given by ∧−1(c,0) = (0,c/q(t)). For (0,c/q(t)) ∈Ω3, and λ ∈ [0,1],

we have

−(1−λ)Q(φ(c/q(t)), f (t ,0,0)) =λ∧ (0,c/q(t)).

It follows that

−(1−λ)

∫1

0
φ(c/q(t))d t = λc.

If λ= 1, then c = 0. If λ ∈ [0,1), then

0 ≤λc2 =−(1−λ)cφ(c)

∫1

0
φ(1/q(t))d t < 0,

a contradiction. SoΩ3 = {0}.

Let X and Y be Banach spaces, L : D(L) ⊂ X → Y be a Fredholm operator of index zero,

P : X → X , Q : Y → Y be projectors such that

Im P = Ker L, Ker Q = Im L, X = Ker L⊕Ker P, Y = Im L⊕ Im Q .

It follows that

L|D(L)∩Ker P : D(L)∩Ker P → Im L

is invertible, we denote the inverse of that map by Kp .

If Ω is an open bounded subset of X , D(L)∩Ω 6= ;, the map N : X → Y will be called

L-compact onΩ if QN (Ω) is bounded and Kp (I −Q)N : Ω→ X is compact.

Theorem 2.1.([5]) Let L be a Fredholm operator of index zero and let N be L-compact onΩ.

Assume that the following conditions are satisfied:
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(i) Lx 6=λN x for every (x,λ) ∈ [(domL \ KerL)∩∂Ω]× (0,1);

(ii) N x ∉ ImL for every x ∈KerL∩∂Ω;

(iii) deg(∧QN
∣

∣

KerL , Ω∩KerL,0) 6= 0, where ∧ : Y /ImL →KerL is the isomorphism.

Then the equation Lx = N x has at least one solution in D(L)∩Ω.

Theorem L. Suppose that (A1)− (A3) hold. Then problem (3) has at least one solution.

Proof. Set Ω be a open bounded subset of X such that (0,0) ∈Ω ⊇Ω1. We know that L is

a Fredholm operator of index zero and N is L-compact on Ω. By the definition of Ω, we have

Lx 6=λN x for x ∈ (D(L)/KerL)∩∂Ω and λ∈ (0,1); N x ∉ ImL for x ∈ KerL∩∂Ω.

In fact, let H(x,λ) = λ∧ x + (1−λ)QN x. According the definition of Ω, we know Ω ⊃Ω3,

thus H(x,λ) 6= 0 for x ∈ ∂Ω∩KerL, thus by homotopy property of degree,

deg(QN |KerL,Ω∩KerL,0) = deg(H(·,0),Ω∩KerL,0)

= deg(H(·,1),Ω∩KerL,0) = deg(∧,Ω∩KerL,0) 6= 0.

Thus by Theorem 2.1, L(x, y) = N (x, y) has at least one solution in D(L)∩Ω, then x is a solution

of problem (3). The proof is completed.

3. Examples

In this section, we present an example to illustrate the main result.

Example 3.1. Consider the problem

{

[(t 2+2)x′′(t)]′+kx′(t)=β 3[x′(t )]2l+1

2+sin[x(t )]2 +a(t)[x(t)]2l+1+b(t)[x′(t)]2l+1+r (t), t ∈ (0,1),

x(i)(0) = x(i)(1), i = 0,1,2,
(5)

where β > 0, k ∈ R, l is a positive integer, a,b,r ∈ L1[0,1]. Corresponding to problem (3), let

φ(x) = x, g (t , x, y) =−β 3y2l+1

2+sin x2 −a(t)x2l+1 −b(t)y2l+1 − r (t), p(t)= 0 and set

h(t , x, y) =−β
3y2l+1

2+ sin x2
, f (t , x, y) =−a(t)x2l+1 −b(t)y2l+1 − r (t).

It is easy to show from Theorem L that problem (5) has at least one solution if l > 0, and

||b||∞+
(∫1

0
|a(t)|

θ+1
θ d t

)
θ

θ+1

<β;

or if l = 0 and

k +||b||∞+
(∫1

0
|a(t)|2d t

)
1
2

<β.

The equation in problem (5) can be transformed into

x′′′(t)+
2t

t 2 +2
x′′(t)+

k

t 2 +2
x′(t)=

β[x′(t)]2l+1 +a(t)[x(t)]2l+1 +b(t)[x′(t)]2l+1 + r (t)

t 2 +2
.



102 XINGYUAN LIU AND YUJI LIU

It is easy to find that (B1), (B2), (B3), (C ) are not satisfied. So Example 3.1 can not be solved by

theorems in papers [1-4].

Example 3.2. Consider the problem

{

[(x′′(t))3]′ =β[x′(t)]3 +a(t)[x(t)]3 +b(t)[x′(t)]3 + r (t), t ∈ (0,1),

x(i)(0) = x(i)(1), i = 0,1,2,
(6)

where β> 0, l is a positive integer, a,b,r ∈ L1[0,1], φ(x) = |x|2x. It is easy to find that problem

(6) has at least one solution if

||b||∞+
(∫1

0
|a(t)|

4
3 d t

)
3
4

<β.
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