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NEW INEQUALITIES OF HERMITE-HADAMARD TYPE

FOR FUNCTIONS WHOSE SECOND DERIVATIVES

ABSOLUTE VALUES ARE QUASI-CONVEX

M. ALOMARI, M. DARUS AND S. S. DRAGOMIR

Abstract. In this note we obtain some inequalities of Hermite-Hadamard type for

functions whose second derivatives absolute values are quasi-convex. Applications

for special means are also provided.

1. Introduction

Let f : I ⊆ R → R be a convex mapping defined on the interval I of real numbers
and a, b ∈ I, with a < b. The following two inequalities:

f

(

a + b

2

)

≤
∫ b

a

f (x) dx ≤ f (a) + f (b)

2

hold. This double inequality is known in the literature as the Hermite–Hadamard in-
equality for convex functions.

In recent years many authors established several inequalities connected to this fact.
For recent results, refinements, counterparts, generalizations and new Hermite-Hadamard’s-
type inequalities see [1]–[18].

We recall that the notion of quasi-convex function generalizes the notion of convex
function. More exactly, a function f : [a, b] → R is said to be quasi-convex on [a, b] if

f (λx + (1 − λ) y) ≤ max {f (x) , f (y)} , ∀x, y ∈ [a, b] . (1.1)

Clearly, any convex function is a quasi-convex function. Furthermore, there exist quasi-
convex functions which are not convex, (see for instance [1]–[5] and [12]).

Recently, D.A. Ion [12] obtained two inequalities of the right hand side of Hermite-
Hadamard’s type for functions whose derivatives in absolute values are quasi-convex
functions, as follow:
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Theorem 1. Let f : I◦ ⊂ R → R be a differentiable mapping on I◦, a, b ∈ I◦ with

a < b. If |f ′| is quasi-convex on [a, b], then the following inequality holds:

∣

∣

∣

∣

∣

f (a) + f (b)

2
− 1

b − a

∫ b

a

f (x) dx

∣

∣

∣

∣

∣

≤ b − a

4
max {|f ′ (a)| , |f ′ (b)|} .

Theorem 2. Let f : I◦ ⊂ R → R be a differentiable mapping on I◦, a, b ∈ I◦ with

a < b. If |f ′|p/(p−1)
is quasi-convex on [a, b], then the following inequality holds:

∣

∣

∣

∣

∣

f (a) + f (b)

2
− 1

b − a

∫ b

a

f (x) dx

∣

∣

∣

∣

∣

≤ (b − a)

2 (p + 1)
1/p

(

max
{

|f ′ (a)|p/(p−1)
, |f ′ (b)|p/(p−1)

})(p−1)/p

.

The main aim of this paper is to establish new refined inequalities of the right-hand
side of Hermite-Hadamard result for the class of functions whose second derivatives at
certain powers are quasi-convex functions.

2. Hermite-Hadamard Type Inequalities

In order to prove our main theorems, we need the following lemma [10], [16].

Lemma 1. Let f : I ⊂ R → R be twice differentiable mapping on I◦, a, b ∈ I with a < b
and f ′′ is integrable on [a, b], then the following equality holds:

f (a) + f (b)

2
− 1

b − a

∫ b

a

f (x) dx =
(b − a)

2

2

∫ 1

0

t (1 − t) f ′′ (ta + (1 − t) b) dt.

A simple proof of this equality can be also done integrating by parts twice in the right
hand side. The details are left to the interested reader.

The next theorem gives a new result of the upper Hermite-Hadamard inequality for
quasi-convex functions.

Theorem 3. Let f : I ⊂ R → R be twice differentiable mapping on I◦, a, b ∈ I with

a < b and f ′′ is integrable on [a, b]. If |f ′′| is an quasi-convex on [a, b], then the following

inequality holds:

∣

∣

∣

∣

∣

f (a) + f (b)

2
− 1

b − a

∫ b

a

f (x) dx

∣

∣

∣

∣

∣

≤ (b − a)
2

12
max {|f ′′ (a)| , |f ′′ (b)|} .

Proof. From Lemma 1, we have
∣

∣

∣

∣

∣

f (a) + f (b)

2
− 1

b − a

∫ b

a

f (x) dx

∣

∣

∣

∣

∣
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≤ (b − a)
2

2

∫ 1

0

t (1 − t) |f ′′ (ta + (1 − t) b)| dt

≤ (b − a)
2

2

∫ 1

0

t (1 − t)max {|f ′′ (a)| , |f ′′ (b)|} dt

≤ (b − a)
2

2
max {|f ′′ (a)| , |f ′′ (b)|}

∫ 1

0

t (1 − t) dt

=
(b − a)

2

12
max {|f ′′ (a)| , |f ′′ (b)|}

which completes the proof. �

The corresponding version for powers of the absolute value of the second derivative

is incorporated in the following result:

Theorem 4. Let f : I ⊂ R → R be twice differentiable mapping on I◦, a, b ∈ I with

a < b and f ′′ is integrable on [a, b]. If |f ′′|p/(p−1)
is quasi-convex on [a, b], for p > 1,

then the following inequality holds:

∣

∣

∣

∣

∣

f (a) + f (b)

2
− 1

b − a

∫ b

a

f (x) dx

∣

∣

∣

∣

∣

≤ (b − a)
2

8

(√
π

2

)1/p
(

Γ (1 + p)

Γ
(

3
2 + p

)

)1/p
(

max
{

|f ′′ (a)|q , |f ′′ (b)|q
})1/q

where q = p/(p− 1).

Proof. From Lemma 1 and using the well known Hölder integral inequality, we have

successively

∣

∣

∣

∣

∣

f (a) + f (b)

2
− 1

b − a

∫ b

a

f (x) dx

∣

∣

∣

∣

∣

≤ (b − a)
2

2

∫ 1

0

t (1 − t) |f ′′ (ta + (1 − t) b)| dt

≤ (b − a)
2

2

(
∫ 1

0

(

t − t2
)p

dt

)1/p(∫ 1

0

|f ′′ (ta + (1 − t) b)|q dt

)1/q

≤ (b − a)
2

2
·
(

2−1−2p
√

π Γ (1 + p)

Γ
(

3
2 + p

)

)1/p

·
(

max
{

|f ′′ (a)|q , |f ′′ (b)|q
})1/q

=
(b − a)2

8

(√
π

2

)1/p
(

Γ (1 + p)

Γ
(

3
2 + p

)

)1/p
(

max
{

|f ′′ (a)|q , |f ′′ (b)|q
})1/q

,
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where 1/p+1/q = 1. We note that, the Beta and Gamma functions (see [7], pp 908–910),
are defined respectively, as follows:

β (x, y) =

∫ 1

0

tx−1 (1 − t)
y−1

dt, x, y > 0

and

Γ (x) =

∫

∞

0

e−ttx−1dt, x > 0

are used to evaluate the integral

∫ 1

0

(

t − t2
)p

dt =

∫ 1

0

tp (1 − t)
p
dt = β (p + 1, p + 1)

Using the properties of Beta function, that is, β (x, x) = 21−2xβ
(

1
2 , x
)

and β (x, y) =
Γ(x)Γ(y)
Γ(x+y) , we can obtain that

β (p + 1, p + 1) = 21−2(p+1)β

(

1

2
, p + 1

)

= 2−2p−1 Γ
(

1
2

)

Γ (p + 1)

Γ
(

3
2 + p

) ,

where Γ
(

1
2

)

=
√

π, which completes the proof. �

A more general inequality is given using Lemma 1, as follows:

Theorem 5. Let f : I ⊂ R → R be twice differentiable mapping on I◦, a, b ∈ I with

a < b and f ′′ is integrable on [a, b]. If |f ′′|q is an quasi-convex on [a, b], q ≥ 1, then the

following inequality holds:

∣

∣

∣

∣

∣

f (a) + f (b)

2
− 1

b − a

∫ b

a

f (x) dx

∣

∣

∣

∣

∣

≤ (b − a)
2

12

(

max
{

|f ′′ (a)|q , |f ′′ (b)|q
})1/q

Proof. From Lemma 1 and using well known power mean inequality, we have
∣

∣

∣

∣

∣

f (a) + f (b)

2
− 1

b − a

∫ b

a

f (x) dx

∣

∣

∣

∣

∣

≤ (b − a)2

2

∫ 1

0

t (1 − t) |f ′′ (ta + (1 − t) b)| dt

≤ (b − a)
2

2

(
∫ 1

0

(

t − t2
)

dt

)1−1/q (∫ 1

0

(

t − t2
)

|f ′′ (ta + (1 − t) b)|q dt

)1/q

≤ (b − a)
2

2
·
(

1

6

)1−1/q

·
(

1

6
max

{

|f ′′ (a)|q , |f ′′ (b)|q
}

)1/q

=
(b − a)

2

12

(

max
{

|f ′′ (a)|q , |f ′′ (b)|q
})1/q
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which completes the proof. �

3. Applications to special means

We consider the means for arbitrary real numbers α, β (α 6= β). We take

1. Arithmetic mean:

A (α, β) =
α + β

2
, α, β ∈ R.

2. Logarithmic mean:

L (α, β) =
α − β

ln |α| − ln |β| , |α| 6= |β| , α, β 6= 0, α, β ∈ R.

3. Generalized log-mean:

Ln (α, β) =

[

βn+1 − αn+1

(n + 1) (β − α)

]

1
n

, n ∈ Z\ {−1, 0} , α, β ∈ R, α 6= β.

Now, using the results of Section 2, we give some applications for special means of
real numbers.

Proposition 1. Let a, b ∈ R, a < b and n ∈ N, n ≥ 2. Then, we have

|Ln
n (a, b) − A (an, bn)| ≤ n (n − 1)

12
(b − a)

2
max

{

|a|n−2
, |b|n−2

}

.

Proof. The assertion follows from Theorem 3 applied to the quasi-convex mapping
f (x) = xn, x ∈ R. �

Proposition 2. Let a, b ∈ R, a < b and 0 /∈ [a, b]. Then, for all p > 1, we have
∣

∣L−1 (a, b) − A
(

a−1, b−1
)∣

∣

≤ (b − a)2

4

(√
π

2

)1/p
(

Γ (1 + p)

Γ
(

3
2 + p

)

)1/p
(

max
{

|a|−3q , |b|−3q
})1/q

.

Proof. The assertion follows from Theorem 4 applied to the quasi-convex mapping
f (x) = 1/x, x ∈ [a, b]. �

Proposition 3. Let a, b ∈ R, a < b and n ∈ N, n ≥ 2. Then, for all q ≥ 1, we have

|Ln
n (a, b) − An (a, b)| ≤ n (n − 1)

12
(b − a)

2
(

max
{

|a|(n−2)q
, |b|(n−2)q

})1/q

.

Proof. The assertion follows from Theorem 5 applied to the quasi-convex mapping
f (x) = xn, x ∈ R. �
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[14] U. S. Kirmaci and M. E. Özdemir, On some inequalities for differentiable mappings and

applications to special means of real numbers and to midpoint formula, Appl. Math. Comp.,

153 (2004), 361–368.
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