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ON THIRD-ORDER THREE-POINT RIGHT FOCAL

BOUNDARY VALUE PROBLEMS

XIANGYUN WU AND ZHANBING BAI

Abstract. In this paper, a fixed point theorem in a cone, some inequalities of the associated Green’s function and the

concavity of solutions are applied to obtain the existence of positive solutions of third-order three-point boundary

value problem with dependence on the first-order derivative

x′′′(t ) = f (t , x(t ), x′(t )), 0 < t < 1,

x(0) = x′(η) = x′′(1) = 0,

where f : [0,1]× [0,∞)×R → [0,∞) is a nonnegative continuous function, η ∈ (1/2,1).

1. Introduction

In recent years, there has been much attention focused on questions of positive solutions
of two-point, three-point, and multi-point boundary value problems for nonlinear ordinary
differential equations, difference equations, and functional differential equations without de-
pendence on the first order derivative, see [1−7, 9, 11−12] and reference therein. It is well
known that the famous Krasnosel’skii’s fixed point theorem in a cone [8], as well as Leggett-
Williams fixed point theorem [10], five functional fixed point theorem [3], they can be re-
garded as extensions of Krasnosel’skii’s fixed point theorem in a cone, play a extremely impor-
tant role in above study. Anderson et al. [2] has bringed together a variety of recent results
about the existence of positive solutions for the third-order three-point boundary value prob-
lem without dependence on any lower-order derivatives in fixed point theory. Also, a good set
of references was given.

However, all the above works were done under the assumption that the first order deriva-
tive is not involved explicitly in the nonlinear term. In this paper, via a generalization of Kras-
nosel’skii’s fixed point theorem in a cone and some inequalities of the associated Green’s func-
tion for the associated problem, by placing certain restrictions on the nonlinearity, we prove
the existence of positive solutions for the third-order three-point boundary value problem
with dependence on the first-order derivative

x ′′′(t ) = f (t , x(t ), x ′(t )), 0 < t < 1, (1.1)
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x(0) = x ′(η) = x ′′(1) = 0, (1.2)

where f : [0,1]× [0,∞)×R → [0,∞) is a nonnegative continuous function, η ∈ (1/2,1). A so-
lution of (1.1)−(1.2) is nonnegative and concave on [0,1], nondecreasing on [0,η], and nonin-
creasing on [η,1].

As it is pointed out in [2], positive solutions of Problem (1.1)−(1.2) are concave and satisfy
some inequality, it was useful in define a cone on which a positive operator was defined, to
which a fixed point theorem due to Krasnosel’skii was then applied to yield positive solutions.
Readers may find that the property is crucial in defining an appropriate cone in this paper
such that a generalization of Krasnosel’skii’s fixed point theorem in a cone can be used to
obtain positive solutions.

2. Preliminaries and Lemmas

Let X is a Banach space and P ⊂ X a cone. Suppose α,β : X → R+ are two continuous
nonnegative functionals satisfying

α(λx) ≤ |λ|α(x), β(λx) ≤ |λ|β(x), for x ∈ X , λ ∈ [0,1], (2.1)

and

M1 max{α(x),β(x)} ≤ ‖x‖ ≤ M2 max{α(x),β(x)}, for x ∈ X , (2.2)

where M1, M2 are two positive constants.

Lemma 2.1.([4]) Let r2 > r1 > 0, L2 > L1 > 0 are constants and

Ωi = {x ∈ X |α(x) < ri ,β(x) < Li }, i = 1,2.

are two open subsets in X such that θ ∈Ω1 ⊂Ω1 ⊂Ω2. In addition, let

Ci = {x ∈ X |α(x) = ri ,β(x) ≤ Li }, i = 1,2;

Di = {x ∈ X |α(x) ≤ ri ,β(x) = Li }, i = 1.2.

Assume T : P → P is a completely continuous operator satisfying

(S1) α(T x) ≤ r1, x ∈C1 ∩P ; β(T x) ≤ L1, x ∈ D1 ∩P ;

α(T x) ≥ r2, x ∈C2 ∩P ; β(T x) ≥ L2, x ∈ D2 ∩P ;

or

(S2) α(T x) ≥ r1, x ∈C1 ∩P ; β(T x) ≥ L1, x ∈ D1 ∩P ;

α(T x) ≤ r2, x ∈C2 ∩P ; β(T x) ≤ L2, x ∈ D2 ∩P ;

then T has at least one fixed point in (Ω2 \Ω1)∩P.
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The corresponding Green’s function for the homogeneous problem

x ′′′(t ) = 0, 0 ≤ t ≤ 1, (2.3)

x(0) = x ′(η) = x ′′(1) = 0, (2.4)

is given in [2]

G(t , s) =



1
2 s2, s ≤ t , s ≤ η,

1
2 [t (2η− t )+ (t − s)2], η≤ s ≤ t

1
2 t (2s − t ), t ≤ s ≤ η;

1
2 t (2η− t ), t ≤ s, η≤ s.

(2.5)

By [2], if η ∈ (1/2,1), there is
G(η, s) ≥G(t , s) > 0,

for t ∈ (0,1], s ∈ [0,1]. Thus throughout this paper we assume that η ∈ (1/2,1).

Lemma 2.2.([2]) For all t , s ∈ [0,1],

g (t )G(η, s) ≤G(t , s) ≤G(η, s), (2.6)

where

g (t ) := min
{ t

η
,

1− t

1−η

}
. (2.7)

For conveniens, we give the following Lemma.

Lemma 2.3. For h ∈ (0,1−η), let γ= 1− h
1−η , then

G(t , s) ≤G(η, s), f or t , s ∈ [0,1], (2.8)

γG(η, s) ≤G(t , s), f or s ∈ [0,1], t ∈ [η−h,η+h]. (2.9)

Proof. It follows Lemma 2.2 immediately.

3. Existence Results of Positive Solutions

In this section, we obtain positive solutions of (1.1)−(1.2) with use of Lemma 2.1, a gen-
eralization of Krasnosel’skii’s fixed point theorem of cone expansion and compression and
Lemma 2.3.

Problem (1.1)−(1.2) has a solution x = x(t ) if and only if x solves the operator equation

x(t ) = T x(t ) :=
∫ 1

0
G(t , s) f (s, x(s), x ′(s))d s, 0 ≤ t ≤ 1,

where G(t , s) ≥ 0 is Green’s function for boundary value problem (2.3)−(2.4).
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We let X = C 2[0,1] with ‖x‖ = max
{

max
0≤t≤1

|x(t )|, max
0≤t≤1

|x ′(t )|
}

is a Banach space. We seek

solutions of (1.1)−(1.2) that lie in a cone, P , defined by

P =
{

x ∈ X | x(t ) ≥ 0, and min
η−h≤t≤η+h

x(t ) ≥ γ max
0≤t≤1

|x(t )|
}

,

where γ= 1− h
1−η , h ∈ (0,1−η) is a constant.

Define functionals

α(x) = max
0≤t≤1

|x(t )|, β(x) = max
0≤t≤1

|x ′(t )|, for x ∈ X ,

then α,β : X → R+ are continuous nonnegative functionals, ‖x‖ = max{α(x),β(x)}, (2.1), (2.2)
hold and

P =
{

x ∈ X | x(t ) ≥ 0, and min
η−h≤t≤η+h

x(t ) ≥ γα(x)
}

.

Denote

M = max
0≤t≤1

∫ 1

0
G(t , s)d s,

N = max
0≤t≤1

∫ η+h

η−h
G(t , s)d s,

A =
∫ 1

η
(s −η)d s

A =
∫ 1

η
(s −η)d s,

B = max
{
η+

∫ η

0
(η− s)d s,

∫ 1

η
(s −η)d s

}
.

It is well know that T : P → P is completely continuous. In fact, if x ∈ P , by (2.8), there is

T x(t ) =
∫ 1

0
G(t , s) f (s, x(s), x ′(s))d s

≤
∫ 1

0
max
0≤t≤1

G(t , s) · f (s, x(s), x ′(s))d s

=
∫ 1

0
G(η, s) · f (s, x(s), x ′(s))d s,

so that

α(T x) = max
0≤t≤1

|T x(t )| ≤
∫ 1

0
G(η, s) · f (s, x(s), x ′(s))d s.

Combine with (2.9), we get

min
η−h≤t≤η+h

T x(t ) = min
η−h≤t≤η+h

∫ 1

0
G(t , s) f (s, x(s), x ′(s))d s
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≥ γ

∫ 1

0
max
0≤t≤1

G(t , s) · f (s, x(s), x ′(s))d s

≥ γ ·α(T x).

Also, from the positivity of G(t , s), we have, for x ∈ P , that T x(t ) ≥ 0, for 0 ≤ t ≤ 1, and so
T : P → P . Further, standard arguments yields that T is completely continuous.

Theorem 3.1. Suppose there are four constants r2 > r1 > 0, L2 > L1 > 0 such that max{ r1
M , L1

A } ≤
min{ r2

M , L2
B } and the following assumptions hold

(A1) f (t ,u, v) ≥ max{ r1
M , L1

A }, for (t ,u, v) ∈ [0,1]× [0,r1]× [−L1,L1];

(A2) f (t ,u, v) ≤ min{ r2
M , L2

B } for (t ,u, v) ∈ [0,1]× [0,r2]× [−L2,L2].

Then Problem (1.1)− (1.2) has at least one positive solution x(t ) such that

r1 ≤ max
0≤t≤1

x(t ) ≤ r2 or L1 ≤ max
0≤t≤1

|x ′(t )| ≤ L2.

Proof. Take
Ωi = {x ∈ X |α(x) < ri ,β(x) < Li }, i = 1,2.

are two bounded open subsets in X . In addition, let

Ci = {x ∈ X |α(x) = ri ,β(x) ≤ Li }, i = 1,2;

Di = {x ∈ X |α(x) ≤ ri ,β(x) = Li }, i = 1.2.

For x ∈C1 ∩P , by (A1), there is

α(T x) = max
t∈[0,1]

∣∣∣∫ 1

0
G(t , s) f (s, x(s), x ′(s))d s

∣∣∣
≥ r1

M
· max

t∈[0,1]

∣∣∣∫ 1

0
G(t , s)d s

∣∣∣= r1.

According to definition of T , we have for 0 ≤ t ≤ 1,

(T x)′(t ) = (η− t )
∫ 1

t
f (s, x(s), x ′(s))d s +

∫ t

η
(η− s) f (s, x(s), x ′(s))d s,

(T x)′′(t ) =−
∫ 1

t
f (s, x(s), x ′(s))d s ≤ 0.

Thus, T x concave on [0,1], it follows that

max
t∈[0,1]

|(T x)′(t )| = max{|(T x)′(0)|, |(T x)′(1)|}.

Combine with (A1) and f ≥ 0, for x ∈ D1 ∩P , there is

β(T x) = max
t∈[0,1]

|(T x)′(t )|
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= max{|(T x)′(0)|, |(T x)′(1)|}
≥ |(T x)′(1)|
=

∫ 1

η
(s −η) f (s, x(s), x ′(s))d s

≥ L1

A
·
∫ 1

η
(s −η)d s

= L1

A
· A = L1.

For x ∈C2 ∩P , by (A2), there is

α(T x) = max
t∈[0,1]

|
∫ 1

0
G(t , s) f (s, x(s), x ′(s))d s|

≤ max
t∈[0,1]

∫ 1

0
G(t , s) · r2

M
d s

= r2

M
· max

t∈[0,1]

∫ 1

0
G(t , s)d s = r2.

For x ∈ D2 ∩P , by (A2), there is

β(T x) = max
t∈[0,1]

|(T x)′(t )|
= max{|(T x)′(0)|, |(T x)′(1)|}
≤ max

{
η

∫ 1

0
f (s, x(s), x ′(s))d s +

∫ η

0
(η− s) f (s, x(s), x ′(s))d s,∫ 1

η
(s −η) f (s, x(s), x ′(s))d s

}
≤ L2

B
·B = L2.

Now, Lemma 2.1 implies there is x ∈ (Ω2 \Ω1) ∩ P such that x = T x, namely, Problem
(1.1)−(1.2) has at least one positive solution x(t ) such that

r1 ≤α(x) ≤ r2 or L1 ≤β(x) ≤ L2,

i.e.,

r1 ≤ max
0≤t≤1

x(t ) ≤ r2 or L1 ≤ max
0≤t≤1

|x ′(t )| ≤ L2.

The proof is complete.

Theorem 3.2. Suppose there are five constants 0 < h < 1−η, 0 < r1 < r2, 0 < L1 < L2 such
that max{ r1

N , L1

A
} ≤ min{ r2

M , L2
A } and the following assumptions hold

(A3) f (t ,u, v) ≥ r1
N , for (t ,u, v) ∈ [η−h,η+h]× [γr1,r1]× [−L1,L1];
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(A4) f (t ,u, v) ≥ L1

A
, for (t ,u, v) ∈ [0,1]× [0,r1]× [−L1,L1];

(A5) f (t ,u, v) ≤ min{ r2
M , L2

A }, for (t ,u, v) ∈ [0,1]× [0,r2]× [−L2,L2].

Then Problem (1.1)− (1.2) has at least one positive solution x(t ) such that

r2 ≤ max
0≤t≤1

x(t ) ≤ r1 or L2 ≤ max
0≤t≤1

|x ′(t )| ≤ L1.

Proof. We just need notice the following difference to the proof of Theorem 3.1.
For x ∈C1 ∩P , the definition of P implies that

x(t ) ≥ γα(x) = γr1, for t ∈ [η−h,η+h].

By (A3), there is

α(T x) = max
t∈[0,1]

∣∣∣∫ 1

0
G(t , s) f (s, x(s), x ′(s))d s

∣∣∣
≥ max

t∈[0,1]

∣∣∣∫ η+h

η−h
G(t , s) f (s, x(s), x ′(s))d s

∣∣∣
≥ max

t∈[0,1]

∣∣∣∫ η+h

η−h
G(t , s) · r1

N
d s

∣∣∣
= r1.

For x ∈ D1 ∩P , by (A4), there is

β(T x) = max
t∈[0,1]

|(T x)′(t )|
= max{|(T x)′(0)|, |(T x)′(1)|}
≥ |(T x)′(1)|
=

∫ 1

η
(s −η) f (s, x(s), x ′(s))d s

≥ L1

A
·
∫ 1

η
(s −η)d s

= L1

A
· A = L1.

The rest of proof is similar to Theorem 3.1 and the proof is complete.
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