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ON SOME INEQUALITIES IN NORMED LINEAR SPACES

S. S. DRAGOMIR

Abstract. Upper and lower bounds for the norm of a linear combination of vectors
are given. Applications in obtaining various inequalities for the quantities ||z /||z| —
y/llyllll and ||z/||y|| —y/||=||||, where = and y are nonzero vectors, that are related to
the Massera-Schdffer and the Dunkl- Williams inequalities are also provided. Some
bounds for the unweighted Cebysev functional are given as well.

1. Introduction

In [9], L. Maligranda has obtained the following interesting inequality for two nonzero

vectors x,y in a real or complex normed linear space (X, | - |):
|2 ] < lemslliel ol o
Izl iyl max{||z[], [|y[|}

Notice that, this inequality provides a refinement for the celebrated Massera-Schaffer
inequality [10]:

ERN o »
Izl Nyl ~ max|lz]], yll}
which, in its turn, is a refinement of the Dunki- Williams inequality [7)
| 2o et (13
Izl Tyl = Tl + Tyl

More recently, in order to provide a lower bound for the quantity ||z/||z| — v/|lyll, P-
R. Mercer obtained in [11] the following result as well:

2 = yll =zl — llyll| ‘ H
’ el (1.4)
min{||z[[, [[y[[} lll i

In an effort to generalise the above results for n—vectors, J. Pecari¢ and R. Raji¢ have
obtained in [13] the following double inequality:

1 |: n n
max ¢ — || )zl - ||ﬂf'|||fﬂk|||]
ke{l,m,n}{|xk| jz:; J ; j
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<& |H kel ,n}{mn{

Z el = | } (1.5)

for any x; € X\{0}, where j € {1,...,n} and observed that, for n = 2, ; = = and
x9 = —y, (1.5) reduces to the Maligranda & Mercer inequalities outlined above. They also
remarked that, the following refinement of the generalised triangle inequality obtained by
M. Kato et al. in [§]

(1.6)
> el H]
can be deduced from (1.5) as well.
We should remark that (1.6) can be also obtained as a particular case from the
author’s recent result established in [1]
e H ]

n
|p—1
gag{ll%ll}[zml \
n
2D Nl =™ dpoEnk
=1 j=1
n

n
> min {II%I}[Z [E

mn}{nxkn}[

n
<> Nl -
j=1

n

Z%

n

] (1.7)

where p > 1 and n > 2.

Notice that, in [1], a more general result for convex functions has been obtained as
well.

Motivated by the above results, we establish in this paper some upper and lower
bounds for the more general quantity || Z _, ajzj|| where o, j € {1,...,n} are scalars
in K(K = C,R) and z,, j € {1,...,n} are vectors in the normed hnear space. For
a; = ||z;|| with z; € X\{0}. j € {1, ...,n} we obtain a result which is similar to (1.5).
For the case of two vectors we recapture Maligranda’s result (1.1) and provide various
inequalities for the dual expression z/||ly|| — y/||z|/|| with 2,y € X\{0}. Some bounds for
the unweighted Cebysev functional are given as well.

2. Inequalities for n—Vectors

The following result may be stated.
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Theorem 1. Ifx, € X and oy, €K, k € {1,...,n}, then

n
el = Ll le}

j=1

n

£

max
ke{l,...,n}
Jj=1

n

> ajz;

j=1
n
=1

min
ke{l,...,n}
=

Proof. For any k € {1,...,n}, we have

Zi:l%'fﬂj = (Za])xk - Zaj : (2.2)

J=1

IN

IN

n
a; ka||+2|ajllxk—le}- (2.1)

j=1

Taking the norm in (2.2) and using the triangle inequality we have successively:

(o))

-:cj — l‘k
Jj=1
n
<D o llall + Z loj |z — 4 (2.3)
j=1 j=1

for any k € {1,...,n}.
Taking the minimum over k in (2.3) we deduce the second inequality in (2.1).
From (2.2) we also have

n n

éam(z) S oy 1),

j=1 j=1

Taking in this equality the norm and using the continuity property of the norm, we have
n

- () !
J:

T (r —x;

(e ) -
2 ZO‘J‘ ka”‘ZWﬂH%—%H, (2.4)

for each k € {1,...,n}.
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Taking the maximum in (2.4) we deduce the first part of (2.1).

Remark 1. If there exists an r > 0 such that ||z; — 2| < r|jzk| for each j,k €
{1,...,n}, then we get from the second inequality in (2.1) that

ZO&j.ﬁj Z(Jéj +7“Z|Oéj|‘| . (25)

Jj=1 =
Moreover, if o; € K, j € {1,...,n} are such that

n n
S aj|=r) oyl

j=1 j=1

< m kalll
ke{l,..

(and in this case r should be in (0, 1)) then the opposite inequality

kaH [ ] & (2.6)
also holds.
Corollary 1. For any nonzero vectors x € X, k € {1,...,n}, we have the inequal-
ities:
Nl — =
k|
kell n}{ Z (B3 gll Z 5]
n
< Z
[l — =5
[ (2.7)
= el }{ ZII Al Z 5]
and

n n
max :ckzz 72 zilllzk —
ke{l,._.,n}{' ”j:1” il HH 3l ]||}
n

IN

|zl

IN

min T x| + zillllxi — k| - 2.8
ke{l,...,n}{' I3 sl + 3 sl ||} (28)
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3. Inequalities for Two Vectors

The case for two vectors is of interest due to the fact that some similar inequalities
obtained in the past by several authors have been applied in investigating various prob-
lems in the Geometry of Banach spaces, including the characterization problem of strict
convexity and the characterization of inner product spaces in the larger class of normed
spaces.

Lemma 1. For any o, 3 € K and z,y € X we have

1
5 [zl + lyiDla+ 81 = (ol + 181) 1z = yil]

1

+5 [l + Bl = iyl + (ol = 18Dz = |
|z + By||

2 [l 101l + lyl) + Gl + 18Dz — o]

5l 8100~ ) ~ (al = 18 — | (3.1)

IN

IN

Proof. If we choose in Theorem 1, a1 = «a, oo = 3, 1 = x and x5 = y, then we get

max { alllor+ 8] = 18]z = yl. Iylllac+ 8] - ez = yIl}
< oz + By

< min {Ilfﬂllla + 61+ 1Bz =yl lylllec+ Bl + lef || - y||}~ (3.2)

Utilising the properties for real numbers

1 1
max{a,b}:§[a+b+|afb|} and min{a,b}:—[a+b7|afb|}, a,beR

2
we have:
max { |z joc+ 81 — Bl = I Iyllla+ 8] — ol |l -y }
= 2 [+ TyDlac+ 81 = (al + 18Dz — o]
5l B = ) + (ol 1811z ~ |
and

min { |zl + 8] + |8/l = yll, Iyllla + 81 + lalllz — yll}

- %“04 + 81l + lyll) + (el + 8Dz — y||}
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1
=g |le+ Bllzll = llyl) = (ol = 18Dl = yll],
which, by (3.2) produces the desired result (3.1).
The following particular cases are of interest:

Corollary 2. If o, 8 € K with |a| = |5| = 1, then
1 1
o + Byl = 5zl + lyhla+ 8] < v =yl = 5la+ Bllllzl — Iyl (3.3)

for any x,y € X.

Corollary 3. If z,y € X with ||| = |ly|| = 1, then

llaz + By|l — o+ 8| < max {Jal, 18 }lz ~ ], (3.4)
for any o, B € K.

Corollary 4. For any two nonzero vectors x,y € X we have:

vy | e =yl el = Dyl
— - (3.5)
ol ~ Ty max{]l«]], TylT}
Proof. We choose in the second inequality from (3.2) a = m and 8 = H;ylll’ then we
get
Hﬂ|ww
<nm1”ﬂ$WW4WM+nxfw il = |z —y
— )
ey Tl "~ Dl &l
o= ol + el = o i { 2 o
= ||z -y z|| = [ly|l| | min§ -, m—
T T
o =yl + [zl = Iyl
= (3.6)

max{||z|, |y}
and the inequality (3.5) is proved.

Remark 2. The inequality (3.5) has been firstly obtained by L. Maligranda in [9]
on utilising a different approach.

Corollary 5. For any two nonzero vectors x,y € X we have the reverse of the
triangle inequality

(0 <) Nzl + llyll =l + yll <

o = 7o min {1} (3.7
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Proof. If we write the first inequality in (3.2) for —y and for o = ”—;”, 8= ﬁ, then
we get

EM{ISEII(IIIEI FlylD Mz 4yl [yl +lyl) ||:E+y|}

]l Iyl "l llyl ]|
€ Y
< ||l — <
_‘Ilwl IIyIIH’

which is clearly equivalent to (3.7).

Remark 3. In [9], P. R. Mercer has obtained the following lower bound for the
quantity || — ”Z—HH

o == llel — ]| _ ‘
min{[je]l, Ty}

E e

for any z,y € X\{0}.
In order to compare the lower bounds provided by (3.7) and (3.8) consider By, Bs :
X2 >R
Bi(z,y) = ll=ll + lyll = ll= + vl

and
Ba(w,) = llo = yll = [llz]l = 1yl

Now, we observe that
Ba(a,) = Bu(@, ) = 1z = yll + o+ yll = [l + lgll + [l = iy
=z =yl + o+ yll - 2max ||z, g } > 0
for any x,y € X. Therefore the Mercer result is better than (3.7) in providing a lower
In the following we consider the dual problem, namely the problem of finding upper
and lower bounds for the quantity
where z,y € X\{0}.

The first result that provides a lower bound is incorporated in

bound for the quantity ‘

v
HlH llyll

i Y

Iyl [l

Theorem 2. For any two nonzero vectors x,y € X we have:

z Y

Iyl Nl

Izl vl llz+yll <‘
= minlzf], f[yll} - max{flz(, v}

’. (3.9)
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Proof. Taking o = m and § = ”—i” in the left side of the inequality (3.2) we have

)

ax{ =l (el + Myl lle =yl [ylidi=ll+llylD) Ix—yl}

E] I ol

_ ;[ o+ oy - Sl Jle = sz + |y|>}

2 E B

1| all + Iyl = llgl) |, llz =yl = liyl)
+ +

2 EE E]
_ 1 Ul + el + gl 1 llz = il + )
2 TalllyT 2 lallTy

L1 sl = ol el o 1ol + I |—||y||\| H

—_—— x y .7x_y

2" Talllol 2 eyl

el vl
=2 lall + gl + [llz1l = vl

2" Tyl

Ll

—5 lall + gl = [llz1l = vl

2" eyl

1 1
(Nl + Iyl)maX{—, —} — [l —yl| min{—, —
]l 1yl ] HyH}

Il + Myl lle—yl
min{{lz|, [Jyl}  max{[=[], [y[}

Then, by the first inequality in (3.2) we get

x Y
=l Nyl

Izl + ol =z =yl <‘
min|lz(, [y} max{[l], [ly[l} ~

which clearly implies (3.9).

Theorem 3. For any two nonzero vectors x,y € X we have

[all = Iyl .
Y ‘ <L le =yl (3.10)
gl ] — min{flz]], lyll} ~ max{||2|, [y}
Proof. Taking a = @ and § = 7”71” in the right side of (3.2) we have successively
Lo el =gl 1 bl [ Hyn\ e
min « ||z|| ————— z=yl,ly| - ———— x—y
Telllgl " Tl (el HyH

1 [l NIl — HyH\ L Nyl + y)
2 [/l [Ediley
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1 (all = B2l = Nl e = el = )
5‘ EIE REI }
1 Ul -+ Bl = 1] 1 e — el + 1)
"2 ey 2 Jellyl

1 [l = D]

5 e L ¥l = [llel = |

1 Ul + gDl = gl 1 [llzll =yl - il = ol
~2 EFL T3 EH
+ymeMMHWMD71W*yW”W4WM

2 Jalllyl 27 eyl
]

= 3 Tamyr el + -+ [l = Tl
g el [l + bl = el = 1]

1 1 1 1
e = oo { o o b = i { o o |
EN EN

ol = |

B e — yl
min{ o] [T} max{e]l o]}

and by the second part of (3.2) we get the desired result (3.10).

4. Bounds for the Cebysev Functional

For 8 = (f1,...,0n) € K" and y = (y1,...,yn) € X", we consider the unweighted
Cebysev functional defined by

1 — 1 « 1 —
Cn(B,y) izﬁzgﬁjyjfﬁzgﬁj'az:lym
j= j= j=

We remark that this functional has been considered previously by the author and some

bounds have been established. We recall here some simple results.
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With the above assumptions for X, a and y, we have

15 (0" — D maxjeqr, o1y [Aaj maxjeqr, o1y [|Ay; ], [6];

n—1 n—1
L. (1_ %) > 1Aay| 30 [[Ay;ll, [3];
J=1 Jj=1

[Cnla, y)Il < (4.1)

2 n—1 1/p yn—1 1/q
L2 (8 aayl) (X lAgle)
j=1 j=1
1 1 _
p>1a;+a_15 [2]5

where Az; = zj41 — z; is the forward difference. Here the constants %, %

possible in the sense that they cannot be replaced by smaller quantities.
In [5] we also have established that

and % are best

[Crnle, )|
j n n—1
max det | J n . Ay:|l;
jE{limn—1} S > ak j; 1Ay
k=1 k=1
=l J " AR 1/p
et | &g (' 18w 1r)
< i X j=1 Z Qg Z oy = J
~on? \E=1 k=1
for p>1, 5+ =1
n—1 ] n
det J n max HAy_]H
j=1 Sag D ag je{l,..,n—1}
k=1 k=1
and
[Crc.y)ll
1 & 1 J n—1
ax = o — = o . y A -
je{l,..n—-1}|" g::l k= k2=:1 k ngjn ng,
ot )
1 I Qp — = o ( jAy,p)
SR L e = =R (4.2)
1,1 _ 1.
forp>175+a—17
n—1 1 n L j
IR Qg — 5 Q| - max Ayl
J;] " kzz:1 P kzz:l ¥ je{l,...,n—1}1H vil

Finally, we recall the following result from [4]:
If there exists the complex numbers a, A € C such that

Re[(A—aj)(a_j—E)} >0 foreach je{l,...,n}
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or, equivalently,

a+ A
2

Qi —

1
‘§§|A—a| for each j € {1,...,n},

then one has the inequality:

n

1 1
IC- (B3 < 514 ~al- EZ Y

j=1

(4.3)

1 n
75]2% _

The constant % in the right hand side of the inequality is best possible in the sense that
it cannot be replaced by a smaller constant.
For many other results that hold for n-tuples § and y of real numbers we recommend
the chapters devoted to Griiss and Cebysev inequalities from the books [12] and [14].
In the following we provide other upper and lower bounds for ||C,, (5, ¥)]l:

Proposition 1. For any 3 and 'y as above, we have:

1 — 1 —
< i _ P -
S {n ;:1 Bi— ;:1 61'”1/] ykll}

ke{l ,,,,, n}{ EIX {Hyﬂ_ka}} >

[Cn (8, y)]

IA
>
m
FE
E.
H=
3
=
—N
L —
S|=
<
&Ms
&
|
<
il
=
| I
=
——
—
3=
~
NE
—

Now, on applying the second inequality in Theorem 1 for o; = 3; — %Zle 06; and
xj = y;, we deduce the first part of (4.4). The second part is obvious by the Holder
inequality.

The following result can be stated as well:

Proposition 2. For any = (01,...,0n) € K" andy = (y1,...,yn) € X" we have
the double inequality:

M{\ >

n

k*lzyl

=1

1 n
- Z 185 =My — yk||}
J=1
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IN

1Cn (B, ¥)l

IN

1 n
yk_gzyl

=1

225
j=1

min
ke{l,...n} ||

where v and § can betaken arbitrary in K.

1 n
+ Z 185 —dllly; — yk||}7 (4.5)
j=1

Proof. Follows from Theorem 1 on noting that
1 n
p— _ t .

for any t € K.

n

Remark 4. As a particular case of interest we can state the following result:
v = Z

1 n
ke?fax,n} {‘ Zﬂﬂ a T ; 18;1lly; — yk|} (4.6)

1Cn (8, y)II (4.7)
1 — 1 «
ke{r{nn’n}{ Yk — Ezyl + E;Wﬂ”% yk|} (4.8)

=1

IN

IN
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