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The evolution of the electric field along optical

fiber with respect to the type-2 and 3 PAFs in

Minkowski 3-space

Nevin Ertuğ Gürbüz and Dae Won Yoon∗

Abstract. In this paper, we introduce the type-2 and the type-3 Positional Adapted

Frame(PAF) of spacelike curve and timelike curve in Minkowski 3-space. We study

the evolutions of the electric vector fields with respect to the type-2 and type-3 PAFs.

As a result, we also investigate the Fermi-Walker parallel and the Lorentz force

equation of the electric vector fields for the type-2 and type-3 PAFs in Minkowski

3-space.

Keywords. Positional adapted frame, electric field vector, magnetic field vector, Lorentz
force equation

1 Introduction

It is well known that the Frenet frame of a space curve plays an important role in the study of curve
and surface theory, and this frame is the most well-known frame along a space curve. However,
the Frenet frame is undefined wherever the curvature vanishes, such as at points of inflection
or along straight sections of the curve. In order to solve this problem, Bishop [3] introduced a
new frame along a space curve which is more suitable for applications, which is called Bishop
frame or parallel transport frame. After that, many mathematicians studied various alternative
methods of frame of a space curve. For example, Arbind et al. [1] studied a general 1-dimensional
higher-order theory for tubes and rods in terms of the hybrid frame of a space curve. In [15] the
authors discussed hybrid optical magnetic Lorentz flux by using hybrid frame. Also, Gürbüz et
al. [10] presented three formulations associated with the modified nonlinear Schrödinger equation
with respect to the hybrid frame in Minkowski 3-space. Recently, in [16], [17] Özen and Tosun
introduced the type-1 and the type-2 Positional Adapted Frames (PAF) as another frames for
the trajectories with non-vanishing angular momentum in the Euclidean 3-space. This frame is
used to investigate the kinematics of moving particles.

On the other hand, Berry’s geometric phasec is related to the time evolution of a space curve.
The geometric phase of linearly polarized light defines its angle of rotation. The evolution of an
electric vector field is connected with the geometric phase topic. Also this topic have numerous
applications in modern optic. In the last years, many mathematicians have been studying the
geometric phase and the evolution of the electric field vector [4]-[8], [11]-[14] etc.
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114 N. E. Gürbüz and D. W. Yoon

In this paper, we discuss the type-2 and the type-3 PAFs in Minkowski 3-space. In [9] the
first author studied the type-1 PAF in Minkowski space and obtained the evolution of the electric
field with respect to the type-1 PAF. Therefore, we want to get two other classes of the evolutions
of the electric vector field according to the type-2 and the type-3 PAFs in Minkowski 3-space as
natural extensions of Özen and Tosun’s formulation

2 Construction of the type-2 and 3 PAFs

In this section, we construct the new frames in terms of the Frenet frame of the non-null curve
in the Minkowski 3-space.

The Minkowski 3-space R3
1 is a real space R3 with the indefinite inner product ⟨· , ·⟩L defined

on each tangent space by

⟨x,y⟩L = x1y1 + x2y2 − x3y3,

where x = (x1, x2, x3) and y = (y1, y2, y3) are vectors in R3
1.

A nonzero vector x in R3
1 is said to be spacelike, timelike or null if ⟨x,x⟩L > 0, ⟨x,x⟩L < 0

or ⟨x,x⟩L = 0, respectively.

Let β : I → R3
1 be a non-null curve parametrized by the arc-length s in the Minkowski

3-space R3
1. Derivative formulae for the Frenet frame {T,N,B} are given by Ts

Ns

Bs

 =

 0 ε2κ 0
−ε1κ 0 ε3τ
0 −ε2τ 0

 T
N
B

 , (2.1)

where ⟨T,T⟩L = ε1, ⟨N,N⟩L = ε2, ⟨B,B⟩L = ε3 , εi = ±1. Here κ and τ are the curvature and
the torsion of the non-null curve β. On the other hand, the Lorentz cross product implies

T×LN=ε3B, N×LB =ε1T, B×LT =ε2N.

Suppose that a point particle moves along the non-null curve β with the arc-length s and the
time t in the Minkowski 3-space R3

1. Then the non-null tangent vector T, the velocity vector v
and the linear momentum vector Ml are given by

T(s) =
dz

ds
, v(t) =

ds

dt
T(s), Ml(t) = m

ds

dt
T(s),

where m is a constant mass and z is the position vector of the particle as

z = ε1 ⟨β(s),T(s)⟩L T(s) + ε2 ⟨β(s),N(s)⟩L N(s)

+ε3 ⟨β(s),B(s)⟩L B(s).

The angular momentum Ma of the particle is the Lorentz cross product of the position vector z
and the linear momentum vector Ml at the time t, and it is expressed as

Ma = z×LMl

= −ε2ε3m
ds

dt
⟨β(s),N(s)⟩L B(s)

+ε2ε3m
ds

dt
⟨β(s),B(s)⟩L N(s).
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Suppose that the normal component of the angular momentum is not zero, and consider

−z = ε1 ⟨−β(s),T(s)⟩L T(s) (2.2)

+ε2 ⟨−β(s),N(s)⟩L N(s) + ε3 ⟨−β(s),B(s)⟩L B(s).

Consider the projections w1 and w2 on Span {N,B} and Span {T,N} of the vector −z.
Then these vectors become

w1 = ε2 ⟨−β(s),N(s)⟩L N(s) + ε3 ⟨−β(s),B(s)⟩L B(s),

w2 = ε1 ⟨−β(s),T(s)⟩L T(s) + ε2 ⟨−β(s),N(s)⟩L N(s),

respectively. It follows that

w1 −w2 = ε3 ⟨−β(s),B(s)⟩L B(s) + ε1 ⟨β(s),T(s)⟩L T(s). (2.3)

Define a new vector H as follows:

H =
w1 −w2√

|⟨w1 −w2,w1 −w2⟩L|

= ε1
⟨β(s),T(s)⟩M√∣∣∣ε1 ⟨β(s),T(s)⟩2L + ε3 ⟨β(s),B(s)⟩2L

∣∣∣T(s)

+ε3
⟨−β(s),B(s)⟩L√∣∣∣ε1 ⟨β(s),T(s)⟩2L + ε3 ⟨β(s),B(s)⟩2L

∣∣∣B(s)

and take another vector D = H×L N given by

D = ε1ε3
⟨β(s),T(s)⟩L√∣∣∣ε1 ⟨β(s),T(s)⟩2L + ε3 ⟨β(s),B(s)⟩2L

∣∣∣B(s)

+ε1ε3
⟨β(s),B(s)⟩L√∣∣∣ε1 ⟨β(s),T(s)⟩2L + ε3 ⟨β(s),B(s)⟩2L

∣∣∣T(s).

Assume that ε1 ⟨β(s),T(s)⟩2L + ε3 ⟨β(s),B(s)⟩2L > 0. In this case the moving frame {H,N,D}
along the non-null curve β is called the type-2 Positional Adapted Frame (type-2 PAF) in the
Minkowski 3-space.

Now, we give the relationship between the Frenet frame and the type-2 PAF frame.

First of all, if N is a timelike vector and H, D are spacelike vectors (T and B are spacelike
vectors), then it can be written by H

N
D

 =

 cosϕ 0 − sinϕ
0 1 0

sinϕ 0 cosϕ

 T
N
B

 ,

where ϕ is an angle between D and B. On the other hand, the type-2 PAF frame apparatus p1,
p2, p3 are given by

p1 = κ(s) cosϕ+ τ(s) sinϕ,
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p2 = −ϕ′,

p3 = −κ(s) sinϕ+ τ(s) cosϕ.

Secondly, if D is a timelike vector and H, N are spacelike vectors, (B is a timelike vector), then
we have the relationship as follows: H

N
D

 =

 coshϕ 0 sinhϕ
0 1 0

sinhϕ 0 coshϕ

 T
N
B

 ,

where ϕ is the angle between the vectors D and B. The type-2 PAF frame apparatus p1, p2, p3
are given by

p1 = κ(s) coshϕ(s)− τ(s) sinhϕ(s),

p2 = −ϕ′(s),

p3 = −κ(s) sinhϕ(s) + τ(s) coshϕ(s).

Also, the derivative formulas of the type-2 PAF frame {H,N,D} of the non-null curve β in the
Minkowski 3-space are expressed as Hs

Ns

Ds

 =

 0 ϵ2p1 ϵ3p2
−p1 0 ϵ3p3
−p2 −ϵ2p3 0

 H
N
D

 , (2.4)

where

H×L D = N, N×L D = −ε2H, H×L N = D,

⟨H,H⟩L = 1, ⟨N,N⟩L = ε2, ⟨D,D⟩L = ε1ε3,

⟨H,N⟩L = ⟨N,D⟩L = ⟨H,D⟩L = 0.

In a similar way, we can define the new frame in terms of the Frenet frame.

Suppose that the binormal component of the angular momentum is not zero. The projections
Γ1 and Γ2 on Span {N,B} and Span {T,B} of the vector −z are given by, respectively

Γ1 = ε2 ⟨−β(s),N(s)⟩L N(s) + ε3 ⟨−β(s),B(s)⟩L B(s),

Γ2 = ε1 ⟨−β(s),T(s)⟩L T(s) + ε3 ⟨−β(s),N(s)⟩L B(s).

From this,
Γ1 − Γ2 = ε2 ⟨−β(s),N(s)⟩L N(s) + ε1 ⟨β(s),T(s)⟩L T(s).

It follows that we define the new vector F as follows:

F =
Γ1 − Γ2√

|⟨Γ1 − Γ2,Γ1 − Γ2⟩L|

= ε1
⟨β(s),T(s)⟩L√∣∣∣ε1 ⟨β(s),T(s)⟩2L + ε2 ⟨β(s),N(s)⟩2L

∣∣∣T(s)

+ε2
⟨−β(s),N(s)⟩L√∣∣∣ε1 ⟨β(s),T(s)⟩2L + ε2 ⟨β(s),N(s)⟩2L

∣∣∣N(s).
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Also, the binormal vector B and the vector H lead to another vector P:

P = F×L B

= −ε1ε2
⟨β(s),T(s)⟩L√∣∣∣ε1 ⟨β(s),T(s)⟩2L + ε2 ⟨β(s),N(s)⟩2L

∣∣∣N(s)

−ε1ε2
⟨β(s),N(s)⟩M√∣∣∣ε1 ⟨β(s),T(s)⟩2L + ε2 ⟨β(s),N(s)⟩2L

∣∣∣T(s).

Assume that ε1⟨β(s),T(s)⟩L+ε3⟨β(s),B(s)⟩L > 0. In this case, the moving frame {P,F,B}
along the non-null curve β is called the type-3 Positional Adapted Frame (type-3 PAF) in the
Minkowski 3-space.

If B is a timelike vector and P, F are spacelike vectors, then the relationship between the
Frenet frame and the type-3 PAF frame are expressed by P

F
B

 =

 cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1

 T
N
B

 ,

where ϕ is the angle between the vectors F and N. Also, the type-3 PAF frame apparatus n1,
n2, n3 are given by

n1 = κ− ϕs,

n2 = −τ sinϕ,

n3 = τ cosϕ.

If P is a timelike vector (T is timelike) and F, B are spacelike vectors, then we have P
F
B

 =

 coshϕ sinhϕ 0
sinhϕ coshϕ 0

0 0 1

 T
N
B

 ,

it follows that the type-3 PAF frame apparatus n1, n2, n3 are given by

n1 = κ+ ϕs,

n2 = τ sinhϕ,

n3 = τ coshϕ.

On the other hand, the derivative formulas of the type-3 PAF frame {P,F,B} of the non-null
curve β in Minkowski 3-space become Ps

Fs

Bs

 =

 0 n1 ϵ3n2

−ϵ1n1 0 ϵ3n3

−ϵ1n2 −n3 0

 P
F
B

 , (2.5)

where

⟨P,P⟩L = ε1ε2, ⟨F,F⟩L = 1, ⟨B,B⟩L = ε3,

⟨P,F⟩L = ⟨F,B⟩L = ⟨P,B⟩L = 0,

B×L P = F, P×L B = ε3F, P×L F = −B.
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3 The evolution of the electric field with respect to the
type-2 PAF

In this section, we study the evolution of the electric vector field with respect to the type-2 PAF
in the Minkowski 3-space. To get results, we split it into three cases according to the type-2 PAF.

Case I. Consider an optical fiber O described by the spacelike curve β = β(s) and the
timelike binormal vector of the type-2 PAF in the Minkowski 3-space R3

1.

Suppose that the electric vector field E(2.Paf) is perpendicular to the spacelike vector H
with the timelike vector D, that is, 〈

E(2.Paf),H
〉
L
= 0. (3.1)

Theorem 3.1. In Cace I the evolution of the electric vector field E(2.Paf) with respect to the
type-2 PAF is given by

E(2.Paf)
s =

(
−p1

〈
E(2.Paf),N

〉
L
+ p2

〈
E(2.Paf),D

〉
L

)
H (3.2)

+σ
〈
E(2.Paf),D

〉
L
N− σ

〈
E(2.Paf),N

〉
L
D.

Proof. The general evolution of the electric vector field E(2.Paf) with respect to the type-2 PAF
in R3

1 is expressed by
E(2.Paf)

s = a1H+ a2N+ a3D, (3.3)

where a1, a2 and a3 are arbitrary smooth functions. Consider no various loss mechanism along
the optic fiber for the electric vector field E(2.Paf) of the type-2 PAF in the Minkowski 3-space,
then it can be written by 〈

E(2.Paf),E(2.Paf)
〉
L
= const. (3.4)

Using Eqs.(2.4), (3.1) and (3.3), we obtain

a1 = −p1

〈
E(2.Paf),N

〉
L
+ p2

〈
E(2.Paf),D

〉
L
, (3.5)

where
〈
E(2.Paf),N

〉
L
̸= 0 and

〈
E(2.Paf),D

〉
L
̸= 0. Taking the derivative with respect to s of

Eq.(3.4) and using Eq.(3.3), we also have

a2 = σ
〈
E(2.Paf),D

〉
L
, a3 = −σ

〈
E(2.Paf),N

〉
L
, (3.6)

where σ is a parameter. When Eqs.(3.5) and (3.6) are substituted in Eq.(3.3), we obtain Eq.(3.2).

Theorem 3.2. In Case I the polarization plane is rotated by an angle p3 with respect to the
type-2 PAF in R3

1.

Proof. The Fermi-Walker derivative FWE
(2.Paf)
s of the electric field E(2.Paf) with respect to the

type-2 PAF in R3
1 is given by

FWE(2.Paf)
s = E(2.Paf)

s −
〈
H,E(2.Paf)

〉
L
Hs +

〈
Hs,E

(2.Paf)
〉
L
H. (3.7)
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The electric vector field E(2.Paf) is Fermi-Walker parallel if and only if FWE
(2.Paf)
s = 0. If the

electric vector field E(2.Paf) is Fermi-Walker parallel, then Eq.(3.1) and Eq.(3.7) imply

E(2.Paf)
s = −

〈
Hs,E

(2.Paf)
〉
L
H. (3.8)

The electric vector field E(2.Paf) for the first case can be expressed by

E(2.Paf) = E(2.Paf)NN− E(2.Paf)DD, (3.9)

where

E(2.Paf)N =
〈
E(2.Paf),N

〉
L
, E(2.Paf)D =

〈
E(2.Paf),D

〉
L
.

Taking the derivative of Eq.(3.9) with respect to s and taking account of Eq. (2.4), the variation
of the electric vector field E(2.Paf) for the first case is obtained

E(2.Paf)
s = (E(2.Paf)N

s + p3E
(2.Paf)D)N (3.10)

−(p3E
(2.Paf)N + E(2.Paf)D

s )D

+(− p1E
(2.Paf)N + p2E

(2.Paf)D)H.

From Eqs.(2.4), (3.8) and (3.10), we obtain(
E

(2.Paf)N
s

E
(2.Paf)D
s

)
=

(
0 −p3

−p3 0

)(
E(2.Paf)N

E(2.Paf)D

)
, (3.11)

it describes a rotation of the polarization plane by an angle p3 with respect to the type-2 PAF
on the fiber. Thus the proof is completed.

A magnetic vector field is given by a closed 2-form C in a 3-dimensional Riemannian manifold
M . The Lorentz force of a magnetic vector field V is described by skew-symmetric operator Φ,
that is,

⟨ΦX,Y⟩ = C(X,Y)

for all X, Y ∈χ(M) and Φ(X) = V ×X [18].

The magnetic curve produced by the type-2 PAF electric vector field E(2.Paf) along the
linearly polarized monochromatic light wave propogating in the optical fiber for the first case
with respect to the type-2 PAF in the Minkowski 3-space is called a Lorentzian type-2 PAF
electromagnetic curve for the first case. Therefore, the Lorentzian type-2 PAF electromagnetic
curve of the spacelike curve β = β(s) for the first case in R3

1 is described by (cf. [13])

ΦHE(2.Paf) = E(2.Paf)
s = V(1) ×L E(2.Paf), (3.12)

where V(1) is any divergence free vector field.

Theorem 3.3. The Lorentz force equation according to the type 2-PAF of the Lorentzian type-2
Paf electromagnetic curve of the spacelike curve β for the first case is the following: ΦH(H)

ΦH(N)
ΦH(D)

 =

 0 p1 −p2
−p1 0 σ
−p2 σ 0

 H
N
D

 . (3.13)
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Proof. From Eqs.(3.2) and (3.12), we obtain〈
ΦHE(2.Paf),H

〉
L

= −
〈
E(2.Paf),ΦHH

〉
L
, (3.14)〈

ΦHE(2.Paf),N
〉
L

= −
〈
E(2.Paf),ΦHN

〉
L
, (3.15)〈

ΦHE(2.Paf),D
〉
L

= −
〈
E(2.Paf),ΦHD

〉
L
. (3.16)

Via Eqs.(3.14), (3.15) and (3.16), we can obtain Eq.(3.13).

Theorem 3.4. The magnetic vector field V(1) with respect to the type-2 PAF in the first case is
given by

V(1) = −σH− p2N+ p1D. (3.17)

Proof. With the aid of Eq.(3.13), we derive Eq.(3.17).

Case II. Suppose that an optical fiber O can be described by a spacelike curve β with the
timelike normal vector for the type-2 PAF in the Minkowski 3-space R3

1.

Now, we consider the electric vector field E(2.Paf) perpendicular to the timelike vector N
according to the type- 2 PAF, that is,〈

E(2.Paf),N
〉
L
= 0. (3.18)

Theorem 3.5. The evolution of the electric vector field E(2.Paf) with respect to the type-2 PAF
in R3

1 is derived by

E(2.Paf)
s = ρ

〈
E(2.Paf),D

〉
L
H− ρ

〈
E(2.Paf),H

〉
L
D. (3.19)

+
(
p3

〈
E(2.Paf),D

〉
L
− p1

〈
E(2.Paf),H

〉
L

)
N.

Proof. The general variation of the electric vector field E(2.Paf) with respect to the type-2 PAF
frame in R3

1 is given by
E(2.Paf)

s = b1H+ b2N+ b3D, (3.20)

where b1, b2 and b3 are arbitrary smooth functions. Consider no various loss mechanism along
with the optical fiber for the type-2 PAF with E(2.Paf) ⊥ N. From Eqs.(2.4), (3.4), (3.18) and
(3.20), we have

b2 = −p1

〈
E(2.Paf),H

〉
L
+ p3

〈
E(2.Paf),D

〉
L

(3.21)

with
〈
E(2.Paf),H

〉
M

̸= 0 and
〈
E(2.Paf),D

〉
M

̸= 0. By differentiating Eq.(3.4) with respect to s
and using Eq.(3.20) we also obtain

b1 = ρ
〈
E(2.Paf),D

〉
L
, b3 = −ρ

〈
E(2.Paf),H

〉
L
, (3.22)

where ρ is a parameter. If Eqs. (3.21) and (3.22) are substituted in Eq.(3.20), we obtain Eq.(3.19).

Theorem 3.6. In Case II the polarization plane is rotated by an angle p2 with respect to the
type-2 PAF in the Minkowski 3-space.
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Proof. In the second case the Fermi-Walker derivative of the electric vector field E(2.Paf) with
respect to the type-2 PAF in R3

1 is given by

FWE(2.Paf)
s = E(2.Paf)

s +
〈
N,E(2.Paf)

〉
L
Ns (3.23)

−
〈
Ns,E

(2.Paf)
〉
L
N.

If the electric vector field E(2.Paf) is the Fermi-Walker parallel for the second case, Eqs.(2.4),
(3.18) and (3.23) imply

E(2.Paf)
s =

〈
Ns,E

(2.Paf)
〉
L
N (3.24)

= (−p1

〈
E(2.Paf),H

〉
L
+ p3

〈
E(2.Paf),D

〉
L
)N.

The electric vector field E(2.Paf) for the second case is given by:

E(2.Paf) = E(2.Paf)HH+ E(2.Paf)DD, (3.25)

where
E(2.Paf)H =

〈
E(2.Paf),H

〉
L
, E(2.Paf)D =

〈
E(2.Paf),D

〉
L
.

Taking the derivative of Eq.(3.25) with respect to s, the change of the electric vector field E(2.Paf)

in the Minkowski 3-space is expressed as

E(2.Paf)
s = (E(2.Paf)H

s − p2E
(2.Paf)D)H (3.26)

+(p3E
(2.Paf)D − p1E

(2.Paf)H)N

+(p2E
(2.Paf)H + E(2.Paf)D

s )D.

From Eqs.(2.4) and (3.26), we obtain(
E

(2.Paf)H
s

E
(2.Paf)D
s

)
=

(
0 p2

−p2 0

)(
E(2.Paf)H

E(2.Paf)D

)
, (3.27)

it describes a rotation of the polarization plane by an angle p2 with respect to the type-2 PAF
on the fiber. Thus, the proof is completed.

The magnetic curve produced by the electric vector field E(2.Paf) along the linearly po-
larized monochromatic light wave propogating in the optical fiber for the second case is called
a Lorentzian type-2 PAF electromagnetic curve for the second case. Therefore, the Lorentzian
type-2 PAF electromagnetic curve of the spacelike curve β in the second case is given by (cf. [13])

ΦNE(2.Paf) = E(2.Paf)
s = V(2) ×L E(2.Paf), (3.28)

where V(2) is any divergence free vector field.

Theorem 3.7. The Lorentz force equation of the Lorentzian type-2 PAF electromagnetic curve
of the spacelike curve β for the second case is given by ΦN (H)

ΦN (N)
ΦN (D)

 =

 0 −p1 ρ
−p1 0 p3
−ρ p3 0

 H
N
D

 . (3.29)
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Proof. Via Eq.(3.24) and Eq.(3.28), the followings are obtained:〈
ΦNE(2.Paf),H

〉
L

= −
〈
E(2.Paf),ΦNH

〉
L
, (3.30)〈

ΦNE(2.Paf),N
〉
L

= −
〈
E(2.Paf),ΦNN

〉
L
, (3.31)〈

ΦNE(2.Paf),D
〉
L

= −
〈
E(2.Paf),ΦND

〉
L
. (3.32)

From Eqs.(3.30), (3.31) and (3.32), we obtain Eq.(3.29).

Theorem 3.8. The magnetic vector field V(2) with respect to the type-2 PAF in the second case
is given by

V(2) = p3H+ρN+ p1D. (3.33)

Proof. Using Eq.(3.29), we obtain Eq.(3.33).

Case III. Let us consider an optical fiber O which can be described by a spacelike curve β
with the timelike binormal vector with respect to the type-2 PAF in the Minkowski 3-space R3

1.

Assume that the electric vector field E(2.Paf) is perpendicular to the timelike vector D, that
is, 〈

E(2.Paf),D
〉
L
= 0, (3.34)

and also consider no various loss mechanism along the optical fiber of the electric vector field
E(2.Paf) in the third case in the Minkowski 3-space. Then,〈

E(2.Paf),E(2.Paf)
〉
L
= const. (3.35)

Theorem 3.9. In Case III the evolution of the electric vector field E(2.Paf) with respect to the
type-2 PAF in R3

1 is given by

E(2.Paf)
s = ξ

〈
E(2.Paf),N

〉
L
H− ξ

〈
E(2.Paf),H

〉
L
N (3.36)

−
(
p3

〈
E(2.Paf),N

〉
L
+ p2

〈
E(2.Paf),H

〉
L

)
D.

Proof. The general evolution of the electric vector field E(2.Paf) in R3
1 is given by

E(2.Paf)
s = c1H+ c2N+ c3D, (3.37)

where c1, c2 and c3 are the arbitrary smooth functions. Using Eqs.(2.4), (3.34), (3.35) and (3.37),
we get

c1 = ξ
〈
E(2.Paf),N

〉
L
, c2 = −ξ

〈
E(2.Paf),H

〉
L
, (3.38)

c3 = −p2

〈
E(2.Paf),H

〉
L
− p3

〈
E(2.Paf),N

〉
L

(3.39)

with
〈
E(2.Paf),H

〉
L
̸= 0 and

〈
E(2.Paf),N

〉
L
̸= 0. Here ξ is a parameter. When Eqs.(3.38) and

(3.39) are written in Eq.(3.37), we obtain Eq.(3.36).
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Theorem 3.10. In the third case the polarization plane is rotated by an angle p1 with respect to
the type-2 PAF in R3

1.

Proof. The Fermi-Walker derivative of the electric vector field E(2.Paf) with respect to the type-2
PAF in the third case in R3

1 is given by

FWE(2.Paf)
s = E(2.Paf)

s +
〈
D,E(2.Paf)

〉
L
Ds (3.40)

−
〈
Ds,E

(2.Paf)
〉
L
D.

It follows that if in the third case the electric vector field E(2.Paf) is Fermi-Walker parallel, then
Eqs.(3.34) and (3.40) imply

E(2.Paf)
s =

〈
Ds,E

(2.Paf)
〉
L
D. (3.41)

Also, in the third case the electric vector field E(2.Paf) becomes

E(2.Paf) = E(2.Paf)HH+ E(2.Paf)NN, (3.42)

where
E(2.Paf)H =

〈
E(2.Paf),H

〉
L
, E(2.Paf)N =

〈
E(2.Paf),N

〉
L
.

Via Eq.(2.4) and the derivative of Eq.(3.42) with respect to s, the variation of the electric vector
field E(2.Paf) is obtained as

E(2.Paf)
s = (E(2.Paf)H

s − p1E
(2.Paf)N )H (3.43)

+(p1E
(2.Paf)H + E(2.Paf)N

s )N

−(p2E
(2.Paf)H + p3E

(2.Paf)N )D.

From this, Eq. (3.43) implies(
E

(2.Paf)H
s

E
(2.Paf)N
s

)
=

(
0 p1

−p1 0

)(
E(2.Paf)H

E(2.Paf)N

)
. (3.44)

It follows that in the third case Eq.(3.44) gives a rotation of the polarization plane by an angle
p1 with respect to the type-2 PAF in R3

1.

The magnetic curve produced by the electric vector field E(2.Paf) along the linearly polarized
monochromatic light wave propogating in the optical fiber is called a Lorentzian type-2 PAF
electromagnetic curve for the third case. Therefore, the Lorentzian type-2 PAF electromagnetic
curve of the spacelike curve β for the third case in R3

1 is described by (cf. [13])

ΦDE(2.Paf) = E(2.Paf)
s = V(3) ×L E(2.Paf), (3.45)

where V(3) is any divergence free vector field.

Theorem 3.11. The Lorentz force equation of the Lorentzian type-2 PAF electromagnetic curve
of the spacelike curve β for the third case is given by ΦD(H)

ΦD(N)
ΦD(D)

 =

 0 ξ −p2
−ξ 0 −p3
−p2 −p3 0

 H
N
D

 . (3.46)
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Proof. From Eq.(3.24) and Eq.(3.28), one obtains〈
ΦDE(2.Paf),H

〉
L

= −
〈
E(2.Paf),ΦDH

〉
L
, (3.47)〈

ΦDE(2.Paf),N
〉
L

= −
〈
E(2.Paf),ΦDN

〉
L
, (3.48)〈

ΦDE(2.Paf),D
〉
L

= −
〈
E(2.Paf),ΦDD

〉
L
. (3.49)

From Eqs.(3.47), (3.48) and (3.49), we obtain (3.46).

Theorem 3.12. In the third case the magnetic vector field V(3) with respect to the type-2 PAF
is given by:

V(3) = ξD− p2N+ p3H. (3.50)

Proof. Using Eq.(3.46), we obtain Eq.(3.50).

4 The evolution of electric field for the type-3 PAF

In this section, we consider an optical fiber O described by the type-3 PAF of the timelike curve
β in the Minkowski 3-space R3

1.

Suppose that the electric vector field E(3.Paf) is perpendicular to the timelike vector B
according to the type- 3 PAF in R3

1, that is,〈
E(3.Paf),B

〉
L
= 0. (4.1)

Consider no various loss mechanism along with the optical fiber with respect to the type-3 PAF.
Then we have 〈

E(3.Paf),E(3.Paf)
〉
L
= const. (4.2)

Theorem 4.1. The change of the electric vector field E(3.Paf) with respect to the type-3 PAF in
R3

1 is given by

E(3.Paf)
s = λ

〈
E(3.Paf),F

〉
L
P− λ

〈
E(3.Paf),P

〉
L
F (4.3)

−
(
n3

〈
E(3.Paf),F

〉
L
+ n2

〈
E(3.Paf),P

〉
L

)
B.

Proof. The general variation of the electric vector field E(3.Paf) with respect to the type-3 PAF
in R3

1 is given by
E(3.Paf)

s = d1P+ d2F+ d3B, (4.4)

where d1, d2 and d3 are arbitrary smooth functions. Via Eqs.(3.27), (4.1), (4.2) and (4.4), it is
obtained by

d1 = λ
〈
E(3.Paf),F

〉
L
, d2 = −λ

〈
E(3.Paf),P

〉
L
, (4.5)

d3 = −n2

〈
E(3.Paf),P

〉
L
− n3

〈
E(3.Paf),F

〉
L
, (4.6)

where
〈
E(3.Paf),P

〉
L
̸= 0,

〈
E(3.Paf),F

〉
L
̸= 0 and λ is a parameter. If Eqs.(4.5) and (4.6) are

substituted in Eq.(4.4), we obtain Eq.(4.3).
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Theorem 4.2. The polarization plane for the type-3 PAF in R3
1 is rotated by an angle n1.

Proof. The Fermi-Walker derivative of the electric vector field E(3.Paf) for the type-3 PAF in R3
1

is expressed by

FWE(3.Paf)
s = E(3.Paf)

s −
〈
B,E(3.Paf)

〉
L
Bs +

〈
Bs,E

(3.Paf)
〉
L
B. (4.7)

If the electric vector field E(3.Paf) of the type-3 PAF is Fermi-Walker parallel, then Eqs.(4.1) and
(4.7) lead to

E(3.Paf)
s =

〈
Bs,E

(3.Paf)
〉
L
B. (4.8)

Also, the electric vector field E(3.Paf) is given by

E(3.Paf) = E(3.Paf)PP+ E(3.Paf)FF, (4.9)

where

E(3.Paf)P =
〈
E(3.Paf),P

〉
L
, E(3.Paf)F =

〈
E(3.Paf),F

〉
L
.

It follows that the evolution of the electric vector field E(3.Paf) is given by

E(3.Paf)
s = (− E(3.Paf)P

s + n1E
(3.Paf)F )P (4.10)

+(− n1E
(3.Paf)P + E(3.Paf)F

s )F

−(− n2E
(3.Paf)P + n3E

(3.Paf)F )B.

Furthermore, from Eqs.(4.8) and (4.10), one obtains(
E

(3.Paf)P
s

E
(3.Paf)F
s

)
=

(
0 n1

−n1 0

)(
E(3.Paf)P

E(3.Paf)F

)
. (4.11)

Therefore, (4.11) gives a rotation of the polarization plane by an angle n1 for the type-3 PAF in
R3

1.

The magnetic curve produced by the electric vector field E(3.Paf) along the linearly polar-
ized monochromatic light wave propogating in the optical fiber for the type-3 PAF is called a
Lorentzian type-3 PAF electromagnetic curve. The Lorentzian type-3 PAF electromagnetic curve
of the timelike curve β in R3

1 is defined by (cf. [13])

ΦBE(3.Paf) = E(3.Paf)
s = W ×L E(3.Paf), (4.12)

where W is any divergence free vector field.

Theorem 4.3. The Lorentz force equation according to the type 3-PAF of the Lorentzian type-3
PAF electromagnetic curve of the timelike curve β is given by ΦB(P)

ΦB(F)
ΦB(B)

 =

 0 λ −n2

λ 0 −n3

−n2 −n3 0

 P
F
B

 . (4.13)
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Proof. From Eqs. (4.3) and (4.12), one obtains〈
ΦBE(3.Paf),P

〉
L

= −
〈
E(3.Paf),ΦBP

〉
L
, (4.14)〈

ΦBE(3.Paf),F
〉
L

= −
〈
E(3.Paf),ΦBF

〉
L
, (4.15)〈

ΦBE(3.Paf),B
〉
L

= −
〈
E(3.Paf),ΦBB

〉
L
. (4.16)

Via Eqs. (4.14), (4.15) and (4.16), we obtain Eq. (4.13).

Theorem 4.4. The magnetic vector field W with respect to the type-3 PAF is given by

W = −n3P+ n2F+ λB. (4.17)

Proof. Using Eq. (4.13), we obtain Eq. (4.17).

Conclusion

First of all, we constructed the type-2 and type-3 PAFs in Minkowski 3-space. Later, the evo-
lutions of the electric field were presented with respect to the the type-2 and the type-3 PAFs
in the Minkowski 3-space. Also, the type-2 and the type-3 Lorentz equations and the magnetic
vector fields with respect to the type-2 and type-3 PAFs in the Minkowski 3-space were found.
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1 (2022), 42-53.

[18] M. Barros, J.L. Cabrerizo , M. Fernández , A. Romero, Magnetic vortex filament flows, J.
Math. Phys., 48 (2007), 082904.



128 N. E. Gürbüz and D. W. Yoon
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