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An epidemic model for control and possible

elimination of Lassa fever
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Abstract. Lassa fever is a deadly viral disease whose incubation period ranges

from six to twenty-one days and about eighty percent of Lassa virus infection is

asymptomatic. A deterministic model was formulated to quantify the transmission

dynamics of the disease under isolation and treatment of the isolated asymptomatic

and symptomatic humans for effective management and possible elimination of the

disease. The solutions of the model were shown to be positive and bounded. Equi-

librium analysis was conducted and both the disease-free and the endemic equilibria

were derived. The threshold quantity for disease elimination , R0 , was also obtained

and used to derive conditions for the existence of stability of the eqilibria. The quan-

tity was also employed to examine the sensitivity of the model parameters to disease

propagation and reduction. The theoretical analysis was then complemented with

the quantitative analysis by adopting a set of realistic values for the model parame-

ters in order to show the effect of isolation and treatment on the spread and fatality

of Lassa fever. Results from the quantitative study showed that death and infection

from Lassa fever fell continuously as more and more exposed individuals were de-

tected and isolated for treatment. The study therefore suggested that any measure

taken to eradicate or curtail Lassa fever spread should include detection and isolation

of the exposed humans for prompt treatments.
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1 Introduction

Lassa fever came into existence in 1969 when it erupted in the midst of health workers at a
particular missionary hospital in Lassa town, Borno State of Nigeria, and the contributory agent,
Lassa virus, was detached from the body fluid of the affected health workers [7]. Laura Wine,
one of the first infected nurses at Lassa missionary hospital, was the first victim of the disease.
Today, Lassa fever is a confirmed widespread zoonotic infection in West Africa, with a staggering
100 000 - 300 000 cases yearly, and nearly 5 000 deaths [38]. Since the first occurrence in Lassa
town in 1969, Lassa fever has been occurring from time to time in Nigeria. In 2016, case fatality
from Lassa fever stood at 61% with 108 deaths from 176 reported cases [28]. Also, within the
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first twelve weeks in 2017, 2018 and 2019, case fatalities from Lassa fever were 47%, 26% and
21% respectively [20, 4]. By May 2018, the reported cases of Lassa fever rose to 1 914 across 21
States of Nigeria with case fatality rate of 25.5% [16]. Apart from Nigeria, Lassa fever is a major
health issue in Guinea, Sierra Leone and Liberia. The disease has also been reported in Senegal,
Ghana, Burkina faso, Mali, Benin and Cote d’Ivoire [28, 6].

The agent of Lassa fever is a small rat, the Multimammate rodent that belongs to the genus
Mastomys natelensis [7]. An infected rat remains carrier of the infection for life and does not
manifest any clinical signs but spread the virus in the human and animal populations via saliva,
urine, faeces, respiratory secretions and blood spillage [28]. The virus can also be contracted
through inhalation of aerosol and exposure to contaminated medical tools [25]. Human-to-human
spread of the virus occurs through exposure to the secretions of the infectious individuals including
semen during sexual intercourse [29]. Almost eighty percent of individuals who contract Lassa
fever virus are asymptomatic while the symptoms and signs of the disease take a week or three
weeks to develop [4]. The symptoms begin with body ache, fever, tiredness, headache and sore
throat, back, chest and abdominal pains, diarrhea, nausea and vomiting [40]. At the advanced
stage, an infected individual manifests disorientation, seizures, tremor, shock and coma [21]. In
grave cases, facial swelling, bleeding from the virginal, nose, mouth as well as low blood pressure
manifest [35]. Severe cases are often accompanied with death within fourteen days even though,
one out of five infections brings about a fatal case [39]. Besides, up to fifteen to twenty percent
hospitalisation due to Lassa fever results in death as a result of failure of multiple organs like
kidney, liver and spleen [34].

Lassa fever preventions require sophisticated food storage methods, rats control strategies
such as cleanliness, good waste disposal system, traps and other attempts that can limit contact
with rodents [24]. Isolation of infectious individuals is an ideal method of preventing human-
to-human transmission of Lassa virus [1]. Isolation has been a popular method of checking
transmission of contagious diseases (e.g. leprosy) since time immemorial [22]. At present, no
vaccine protects against the infection of Lassa virus [3]. In case of nonexistence or inadequate
access to medical interventions like treatment and vaccine, isolation is one of the major options to
decrease the spread of transmittable diseases [9]. Infections can take two forms in epidemiological
study. It can be asymptomatic or symptomatic [10]. It is asymptomatic if the symptoms of the
disease are yet to be manifested in the infected individuals. At this stage, the infected individual
may be infectious as in the case of measles or may not be infectious as in the case of Lassa fever
[11, 36]. Infection is symptomatic if the symptoms of the disease have been fully developed in
the infected individuals. At this stage, the infected individual is fully infectious [13]. Since Lassa
fever does not spread from asymptomatic humans [36], mortality from the disease can be averted
and the spread of the virus can be curtailed if the infection is detected at the asymptomatic stage
and the infected individuals are promptly isolated for treatments.

Mathematical epidemiology offers theoretical framework for the study of disease transmis-
sion mechanisms and proposes possible intervention strategies. Mathematical study of the trans-
mission dynamics of Lassa fever has received considerable attentions of researchers and a good
number of models has been developed to study the disease over the years. A model was developed
in [18] to examine the effect of non-drug compliance on the transmission dynamics of Lassa fever.
It was discovered that non-drug compliance triggered reappearance of signs and symptoms after
some time. The researcher therefore concluded that all hands must be on desk to encourage
drug compliance in order to prevent reemergence of Lassa fever. [7] proposed a model for Lassa
fever and performed the sensitivity analysis of the model parameters. Results from their analysis
showed that the most sensitive parameter to Lassa fever spread was contact rate between sus-
ceptible humans and infectious rodents. A robust model of Lassa fever was developed in [35] and
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the authors conducted the sensitivity analysis of the model parameters. Birth rate of rodents was
discovered the most sensitive parameter to animal-to-human spread of the disease while hunt-
ing/predation rate was established the most sensitive to the reproductive ratio of rodents. The
researchers therefore advocated for the control of the two parameters in an attempt to destroy
Lassa fever reservoirs.

A mathematical model was designed in [27] to investigate the implication of separation
and treatment of infectious individuals on the dynamics of Lassa fever. The authors estimated
some important parameters like the reproduction number which they used to predict possible
eradication of Lassa fever in Nigeria with time. [28] designed a Lassa fever model incorporating
variable human and animal population to study possible prevention and control of Lassa fever.
The results of the study suggested hygienic environment, early treatment and rodents control
measures as the best methods against the transmission of Lassa fever. The result of the model
developed in [29] to study the dynamics of Lassa fever with control strategies advocated for the
awareness of the disease in both non-affected and the affected regions to bring people to the
knowledge of Lassa fever prevention, symptoms and treatment. In their study, [3] designed a
model for the control of dynamical spread of Lassa fever. Their findings showed that Lassa virus
transmission and spread in human population was shaped by the population of rodents. They
therefore called for the control of rodent population in a bid to eradicate Lassa fever.

[31] formulated a model and derived a threshold quantity for the transmission and control
of Lassa fever virus. They focused on human-to-human transmission of the virus in terms of
sexual relations and animal-to-human transmission in terms of contact with the infected rodents.
The result of their analysis showed that reduction in human-to-human transmission is a function
condom efficacy and condom usage compliance while reduction in animal-to-human transmission
is a function of the rate of usage of rodenticide. [2] also developed a model for Lassa fever with
isolation of infectious humans as a main target for disease control. They conducted theoretical
and numerical studies of the model and discovered that isolation of infectious individuals and
treatment of the isolated infectious humans yielded a better result in combating the spread of
Lassa fever.

Lassa fever dynamics is shaped by a number of factors such as latency, re-infection and iso-
lation. Latency stage is omitted in some of the existing Lassa fever models despite the incubation
period of between one week to three weeks for Lassa fever [22, 17, 29, 31, 18, 19, 3]. Also, while
antibody to Lassa virus exists in recoverd individuals, it does not deactivate the virus in usual
neutralisation experiment [33]. Therefore, a recovered individual can be re-infected with Lassa
virus but models in [22, 17, 19, 7, 28, 2] exclude possible re-infection. Again, isolation is key to
preventing Lassa fever spread but is not considered in [17, 31, 19, 35]. The model in [17] even
incorporated vaccination which confers immunity on the susceptible individuals despite the fact
that no vaccine guarantees protection against Lassa fever virus at the moment [24]. Also, the
models in [4], [5] considered Lassa fever transmission from exposed individuals but there is no
clinical evidence to back the spread of Lassa fever from an asymptomatic individual [36]. None of
the exiting models support the spread of Lassa virus from an asymptomatic individual. Another
crucial aspect of Lassa fever dynamics that has not been taken into consideration is the detection
and isolation of the exposed individuals for effective treatments. Since the disease does not spread
at the asymptomatic stage [36], there is tendency to delay or eliminate its outbreaks if appropri-
ate methods are designed to identify and isolate asymptomatic humans for effective treatments.
The present study therefore aims to bridge the gaps in the existing Lassa fever models by taking
care of latency, re-infection, isolation and treatment, both at the asymptomatic and symptomatic
stages of infection for effective management and possible elimination of the disease.
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2 Materials and Methods

A seven deterministic compartmental model was considered with the notations Sh(t), Eh(t),
Ih(t), Ish(t), Rh(t), Sr(t) and Ir(t) to give an insight into the transmission dynamics of Lassa
fever. N(t) is the entire population at time t which is partitioned into two sub-populations Nh(t)
and Nr(t): human and rodent populations respectively; that are in turn sub-categorised into
classes Sh(t), Eh(t), Ih(t), Ish(t), Rh(t), Sr(t) and Ir(t) denoting susceptible human population at
time t, exposed human population at time t, infected human population at time t, isolated human
population at time t, recovered human population at time t, susceptible rodent population at
time t and infected rodent population at time t respectively such that

Nh(t) = Sh(t) + Eh(t) + Ih(t) + Ish(t) +Rh(t),

and
Nr(t) = Sr(t) + Ir(t).

The transmission diagram of the dynamics is illustrated in Figure 1.

Figure 1: Transmission diagram of the model

The population of the susceptible human is risen when the individuals are recruited into it
either by immigration or bith at the rate α. It also increases by ε, the waning rate of immunity
after recovery. The compartment decreases by β1 and β2 which are the contact rates with the
infectious animals and man respectively and by µ, which is the natural mortality rate. Thus;

dSh
dt

= α+ εRh − (β1Ir + β2Ih)Sh − µSh.

The exposed human compartment is generated when there is an effective contact between the
susceptible individuals, the infectious rodents and the infectious humans. While σ is the pro-
portion of the exposed human who are identified through the measure which has been put in
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place to track the potential Lassa fever cases, (1− σ) is the remaining proportion of the exposed
individuals who will progress to the infectious class at the expiration of the latency. Hence, the
exposed human compartment is reduced by σθ and (1−σ)θ respectively where both the identified
exposed and the unidentified exposed humans progress to the isolated human and the infectious
human compartments respectively at the same rate θ. The exposed human compartment is also
reduced by µ, the natural mortality rate. Thus;

dEh
dt

= (β1Ir + β2Ih)Sh − σθEh − (1− σ)θEh − µEh.

The infected human population is generated at the expiration of the latency at rate (1−σ)θ where
(1−σ) is the proportion of the individuals who could not be identified during their latency stage.
The compartment is however reduced by ϑ, δ and µ, the isolation of the infectives, disease-induced
and natural mortality rates respectively. Thus;

dIh
dt

= (1− σ)θEh − ϑIh − (µ+ δ)Ih.

The isolated human compartment Ish is produced when some of the exposed and the infectious
humans move into it at the rates θ and ϑ respectively. It is however decreased by τ and µ, the
rates of successful treatment and natural mortality respectively. Thus;

Ish
dt

= σθEh + ϑIh − τIsh − µIsh.

The recovered human compartment is produced through successful treatment of the isolated
individuals at rate τ . It is however reduced by the natural mortality rate µ and the waning rate
of immunity ε. Thus;

dRh
dt

= τIsh − εRh − µRh.

The compartment for the susceptible animals (Sr) is produced at the rate φ but reduces through
ρ and γ, the effective contact rate with the infected animals and the natural mortality rate
respectively. Thus;

dSr
dt

= φ− ρSrIr − γSr.

The compartment for the infected animals grows through the effective contact between the sus-
ceptible and the infected animals at the rate ρ but reduces by γ, the natural mortality rate.
Thus;

dIr
dt

= ρSrIr − γIr.

It is assumed that while natural mortality occurs for all the human compartments at the same
rate µ, natural mortality occurs for all the animal compartments at the same rate γ. Bringing the
above assumptions, formulations and flow diagram together, the following system of equations
are derived.

dSh
dt

= α+ εRh − (β1Ir + β2Ih)Sh − µSh, (2.1)

dEh
dt

= (β1Ir + β2Ih)Sh − σθEh − (1− σ)θEh − µEh, (2.2)

dIh
dt

= (1− σ)θEh − ϑIh − (µ+ δ)Ih, (2.3)

Ish
dt

= σθEh + ϑIh − τIsh − µIsh, (2.4)
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dRh
dt

= τIsh − εRh − µRh, (2.5)

dSr
dt

= φ− ρSrIr − γSr, (2.6)

dIr
dt

= ρSrIr − γIr. (2.7)

Parameter descriptions are stated in Table 1 for ease of reference.

Table 1: Description for model parameters

Parameters Descriptions

α recruitment rate for humans
ε waning rate of immunity
β1 contact rate with infectious animals for susceptible humans
β2 contact rate with infectious humans for susceptible humans
µ natural mortality rate for humans
σ proportion of humans identified and isolated at the exposed stage
θ progression rate from the exposed stage
ϑ rate of isolation of infectious humans
δ mortality rate due to Lassa fever for humans
τ successful treatment rate
φ recruitment rate for animals
ρ contact rate between susceptible and infectious animals
γ natural mortality rate for animals

The variables and parameters for the model are nonnegative for t ≥ 0 in the region Ω, where
Ω = Ωh ×Ωr =

{
Sh, Eh, Ih, Rh, Ish, Sr, Ir ∈ <7

+

}
. Since the model variables and parameters are

nonnegative, we can show that the solutions for the model are bounded and positive in Ω. The
total changes in human population with time is

dNh
dt

= α− µ(Sh + Eh + Ih +Rh + Ish)− δIh

= α− µNh − δIh ⇒
dNh
dt
≤ α− µNh ⇒

dNh
(α− µNh)

≤ dt⇒

ln(α− µNh) ≥ t+m⇒
α− µNh ≥ pe−µt,

when t = 0 then

α− µNh(t) ≥ (α− µNh0)e−µt ⇒ Nh(t) ≤ α

µ
−
(
α− µNh0

µ

)
e−µt.
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As t→∞ then Nh(t) ≤ α

µ
. Hence, the bounded region for the solution of Nh(t) exists in

Ωh =

{
(Sh, Eh, Ih, Rh, Ish) ∈ <5

+;Nh(t) ≤ α

µ

}
.

For animals, the addition of the rodent population is given as

dNr
dt
≤ φ− γNr ⇒ Nr(t) ≤

φ

γ
[1− ke−γt].

As t→∞ then Nr(t) ≤
φ

γ
. Hence, the bounded region for the solution of Nr(t) exists in

Ωr =

{
(Sr, Ir) ∈ <2

+;Nr(t) ≤
φ

γ

}
.

Therefore, the set of all feasible solutions for the Lassa fever model is bounded within

Ω = Ωh ×Ωr =

{
Sh, Eh, Ih, Rh, Ish, Sr, Ir ∈ <7

+;Nh(t) ≤ α

µ
;Nr(t) ≤

φ

γ

}
. Since the system con-

siders human and animal populations, the initial conditions for the variables are necessarily
positive and the solutions to the model ought to be nonnegative as well for t ≥ 0. We therefore
verify the positivity of the model solutions.
From (2.1),

dSh
dt

= α+ εRh − (β1Ir + β2Ih)Sh − µSh,

≥ −(β1Ir + β2Ih + µ)Sh,

⇒
∫
dSh
Sh
≥ −

∫
(β1Ir + β2Ih)dt−

∫
µdt,

lnSh(t) ≥ −
∫

(β1Ir + β2Ih)dt− µt+ c,

Sh(t) ≥ e−
∫
(β1Ir+β2Ih)dt × e−µt × ec,

≥W (e−[
∫
(β1Ir+β2Ih)dt+µt]),

when t = 0, Sh(0) ≥W .

∴ Sh(t) ≥ Sh(0)(e−
∫
(β1Ir+β2Ih)dt+µt) ≥ 0.

Also from (2),

dEh
dt

= (β1Ir + β2Ih)Sh − θEh − µEh,

≥ −(µ+ θ)Eh,

⇒
∫
dEh
Eh
≥ −

∫
(µ+ θ)dt,

lnEh(t) ≥ −(µ+ θ)t+ c,

Eh(t) ≥ e−(µ+θ)t+c,
≥ Xe−(µ+θ)t,

when t = 0, Eh(0) ≥ X.
∴ Eh(t) ≥ Eh(0)e−(µ+θ)t ≥ 0.

Following the same process, we can show that the solutions for other equations are nonnegative
for t ≥ 0.



62 A. A. Ayoade, N. Nyerere and M. O. Ibrahim

3 Model Analysis

3.1 Equilibria

The system allows a zero equilibrium E◦ = (S◦h, E
◦
h, I
◦
h, R

◦
h, I
◦
sh, S

◦
r , I
◦
r ) =

(
α

µ
, 0, 0, 0, 0,

φ

γ
, 0

)
and

a nonzero equilibrium E∗ = (Sh∗, Eh∗, Ih∗, Rh∗, Ish∗, Sr∗, Ir∗) with coordinates

Sh∗ =

[
β1γ

ρ

(
ρφ

γ2
− 1

)
+
β2(1− σ)θ

(µ+ ϑ+ δ)
Eh + µ

]{
α+

ετ [σθ(µ+ ϑ+ δ) + ϑ(1− σ)θ]

(µ+ ε)(µ+ τ)(µ+ ϑ+ δ)
Eh

}
,

Eh∗ =
β1αγ

µρ

(
ρφ

γ2
− 1

)/(
β2(1− σ)αθ

µ(µ+ θ)(µ+ ϑ+ δ)
− 1

)
,

Ih∗ =
(1− σ)θ

(µ+ ϑ+ δ)
Eh∗,

Rh∗ =
τ [σθ(µ+ ϑ+ δ) + ϑ(1− σ)θ]

(µ+ ε)(µ+ τ)(µ+ ϑ+ δ)
Eh∗,

Ish∗ =
σθ(µ+ ϑ+ δ) + ϑ(1− σ)θ

(µ+ τ)(µ+ ϑ+ δ)
Eh∗,

Sr∗ =
γ

ρ
,

Ir∗ =
φ

γ
− γ

ρ
.

(3.1)

3.2 Reproduction Number

The average number of secondary infections to be produced when a single infectious individual
gets into the susceptible population is governed by a threshold quantity known as the reproduction
number, R◦. If R◦ > 1, the infectious individual will infect at least one person and the disease
will spread in the population. On the other hand, if R◦ < 1, the infectious individual will fail to
infect a single person and the disease will die out or fail to spread. Because infection can spread
from both infectious humans and animals, R◦ in the present analysis is made up of two parts
as in other Lassa fever models [30]. It is made up of R◦h and R◦a, the infection transmission
potentials from human and animal respectively which are derived following the approach in [37]
outlined as follows

F =

(β1Ir + β2Ih)Sh
0

ρSrIr

 ; V =

 (θ + µ)Eh
−(1− σ)θEh + (µ+ ϑ+ δ)Ih

γIr

 , (3.2)

⇒ F =

0 β2Sh β1Sh
0 0 0
0 0 ρSr

 ; V =


1

(µ+ θ)
0 0

(1− σ)θ

(µ+ θ)(µ+ ϑ+ δ)

1

(µ+ ϑ+ δ)
0

0 0
1

γ

 , (3.3)
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FV −1 =


αβ2(1− σ)θ

µ(µ+ θ)(µ+ ϑ+ δ)

αβ2
µ(µ+ ϑ+ δ)

0

0 0 0

0 0
ρφ

γ2

 . (3.4)

∴ R◦ = max.(R◦h,R◦a) = max.

(
αθβ2(1− σ)

µ(µ+ θ)(µ+ ϑ+ δ)
,
ρφ

γ2

)
. (3.5)

Keeping other parameters constant in (3.5) but increasing isolation parameter for asymptomatic
humans σ as well as isolation parameter for infectious humans ϑ while recruitment rate for animals
φ is reduced will ultimately reduce R◦ and Lassa fever may fail to spread in the population under
the condition. Expressing the endemic equilibrium E∗ in (3.1) in terms of R◦ (i.e.,R◦h,R◦a) then

Sh∗ =

[
β1γ

ρ
(R◦a − 1) +

β2(1− σ)θ

(µ+ ϑ+ δ)
×
[
β1αγ

µρ
(R◦a − 1)

/
(R◦h − 1)

]
+ µ

]
×
{
α+

ετ [σθ(µ+ ϑ+ δ) + ϑ(1− σ)θ]

(µ+ ε)(µ+ τ)(µ+ ϑ+ δ)
×
[
β1αγ

µρ
(R◦a − 1)

/
(R◦h − 1)

]}
,

Eh∗ =
β1αγ

µρ
(R◦a − 1)

/
(R◦h − 1),

Ih∗ =
(1− σ)θ

(µ+ ϑ+ δ)
×
[
β1αγ

µρ
(R◦a − 1)

/
(R◦h − 1)

]
,

Rh∗ =
τ [σθ(µ+ ϑ+ δ) + ϑ(1− σ)θ]

(µ+ ε)(µ+ τ)(µ+ ϑ+ δ)
×
[
β1αγ

µρ
(R◦a − 1)

/
(R◦h − 1)

]
,

Ish∗ =
σθ(µ+ ϑ+ δ) + ϑ(1− σ)θ

(µ+ τ)(µ+ ϑ+ δ)
×
[
β1αγ

µρ
(R◦a − 1)

/
(R◦h − 1)

]
,

Sr∗ =
γ

ρ
,

Ir∗ =
γ

ρ
(R◦a − 1).

(3.6)

Since the existence of nonzero equilibrium E∗ depends on the positivity of each point in E∗, it is
therefore shown in (3.6) that E∗ exists if and only if R◦ > 1 i.e., R◦a > 1 and R◦h > 1. One or
more of the points may be negative if R◦a or R◦h or both R◦a and R◦h are less than one.

3.3 Local and global stability of zero equilibrium, E◦

The local and global stability of the zero equilibrium, E◦ is a function of R◦a and R◦h. Both are
stable if R◦a < 1 and R◦h < 1 but they are unstable if either R◦a or R◦h exceeds one or both
R◦a and R◦h exceed one.

Theorem 3.1. The disease-free equilibrium E◦ is locally and globally stable if R◦a < 1 and
R◦h < 1.

Proof. To verify the local stability of the zero equilibrium, E◦, we compute the Jacobian matrix
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of the system as follows

J =



−(µ+ β1Ir + β2Ih) 0 −β2Sh ε 0 0 −β1Sh
(β1Ir + β2Ih) −(µ+ θ) β2Sh 0 0 0 β1Sh

0 (1− σ)θ −(µ+ ϑ+ δ) 0 0 0 0
0 0 0 −(µ+ ε) τ 0 0
0 σθ ϑ 0 −(µ+ τ) 0 0
0 0 0 0 0 −ρIr − γ −ρSr
0 0 0 0 0 ρIr ρSr − γ


.

(3.7)
Evaluating J at the zero equilibrium E◦ then (3.7) becomes

J(E◦) =



−µ 0 −αβ2
µ

ε 0 0 −αβ1
µ

0 −(µ+ θ)
αβ2
µ

0 0 0
αβ1
µ

0 (1− σ)θ −(µ+ ϑ+ δ) 0 0 0 0
0 0 0 −(µ+ ε) τ 0 0
0 σθ ϑ 0 −(µ+ τ) 0 0

0 0 0 0 0 −γ −ρφ
γ

0 0 0 0 0 0
ρφ

γ
− γ


. (3.8)

Five of the eigenvalues of J(E◦) are λ1 = −µ, λ2 = γ(R◦a − 1), λ3 = −γ, λ4 = −(µ + τ) and
λ5 = −(µ+ ε). The remaining elements of J(E◦) are contained in submatrix B given as

B =

−(µ+ θ)
αβ2
µ

(1− σ)θ −(µ+ ϑ+ δ)

 . (3.9)

Following Gershgorin’s circle theorem [8, 32], the following inequalities are satisfied by matrix B

(µ+ θ) >
αβ2
µ
,

(µ+ ϑ+ δ) > (1− σ)θ

. (3.10)

Combining the inequalities in (3.10),

1 >
αβ2(1− σ)θ

µ(µ+ θ)(µ+ ϑ+ δ)
.

⇒ R◦h < 1. (3.11)

The DFE is locally stable if all the eigenvalues of J(E◦) in (3.8) are negative. Considering λ2, it
is observed that the local stability of DFE is ensured only if R◦a < 1 and R◦h < 1.
To verify the global stability of DFE, the approach in [14] is adopted. With the approach, the
model is partitioned into

ẋ = F (x, I),

İ = G(x, I),

G(x,0) = 0,

(3.12)
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where x ∈ <3 denotes the uninfected components of the model, I ∈ <4 denotes the infected
components of the model and E◦=(x∗, 0) denotes the DFE of the model. x ∈ <3 implies x =
(Sh, Rh, Sr)

T while I ∈ <4 implies I = (Eh, Ih, Ish, Ir)
T . The conditions (H1) and (H2) in [14]

must be satisfied by the system (3.12) to ensure global stability of the model’s DFE. The con-
ditions (H1) and (H2) in [14] are stated as follows
(H1) For ẋ = F (x,0), x∗ is g.a.s.
(H2) Ĝ(x, I)=AI−G(x, I), Ĝ(x, I) ≥ 0 for Ĝ(x, I) ∈ Ω.
F (x,0) is a 2 × 1 column matrix which is derived by evaluating the uninfectious and the infec-
tious compartments of the model with the values of the models’ variables at DFE. In (H2),
A=DIG(x∗,0) is an M-matrix (the off diagonal elements of A are nonnegative) and Ω is the
medel’s region of feasibility. If the system (3.12) meets the two conditions, then R◦a and R◦h
are less than unity and the DFE of the model is globally asymptotically stable. We verify the
two conditions as follows

F (x,0) =

(
α+ φ− µS◦h − γS◦r

0

)
,

Ĝ(x, I) = AI−G(x, I)

=


−(µ+ θ) β2S

◦
h 0 β1S

◦
h

(1− σ)θ −(µ+ ϑ+ δ) 0 0
σθ ϑ −(µ+ τ) 0
0 0 0 ρS◦r − γ



Eh
Ih
Ish
Ir



−


−(µ+ θ)Eh β2IhSh 0 β1IrSh
(1− σ)θEh −(µ+ ϑ+ δ)Ih 0 0
σθEh ϑIh −(µ+ τ)Ish 0

0 0 0 (ρS◦r − γ)Ir



⇒Ĝ(x, I) =


Ĝ1(x, I)

Ĝ2(x, I)

Ĝ3(x, I)

Ĝ4(x, I)

 =


β2Ih(S◦h − Sh) + β1Ir(S

◦
h − Sh)

0
0

ρ(S◦r − Sr)

 .

(3.13)

It is observed from (3.13) that Ĝ(x, I) ≥ 0 since S◦h ≥ Sh and S◦r ≥ Sr. Hence, the conditions
(H1) and (H2) in [14] are satisfied and the DFE E0 is globally asymptotically stable if R◦a < 1
and R◦h < 1.

3.4 Local and global stability of nonzero equilibrium, E∗

As in zero equilibrium, E◦, the stability of nonzero equilibrium E∗ also depends on the values of
R◦a and R◦h. However, unlike in E◦, E∗ is stable locally and globally if R◦a > 1 and R◦h > 1
while it is unstable if R◦a < 1 and R◦h < 1.

Theorem 3.2. The endemic equilibrium E∗ exists and is locally and globally asymptotically stable
if R◦a > 1 and R◦h > 1 otherwise E∗ is locally and globally unstable (i.e., if R◦a < 1 and
R◦h < 1).

Proof. To investigate the local stability of the nonzero equilibrium, E∗, the center manifold theory
[15] is employed. β2 = β∗2 is considered as the bifurcation parameter at the bifurcation point
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R◦h = 1 . Computing the Jacobian matrix of the system at the DFE E0 with β2 = β∗2 then

J∗ = J(E0)|β2=β∗
2

=



−µ 0 −αβ
∗
2

µ
ε 0 0 −αβ1

µ

0 −(µ+ θ)
αβ∗2
µ

0 0 0
αβ1
µ

0 (1− σ)θ −(µ+ ϑ+ δ) 0 0 0 0
0 0 0 −(µ+ ε) τ 0 0
0 σθ ϑ 0 −(µ+ τ) 0 0

0 0 0 0 0 −γ −ρφ
γ

0 0 0 0 0 0
ρφ

γ
− γ


.

(3.14)
The right eigen vector corresponding to J∗ = J(E0)|β2=β∗

2
is computed as

w1 =
1

µ

{
ετ

(µ+ τ)(µ+ ε)

(
σθ +

ϑ(1− σ)θ

(µ+ ϑ+ δ)

)
− (µ+ θ)

}
w2,

w2 = w2 > 0,

w3 =
(1− σ)θ

(µ+ ϑ+ δ)
w2 > 0,

w4 =
τ

(µ+ τ)(µ+ ε)

(
σθ +

ϑ(1− σ)θ

(µ+ ϑ+ δ)

)
w2 > 0,

w5 =
1

(µ+ τ)

(
σθ +

ϑ(1− σ)θ

(µ+ ϑ+ δ)

)
w2 > 0,

w6 =
µρφ

αβ1γ2

[
αβ∗2(1− σ)θ

µ(µ+ ϑ+ δ)
− (µ+ θ)

]
w2,

w7 =
µ

αβ1

[
(µ+ θ)− αβ∗2(1− σ)θ

µ(µ+ ϑ+ δ)

]
w2.

(3.15)

Also, the left eigen vector corresponding to J∗ = J(E0)|β2=β∗
2

which satisfies the condition v.w =
1 is derived as v1 = v3 = v4 = v5 = v6 = v7 = 0 but v2 = v2 > 0. The bifurcation coefficients of
a and b are then computed following [Theorem 4.1, [15]] as

a = 2v2w1w3β
∗
2 + 2v2w1w7β1

=
2v2
µ

{
ετ

(µ+ τ)(µ+ ε)

(
σθ +

ϑ(1− σ)θ

(µ+ ϑ+ δ)

)
− (µ+ θ)

}
×
[

(1− σ)θβ∗2
(µ+ ϑ+ δ)

+
µ

αβ1

(
(µ+ θ)− (1− σ)αθβ∗2

µ(µ+ ϑ+ δ)

)]
w2

2,

b =
α

µ
v2w2 > 0.

(3.16)

Following [Theorem 4.1, [15]], b is always positive as shown in (3.16). The nonzero equi-
librium is therefore locally asymptotically stable if a < 0 while it is unstable if a > 0. A close
observation of the value of a in (3.16) reveals the effect of detecting and isolating asymptomatic
humans for treatment on the stability of nonzero equilibrium. if the rate of detecting and iso-
lating asymptomatic humans for treatment is maximal (i.e., if σ → 1), a may be positive and
the endemic equilibrium becomes unstable (i.e., R◦a < 1 and R◦h < 1). The instability of
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nonzero equilibrium implies stability of zero equilibrium. The spread of Lassa fever from infec-
tious humans to susceptible humans (β∗2) could be largely neutralised with σ → 1 as indicated in
(3.16).

Having derived the sufficient conditions for the existence of local stability of nonzero equilib-
rium, we proceeded to establish the necessary and sufficient conditions for the existence of global
stability of the endemic equilibrium following the popular Lyapunov function employed in [9].
Consider a nonlinear Lyapunov function

L(Sh∗, Eh∗, Ih∗, Rh∗, Ish∗, Sr∗, Ir∗) =

(
Sh − Sh∗ − Sh∗ ln

Sh∗
Sh

)
+

(
Eh − Eh∗ − Eh∗ ln

Eh∗
Eh

)
+

(
Ih − Ih∗ − Ih∗ ln

Ih∗
Ih

)
+

(
Rh −Rh∗ −Rh∗ ln

Rh∗
Rh

)
+

(
Ish − Ish∗ − Ish∗ ln

Ish∗
Ish

)
+

(
Sr − Sr∗ − Sr∗ ln

Sr∗
Sr

)
+

(
Ir − Ir∗ − Ir∗ ln

Ir∗
Ir

)
.

The disease-endemic equilibrium is globally asymptotically stable and both R◦a and R◦h are
greater than one if L̇ < 0 is established. The time derivative of L (i.e., L̇) is given thus

L̇ =

(
1− Sh∗

Sh

)
dSh
dt

+

(
1− Eh∗

Eh

)
dEh
dt

+

(
1− Ih∗

Ih

)
dIh
dt

+

(
1− Rh∗

Rh

)
dRh
dt

+

(
1− Ish∗

Ish

)
dIsh
dt

+

(
1− Sr∗

Sr

)
dSr
dt

+

(
1− Ir∗

Ir

)
dIr
dt
.

(3.17)

After a few algebraic processes, L̇ reduces to

L̇ = A1 +A2, (3.18)

where

A1 = (α+ εRh)

(
1− Sh∗

Sh

)
+ (β1IrSh + β2IhSh)

(
1− Eh∗

Eh

)
+ (1− σ)θEh

(
1− Ih∗

Ih

)
+ τIsh

(
1− Rh∗

Rh

)
+ (σθEh + ϑIh)

(
1− Ish∗

Ish

)
+ φ

(
1− Sr∗

Sr

)
+ ρIrSr

(
1− Ir∗

Ir

)
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and,

A2 = (β1Ir + β2Ih + µ)Sh∗

(
1− Sh

Sh∗

)
+ (µ+ θ)Eh∗

(
1− Eh

Eh∗

)
+ (µ+ ϑ+ δ)Ih∗

(
1− Ih

Ih∗

)
+ (µ+ ε)Rh∗

(
1− Rh

Rh∗

)
+ (µ+ τ)Ish∗

(
1− Ish

Ish∗

)
+ (ρIr + γ)Sr∗

(
1− Sr

Sr∗

)
+ γIr∗

(
1− Ir

Ir∗

)
.

It is establised that A1 > 0 and A2 < 0 because Sh∗ < Sh, Eh∗ < Eh, Ih∗ < Ih, Rh∗ < Rh, Ish∗ <
Ish, Sr∗ < Sr and Ir∗ < Ir. Therefore, L̇ < 0 if A1 < A2 and by LaSalle’s invariance principle
[23], the nonzero equilibrium E∗ is globally asymptomatically stable if A1 < A2. Since the
disease-endemic equilibrium E∗ is globally asymptomatically stable only if R◦a > 1 and R◦h > 1
therefore, the condition A1 < A2 is fulfilled if and only if the requirements R◦a > 1 and R◦h > 1
are met.

3.5 Sensitivity analysis

The primary objective of sensitivity analysis is to evaluate how model results change as the
model’s parameters are changed. Knowing the relative importance of the various elements in-
volved for the transmission and occurrence of an infectious disease like Lassa fever is crucial for
determining the best way to diminish or eradicate it and minimize its mortality. A parameter
is said to be sensitive if a little change in its value results in a significant change in how the
differential equations are solved. To study a change in the model’s solution with regard to a
certain parameter, the derivative of the solution for the parameter is utilized [12]. We compute
the sensitivity indices of the key parameters following the normalised forward sensitivity index
approach [9] thus

ΓR◦h
α =

β2θ(1− σ)

µ(µ+ θ)(µ+ ϑ+ δ)
× α

R◦h
,

ΓR◦h
σ = − σ

(1− σ)
,

ΓR◦h

ϑ = − ϑ

(µ+ ϑ+ δ)
,

ΓR◦a

φ =
ρ

γ2
× φ

R◦a
.

(3.19)

4 Numerical Simulations and Discussion of Results

Numerical simulations are conducted to visualise the disease dynamics in both human and animal
populations. The parameter values which are peculiar to Nigeria are adopted to perform the
simulations. Lassa fever originates from Nigeria. Besides, Nigeria remains one of the countries
that experience frequent Lassa fever occurence and reoccurence till date. The values for the
parameters are displayed in Table 2.
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Table 2: Parameter values employed for simulations

Parameters Values Source

α 0.188 Estimated
ε 0.0085 [26]
β1 0.5 -
β2 0.2 -
µ 0.018 Estimated
σ 0.2 -
θ 0.2 -
ϑ 0.75 -
δ 0.0171 [26]
τ 0.030 [26]
φ 0.085 -
ρ 0.25 -
γ 0.000167 -

The fertility and life expectancy rates for Nigeria in 2019 were 5.32 births per woman and
54.69 years respectively. α and µ are therefore computed in Table 2 by finding the reciprocals of
5.32 and 54.69 respectively. From Table 3, the numerical values for the sensitivity indices of the
key parameters are obtained after evaluating each quantity in (3.19) using the values in Table 2.

Table 3: Indices of sensitivity for key parameters in relation to R◦h and R◦a
Parameters Signs Sensitivity indices

α + 1
σ - 0.25
ϑ - 0.96
φ + 1

As claimed in (3.5) and following [30], the reproduction number R◦ for the model is measured
in terms of R◦h and R◦a, the transmission potential of Lassa fever from human and animal
respectively. Table 3 indicates that when the corresponding parameters are increased, the values
for the reproduction number R◦ in terms of R◦h and R◦a decrease and vice versa according to
the sensitivity indices for parameters with negative signs. Recruitment rates for humans and
animals are more sensitive to disease propagation given the sensitivity index of +1 for each
parameter. The disease tends to spread faster in crowded living areas and with large population
of animals. The sensitivity indices for human and animal recruitment rates α and φ therefore
support uncongested living conditions and animal predation as appropriate methods of preventing
Lassa fever outbreaks. Overcrowded living areas are conducive for animal breedings therefore,
any efforts to reduce overcrowding has a direct impact on animal population and Lassa fever
outbreaks. The isolation parameters, σ and ϑ, are also sensitive to R◦ with the isolation of the
infectious humans for treatment ϑ producing the higher sensitivity. The high sensitivity index
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for ϑ indicates that isolation and the effective treatments of the isolated infectious humans are
important if Lassa fever epidemic is to be brought under instant control. As regards the isolation
of the asymptomatic humans σ which is central to the present analysis and which makes the
analysis different from the existing ones in the literature, the sensitivity index for σ indicates that
Lassa fever outbreaks could be delayed or even be prevented in human populations if appropriate
methods are designed to isolate individuals who are asymptomatic to Lassa fever for immediate
treatments.

Since the main focus is to examine the proportion of individuals needed to be isolated
for treatments at the asymptomatic stage of Lassa fever infection to delay or eliminate Lassa
fever, the impact of σ on the disease dynamics is investigated by examining the changes in the
reproduction number R◦ in terms of R◦h due to changes in σ for σ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6
and 0.8, where σ = 0.1 implies that 10% of the asymptomatic humans are needed to be isolated
for treatments to delay or combart Lassa fever spread. The other values of σ follow the same
analogy. Table 4 displays the values of R◦h for various values of σ.

Table 4: Changes in σ and the corresponding changes in R◦h
Changes in σ Corresponding changes in R◦h

0.1 2.20
0.2 1.95
0.3 1.71
0.4 1.46
0.5 1.22
0.6 0.98
0.8 0.49

Table 4 shows that some R◦h values are smaller than 1, which suggests that if we have those
levels of σ, Lassa fever outbreaks may be delayed or completely eliminated. Apart from isolation
parameters σ and ϑ as well as recruitments parameters α and φ, the effective contact rates, be-
tween susceptible and infectious humans β2 as well as between susceptible and infectious animals
ρ, are crucial to Lassa fever propagation based on the analytical values of R◦ in terms of R◦h
and R◦a. However, the two disease spreading parameters, β2 and ρ, can be limited by σ and
by φ. Effective means of identifying and isolating asymptomatic humans for prompt treatments
σ can limit β2 while effective control of animal population φ can limit ρ. Given the sensitivity
indices of σ, ϑ and φ, Figures 2, 3, 4 and 5 show the effects of isolation of both asymptomatic and
symptomatic humans as well as changes in animal recruitment on the populations of infectious
and recovered humans as well as susceptible and infected animals.
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Figure 2: Effect of detecting and isolating asymptomatic humans on the population of
infectious humans

Figure 3: Effect of treatments on the population of recovered humans
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Figure 4: Effect of animal influx on the population of susceptible animals

Figure 5: Effect of animal influx on the population of infectious animals

We consider the initial conditions that are proportional to the total populations of animals
and humans. For the sake of illustrations, we choose Nh = 2, 567, 369 so that Ih = 250000 ÷
2567369 = 0.097, Sh = 0.903 but Eh = Rh = Ish = 0. For the population of animals, we assume
that the population of humans is 1000 times the population of animals so that Ir = 0.000097 and
Sr = 0.000903.

In Figure 2, it is observed that as σ increases in value, the population of humans who become
fully infectious decreases. For example, when σ = 0, the plot for the infectious humans rises to
almost 0.1 (i.e., about 257,732 individuals) after 20 days, and falls to about 0.085 after 30 days
(i.e., about 219,072 individuals) before it rises again. Even when σ = 0.4, the behaviour of the
curve is similar to when σ = 0. However, when σ = 0.75, the population of humans who become
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fully infectious drops to about 0.03 after 10 days (i.e., about 77,320 individuals) and stabilises
below 77,320 individuals after 20 days. The behaviours of the curves in Figure 2 are consistent
with the values of R◦h for σ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8 in Table 4. It shows that the values
of R◦h corresponding to σ = 0.1, 0.2, 0.3, 0.4, 0.5 exceeds one while the values of R◦h for σ = 0.6
and above are less than one. It implies that for σ ≤ 0.5, the disease converges to the EE but for
σ ≥ 0.6, the plots converge to DFE.

In Figure 3, the effect of treatments of the infectious humans is examined in terms of the
population of humans who have been fully recovered from the disease. It is observed from Figure
3 that when treatment is not offered (i.e., when τ = 0,) nobody recovered from the disease
until after 10 days. Even the recovery remained at a low ebb after 120 days. However, with
the improvement in the treatments of infectious humans (i.e., when τ = 0.3 and more,) the
population of individuals who recovered from the disease increases continuously. The behaviours
of the curves in Figure 3 are in agreement with the sensitivity index of ϑ in Table 3 and confirm
that isolation and the effective treatment of the isolated infectious humans tend to push Lassa
fever epidemic towards DFE.

The impacts of recruitment rate on the dynamics of susceptible and infectious animals are
shown in Figures 4 and 5. It is observed in Figures 4 and 5 that the populations of animals that
are susceptible and infectious are fewer when it is difficult for animals to enter the population.
When φ = 0.1, the plots for susceptible and infectious animals rise to about 0.63 (i.e., about 730
and 79 susceptible and infectious animals respectively) after 10 days and remain steady for more
than 120 days. However, as φ increases, the populations of susceptible and infectious animals
also increase rapidly. For instance, when φ = 0.4, the plots for susceptible and infectious animals
rise to about 1.3 and 1.1 respectively (i.e., about 1, 507 susceptible animals and 138 infectious
animals.) The behaviours of the curves in Figures 4 and 5 agree with the sensitivity index for φ in
Table 3 and support uncongested living conditions as well as animal predation as basic strategies
of ending Lassa fever.

5 Conclusion

This paper designed a mathematical model of Lassa fever to investigate the alternative ways of
eradicating the disease in the endemic region. Because the disease does not spread from the
asymptomatic humans and the fact that previous efforts have not been concentrated on the roles
of asymptomatic in the dynamics of the disease, we incorporated isolation of the asymptomatic
humans for prompt treatments in addition to the usual treatment of the infectious humans
to examine the tendency of delaying or eradicating Lassa fever epidemic. The equilibria and
reproductive ratio (R◦) were derived. Stability analyses were performed for each equilibrium
and the conditions for the existence of stable equilibria were established. Sensitivity analysis
was also performed and the simulation was conducted to support the theoretical results. From
the analysis of the parameters’ sensitivity, α and φ were identified the most sensitive to Lassa
fever propagation while treatment of the infectious humans ϑ was the most sensitive parameter
to Lassa fever reduction.

The impact of identifying and isolating asymptomatic humans for prompt treatments on
the possibility of delaying or eliminating Lassa virus was also assessed in terms of the results of
sensitivity analysis and it was discovered that R◦ → 0 as σ → 1. It was particularly discovered
that if the population of asymptomatic humans who were identified and isolated for prompt
treatment was more than 50%, the Lassa virus would fail to spread or fade away in the human
population. The effect of σ on the dynamics of Lassa fever as regards early detection and isolation
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of asymptomatic humans for prompt treatments was captured in Figure 2. It was noticed that
the population of infected humans converged to DFE after 15 days when σ ≥ 0.75. This suggests
that if efforts are implemented towards early detection and isolation of asymptomatic humans for
prompt treatments by all tiers of government in Lassa fever endemic regions, then a remarkable
reduction would be experienced in Lassa fever outbreak, resulting in a total elimination of Lassa
fever in the endemic region and, by implication, throughout the world. A good example of such
strategies is to encourage uncongested living conditions and to mandate periodic Lassa fever
screening test in Lassa fever endemic regions.
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