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THE SEQUENCE SPACE F (Xk, f, p, s) ON SEMINORMED SPACES

VINOD K. BHARDWAJ AND INDU BALA

Abstract. The object of this paper is to introduce the vector valued sequence

space F (Xk, f, p, s) using a modulus function f . Various algebraic and topological

properties of this space have been investigated. Our results generalize and unify

the corresponding earlier results of Ghosh and Srivastava [4], Maddox [10].

1. Introduction

Ruckle [13] used the idea of a modulus function f (definition given below) to construct
a class of FK spaces

L(f) =

{

x = (xk) :

∞
∑

k=1

f(|xk|) < ∞

}

.

He gave a negative answer to Wilansky’s question: Is there a smallest FK space in
which the set {e1, e2, . . .} of unit vectors is bounded?

The space L(f) is closely related to the space l1 which is an L(f) space with f(x) = x

for all real x ≥ 0.
The idea of modulus was structured in 1953 by Nakano [12]. Following Ruckle [13]

and Maddox [10], we recall that a modulus f is a function from [0,∞) to [0,∞) such
that

(i) f(x) = 0 if and only if x = 0,

(ii) f(x + y) ≤ f(x) + f(y) for all x ≥ 0, y ≥ 0,

(iii) f is increasing,

(iv) f is continuous from the right at 0.

Because of (ii), |f(x) − f(y)| ≤ f(|x − y|) so that in view of (iv), f is continuous
everywhere on [0,∞). A modulus may be unbounded (for example, f(x) = xp, 0 < p ≤ 1)
or bounded (for example, f(x) = x

(1+x) ).
It is easy to see that f1 + f2 is a modulus function when f1 and f2 are modulus

functions, and that the function fv(v is a positive integer), the composition of a modulus
function f with itself v times, is also a modulus function.
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In this note, we introduce the vector valued sequence space F (Xk, f, p, s) using a
modulus function f , which generalizes the work of Ghosh and Srivastava [4], Jakimovski
and Russel [5], and Maddox [10]. Some topological results and inclusion relations for
F (Xk, f, p, s) have been discussed. We also give some information on multipliers for
F (Xk, f, p, s). The composite space F (Xk, fv, p, s) using composite modulus function
fv has also been studied. Before introducing this sequence space we recall [6, [8(second
edition), 15] some terminology and notations.

An algebra X is a linear space together with an internal operation of multiplication of
elements of X , such that xy ∈ X , x(yz) = (xy)z, x(y + z) = xy + xz, (x + y)z = xz + yz

and λ(xy) = (λx)y = x(λy), for scalar λ.
In some algebras there exists a non-zero element e such that ex = xe = x for all x. If

such an e exists it is obviously unique and is called the identity of the algebra. A normed
algebra is an algebra which is normed, as a linear space, and in which ‖xy‖ ≤ ‖x‖‖y‖
for all x, y.

By w we shall denote the space of all scalar sequences and φ is the sequence space of
finitely nonzero scalar sequences. A sequence algebra is a subspace F of w such that F

is closed under the multiplication defined by xy = (xkyk); x = (xk) ∈ F , y = (yk) ∈ F .
A sequence space F is said to be symmetric if when x is in F , then y is in F when

the coordinates of y are those of x, but in a different order.
A sequence space F is said to be balanced if (akxk) is in F whenever (xk) is in F and

|ak| ≤ 1 for each k.
A sequence space F is called solid (or normal) if y = (yk) ∈ F whenever |yk| ≤ |xk|,

k ≥ 1, for some x = (xk) ∈ F . If F is both normal and sequence algebra then it is called
a normal sequence algebra. φ, w, l1, l∞ and c0 are normal sequence algebras whereas c

is a sequence algebra but not normal.
A sequence (bk) of elements of a paranormed space (X, g) is called a Schauder basis

for X if and only if , for each x ∈ X , there exists a unique sequence (λk) of scalars such
that

x =
∞
∑

k=1

λkbk

i.e., such that

g

(

x −
n

∑

k=1

λkbk

)

→ 0 (n → ∞).

A norm ‖.‖F on a normal sequence space F is said to be absolutely monotone if
‖x‖F ≤ ‖y‖F for x = (xk), y = (yk) ∈ F with |xk| ≤ |yk| for all k ∈ N.

Let q1 and q2 be seminorms on a linear space X . Then q1 is stronger than q2 if there
exists a constant L such that q2(x) ≤ Lq1(x) for all x ∈ X . If each is stronger than the
other, q1 and q2 are said to be equivalent.

The following inequalities (see, e.g., [7; first edition, p. 190]) are needed throughout
the paper.

Let p = (pk) be a bounded sequence of positive real numbers. If H = supk pk, then
for any complex ak and bk,



THE SEQUENCE SPACE F (Xk, f, p, s) ON SEMINORMED SPACES 249

(1) |ak + bk|
pk ≤ C(|ak|

pk + |bk|
pk),

where C = max(1, 2H−1). Also for any complex λ,

(2) |λ|pk ≤ max(1, |λ|H).

We now introduce the vector valued sequence space F (Xk, f, p, s) using modulus
function f .

Let Xk be a seminormed space over the complex field C with seminorm qk for each

k ∈ N, and F be a normal sequence algebra with absolutely monotone norm ‖.‖F and
having a Schauder basis (ek), where ek = (0, 0, . . . , 1, 0, . . .), with 1 in the k-th place. Let
p = (pk) be any sequence of strictly positive real numbers and s be any non-negative real

number. By w(Xk), we denote the linear space of all sequences x = (xk) with xk ∈ Xk

for each k ∈ N under the usual coordinatewise operations:

x + y = (xk + yk) and αx = (αxk)

for each α ∈ C. If x ∈ w(Xk) and λ = (λk) is a scalar sequence then we shall write

λx = (λkxk) ∈ w(Xk).

For a modulus function f , we define

F (Xk, f, p, s) = {x = (xk) ∈ w(Xk) : (k−s[f(qk(xk))]pk) ∈ F}.

The norm ‖.‖F and the condition on ‖.‖F are irrelevant as far as the definition of the
sets F (Xk, f, p, s) is concerned; they are needed to define a topology on it.

Some well-known spaces are obtained by specializing F , Xk, f , p and s.

(i) If F = l1, Xk = C for all k, s = 0, f(x) = x then F (Xk, f, p, s) = l(p) (Simons

[14]).

(ii) If F = l1, Xk = C for all k, s = 0, f(x) = x and pk = p for all k then F (Xk, f, p, s) =
lp.

(iii) If F = l1, Xk = C for all k, s = 0, f(x) = x and pk = 1 for all k then F (Xk, f, p, s) =
l1.

(iv) If F = l1, Xk = C for all k, s = 0 and pk = 1 for all k then F (Xk, f, p, s) = L(f)
(Ruckle [13]).

(v) If F = l1, Xk = C for all k and s = 0 then F (Xk, f, p, s) = L(f, p) (Bhardwaj [2]).

(vi) If F = l1, Xk = X (a Banach space over C) for all k, s = 0, f(x) = x and pk = p

for all k, then F (Xk, f, p, s) = lp(X) (Leonard [7]).

(vii) If F = l1, Xk = X (a seminormed space over C with seminorm q)for all k, then
F (Xk, f, p, s) = l(p, f, q, s) (Bilgin [3]).
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(viii) If F = l∞, Xk = X (a Banach space over C) for all k, s = 0, f(x) = x and pk = 1

for all k, then F (Xk, f, p, s) = l∞(X) (Leonard [7], Maddox [9]).

(ix) If F = w0 or w∞, Xk = C for all k, s = 0 and pk = 1 for all k then the set

F (Xk, f, p, s) reduces to w0(f) and w∞(f), respectively (Maddox [10]).

(x) If F = w0 or w∞, Xk = X (a Banach space over C) for all k, s = 0 and pk = 1

for all k, then the set F (Xk, f, p, s) reduces to w0(f, X) and w∞(f, X), respectively

(Bhardwaj and Singh [1]).

(xi) If F = l∞, Xk = C for all k, s = 0, f(x) = x and pk = 1 for all k, then

F (Xk, f, p, s) = l∞.

(xii) If Xk = Ek (Banach spaces over C), s = 0 and pk = 1 for all k then F (Xk, f, p, s) =

F (Ek, f) (Ghosh and Srivastava [4]).

We denote F (Xk, f, p, s) by F (Xk, f, s) when pk = 1 for all k and by F (Xk, p, s) when

f(x) = x.

2. Linear Topological Structure of F (Xk, f, p, s) Space and Inclusion Theo-

rems

In this section we examine some algebraic and topological properties of the sequence

space defined above and investigate some inclusion relations between these spaces.

Theorem 2.1. Let H = sup pk < ∞, then F (Xk, f, p, s) is a linear space over the

complex field C.

Proof. Let x, y ∈ F (Xk, f, p, s). For α, β ∈ C, there exist positive integers Mα and

Nβ such that |α| ≤ Mα and |β| ≤ Nβ . From definition of modulus function (ii) and (iii)

and inequalities (1) and (2), we have

k−s

[

f
(

qk(αxk + βyk)
)

]pk

≤ C

(

MH
α k−s

[

f(qk(xk))
]pk

+ NH
β k−s

[

f(qk(yk))
]pk

)

,

where C = max(1, 2H−1). Since F is a normal sequence algebra, we have k−s[f(qk(αxk +

βyk))]pk ∈ F which shows that αx + βy ∈ F (Xk, f, p, s). Hence F (Xk, f, p, s) is a linear

space over C.

Theorem 2.2. Let f , f1 and f2 be modulus functions, s, s1 and s2 be non-negative

real numbers, then

(i) F (Xk, f1, p, s)
⋂

F (Xk, f2, p, s) ⊆ F (Xk, f1 + f2, p, s),

(ii) If s1 ≤ s2, then F (Xk, f, p, s1) ⊆ F (Xk, f, p, s2),

(iii) If F1 ⊆ F2, then F1(Xk, f, p, s) ⊆ F2(Xk, f, p, s).
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Proof. (i) Let x = (xk) ∈ F (Xk, f1, p, s)
⋂

F (Xk, f2, p, s).
Then (k−s[f1(qk(xk))]pk) and (k−s[f2(qk(xk))]pk) ∈ F .
Using (1) we have

k−s
[

(f1 + f2)(qk(xk))
]pk

≤ C{k−s
[

f1(qk(xk))
]pk

+ k−s
[

f2(qk(xk))
]pk

}

Since F is normal, x ∈ F (Xk, f1 + f2, p, s).
The proofs of (ii) and (iii) are trivial.

Corollary 2.3. F (Xk, f, p) ⊆ F (Xk, f, p, s) for any modulus function f .

Theorem 2.4. F (Xk, f, p, s) is normal and symmetric.

Proof. Let x = (xk) ∈ F (Xk, f, p, s) and y = (yk) be any sequence in w(Xk) such
that qk(yk) ≤ qk(xk) for each k. Since f is increasing, we have

k−s
[

f(qk(yk))
]pk

≤ k−s
[

f(qk(xk))
]pk

.

The normality of F implies that y = (yk) ∈ F (Xk, f, p, s) and hence F (Xk, f, p, s) is
normal. The proof of the fact that F (Xk, f, p, s) is symmetric is obvious.

Theorem 2.5. If (Xk, qk) is seminormed algebra for each k ∈ N then F (Xk, f, p, s)
is balanced.

Proof. Let x = (xk) ∈ F (Xk, f, p, s) and a = (ak) be any sequence in w(Xk) such
that qk(ak) ≤ 1 for each k. Since f is increasing and each Xk is seminormed algebra we
have

k−s
[

f(qk(akxk))
]pk

≤ k−s
[

f(qk(xk))
]pk

The normality of the space F implies that ax = (akxk) ∈ F (Xk, f, p, s) and hence
F (Xk, f, p, s) is balanced.

We conclude this section by considering the metrization of F (Xk, f, s) space.

Theorem 2.6. For any modulus f , F (Xk, f, s) is a complete topological linear space,

paranormed by

g(x) =

∥

∥

∥

∥

k−s
[

f(qk(xk))
]

∥

∥

∥

∥

F

if Xk is complete under the seminorm qk for each k ∈ N.

Proof. Clearly g(θ) = 0 for θ = (θ1, θ2, . . .) the zero element of F (Xk, f, s) (where
θi is the zero element of Xi for each i). Also g(−x) = g(x). We now show that g is
subadditive

g(x + y) =
∥

∥

∥
k−s[f(qk(xk + yk))]

∥

∥

∥

F

≤
∥

∥

∥
k−s[f(qk(xk))

]

‖F +
∥

∥

∥
k−s[f(qk(yk))]

∥

∥

∥

F
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= g(x) + g(y)

as f is increasing and ‖.‖F is absolutely monotone norm.

We now show that the scalar multiplication is continuous. For any complex λ,

g(λx) ≤ (1 + [|λ|])g(x)

where [t] denotes the integer part of t, whence λ → 0, x → θ imply λx → θ and also

x → θ, λ fixed imply λx → θ. Suppose that λn → 0 and x is fixed in F (Xk, f, s).

Then

t = (tk) = (k−sf(qk(xk))) ∈ F.

For arbitrary ǫ > 0, let N be a positive integer such that

∥

∥

∥

∥

∥

t −

N
∑

k=1

tkek

∥

∥

∥

∥

∥

F

=

∥

∥

∥

∥

∥

∞
∑

k=N+1

tkek

∥

∥

∥

∥

∥

F

<
ǫ

2

since (ek) is a Schauder basis of F .

Since f is continuous everywhere in [0,∞),

g(u) =

∥

∥

∥

∥

∥

N
∑

k=1

k−s[f(qk(uxk))]ek

∥

∥

∥

∥

∥

F

,

is continuous at 0. So there is 1 > δ > 0 such that g(u) < ( ǫ
2 ) for 0 < u < δ. Let K be a

positive integer such that |λn| < δ for n > K, then for n > K

∥

∥

∥

∥

∥

N
∑

k=1

k−s[f(qk(λnxk))]ek

∥

∥

∥

∥

∥

F

<
ǫ

2
.

Thus

‖k−s[f(qk(λnxk))]‖F < ǫ for n > K,

so that g(λx) → 0 as λ → 0.

To show that F (Xk, f, s) is complete, let (xi) be a Cauchy sequence in F (Xk, f, s).

Then g(xi−xj) → 0 as i, j → ∞. Hence for each fixed k, qk(xi
k−x

j
k) → 0 as i, j → ∞ and

so (xi
k) is a Cauchy sequence in Xk for each fixed k. Since Xk is complete, so there exists

a sequence x = (xk) such that xk ∈ Xk for each k ∈ N and qk(xi
k − xk) → 0 as i → ∞,

for each fixed k ∈ N. For given ǫ > 0, choose an integer K such that g(xi − xj) < ǫ for

i, j > K. Since F is normal and (ek) is a Schauder basis of F ,

∥

∥

∥

∥

∥

n
∑

k=1

k−s[f(qk(xi
k − x

j
k))]ek

∥

∥

∥

∥

∥

F

≤
∥

∥

∥
k−s[f(qk(xi

k − x
j
k))]

∥

∥

∥

F

< ǫ for i, j > K.



THE SEQUENCE SPACE F (Xk, f, p, s) ON SEMINORMED SPACES 253

Since f is continuous, so by taking j → ∞ in the above expression, we get
∥

∥

∥

∥

∥

n
∑

k=1

k−s[f(qk(xi
k − xk))]ek

∥

∥

∥

∥

∥

F

< ǫ for i > K.

Since n is arbitrary, by taking n → ∞, we obtain g(xi − x) < ǫ for i > K. So (xi)
converges to x in the paranorm of F (Xk, f, s). We now show that x ∈ F (Xk, f, s). Since
qk(xi

k − xk) → 0 as i → ∞, for each fixed k we choose a positive number δi
k, 0 < δi

k < 1,
such that

f(qk(xi
k − xk)) < δi

k[f(qk(xi
k))]

Consider

k−s[f(qk(xk))] ≤ k−s[f(qk(xi
k))] + k−s[f(qk(xk − xi

k))]

< (1 + δi
k)k−s[f(qk(xi

k))]

Since F is normal, so x = (xk) ∈ F (Xk, f, s). Therefore, F (Xk, f, s) is a complete
paranormed space.

Remark 2.7. It can be easily verified that when F = l1, (Xk, qk) = (C, |.|) and s = 0
the paranorms defined on F (Xk, f, s) and L(f) are the same.

3. The Space of Multipliers of F (Xk, f, p, s)

Suppose (Xk, qk) is seminormed algebra for each k ∈ N. Define M [F (Xk, f, p, s)], the
space of multipliers of F (Xk, f, p, s), as

M [F (Xk, f, p, s)] =
{

a = (ak) ∈ w(Xk) : (k−s[f(qk(akxk))]pk) ∈ F, for all

x = (xk) ∈ F (Xk, f, p, s)
}

.

Theorem 3.1. For any modulus f , l∞(Xk) ⊆ M [F (Xk, f, p, s)], where

l∞(Xk) =
{

x = (xk) ∈ w(Xk) : sup
k

qk(xk) < ∞
}

.

Proof. a = (ak) ∈ l∞(Xk) implies qk(ak) < 1+[T ] for all k, where T = supk qk(ak) <

∞ and [T ] denotes the integer part of T . Let x = (xk) ∈ F (Xk, f, p, s). Since Xk

is seminormed algebra for each k, by definition of modulus function (ii) and (iii) and
inequality (2), we have

k−s
[

f(qk(akxk))
]pk

≤
(

1 + [T ]
)H

k−s
[

f(qk(xk))
]pk

Since F is normal, ax ∈ F (Xk, f, p, s), as desired.
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The inclusion seems to be proper but we have not been able to prove it. It is, therefore,
an open problem.

Proposition 3.2. If e = (e1, e2, . . .) ∈ F (Xk, f, p, s), then M [F (Xk, f, p, s)] ⊆
F (Xk, f, p, s), where ek is the identity element of Xk for each k ∈ N.

Proposition 3.3. If f is a modulus function such that f(xy) ≤ f(x) + f(y) for all

x ≥ 0, y ≥ 0, then F (Xk, f, p, s) ⊆ M [F (Xk, f, p, s)].

Proof. Let a = (ak) ∈ F (Xk, f, p, s) and x = (xk) ∈ F (Xk, f, p, s).
Then

(

k−s[f(qk(ak))]pk

)

and
(

k−s[f(qk(xk))]pk

)

∈ F.

Since Xk is seminormed algebra for each k, using (1) we have,

k−s
[

f(qk(akxk))
]pk

≤ k−s
[

f(qk(ak)qk(xk))
]pk

≤ k−s
[

f(qk(ak)) + f(qk(xk))
]pk

≤ C
(

k−s[f(qk(ak))]pk + k−s[f(qk(xk))]pk

)

,

where C = max(1, 2H−1). Since F is a normal sequence algebra, ax ∈ F (Xk, f, p, s) i.e.,
a ∈ M [F (Xk, f, p, s)].

Example 3.4. f(x) = log(1+x), is a modulus function which satisfies the condition
of Proposition 3.3 i.e., f(xy) ≤ f(x) + f(y) for x ≥ 0, y ≥ 0 (Prop. 2 of Maddox [10]).

4. Composite space F (Xk, fv, p, s) using composite modulus function fv

Taking modulus function fv instead of f in the space F (Xk, f, p, s), we can define
the composite space F (Xk, fv, p, s) as follows:

Definition 4.1. For a fixed natural number v, we define

F (Xk, fv, p, s) =
{

x = (xk) ∈ w(Xk) : (k−s[fv(qk(xk))]pk) ∈ F
}

.

Theorem 4.2. Let f be a modulus function and let v ∈ N. Then

(i) F (Xk, fv, p, s) ⊆ F (Xk, p, s) if limt→∞

f(t)
t = β > 0,

(ii) F (Xk, p, s) ⊆ F (Xk, fv, p, s) if there exists a positive constant α such that f(t) ≤ αt

for all t ≥ 0.

Proof. (i) Let x = (xk) ∈ F (Xk, fv, p, s). Then

(

k−s[fv(qk(xk))]pk

)

∈ F
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Following the proof of Prop. 1 of Maddox [11], we have β = limt→∞

f(t)
t = inf{ f(t)

t : t >

0}, so that 0 ≤ β ≤ f(1). Let β > 0. By definition of β we have βt ≤ f(t) for all t ≥ 0.
Since f is increasing we have β2t ≤ f2(t). So by induction, we have βvt ≤ fv(t). So
using inequality (2),

k−s
[

qk(xk)
]pk

≤ k−s
[

β−v(fv(qk(xk)))
]pk

≤ max(1, β−vH)k−s
[

fv(qk(xk))
]pk

Since F is normal, x ∈ F (Xk, p, s) and the proof is complete.

(ii) Let x = (xk) ∈ F (Xk, p, s), then (k−s[qk(xk)]pk) ∈ F . Since f(t) ≤ αt we have
fv(t) ≤ αvt , so using inequality (2)

k−s
[

fv(qk(xk))
]pk

≤ k−s
[

αvqk(xk)
]pk

≤ max
(

1, αvH
)

k−s
[

qk(xk)
]pk

Since F is normal, x ∈ F (Xk, fv, p, s) and therefore, F (Xk, p, s) ⊆ F (Xk, fv, p, s).

Example 4.3. f1(t) = t + t1/2 and f2(t) = log(1 + t) for all t ≥ 0 satisfy the
conditions given in Theorem 4.2(i), (ii) respectively.

Theorem 4.4. Let m, v ∈ N and m < v. If f is a modulus such that f(t) ≤ αt for

all t ≥ 0, where α is a positive constant, then

F (Xk, p, s) ⊆ F (Xk, fm, p, s) ⊆ F (Xk, fv, p, s).

Proof. Let r = v − m. Since f(t) ≤ αt, we have fv(t) < M rfm(t) < Mvt, where
M = 1 + [α]. Let x = (xk) ∈ F (Xk, p, s). By the above inequality, we get

k−s
[

fv(qk(xk))
]pk

< M rHk−s
[

fm(qk(xk))
]pk

< MvHk−s
[

qk(xk)
]pk

Since F is normal, the required inclusion follows.
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