THE SEQUENCE SPACE $F(X_k, f, p, s)$ ON SEMINORMED SPACES

VINOD K. BHARDWAJ AND INDU BALA

Abstract. The object of this paper is to introduce the vector valued sequence space $F(X_k, f, p, s)$ using a modulus function f. Various algebraic and topological properties of this space have been investigated. Our results generalize and unify the corresponding earlier results of Ghosh and Srivastava [4], Maddox [10].

1. Introduction

Ruckle [13] used the idea of a modulus function f (definition given below) to construct a class of FK spaces

$$L(f) = \left\{ x = (x_k) : \sum_{k=1}^{\infty} f(|x_k|) < \infty \right\}.$$

He gave a negative answer to Wilansky's question: Is there a smallest FK space in which the set $\{e_1, e_2, \ldots\}$ of unit vectors is bounded?

The space L(f) is closely related to the space l_1 which is an L(f) space with f(x) = x for all real $x \ge 0$.

The idea of modulus was structured in 1953 by Nakano [12]. Following Ruckle [13] and Maddox [10], we recall that a modulus f is a function from $[0,\infty)$ to $[0,\infty)$ such that

- (i) f(x) = 0 if and only if x = 0,
- (ii) $f(x+y) \le f(x) + f(y)$ for all $x \ge 0, y \ge 0$,
- (iii) f is increasing,
- (iv) f is continuous from the right at 0.

Because of (ii), $|f(x) - f(y)| \leq f(|x - y|)$ so that in view of (iv), f is continuous everywhere on $[0, \infty)$. A modulus may be unbounded (for example, $f(x) = x^p, 0)$ $or bounded (for example, <math>f(x) = \frac{x}{(1+x)}$). It is easy to see that $f_1 + f_2$ is a modulus function when f_1 and f_2 are modulus

It is easy to see that $f_1 + f_2$ is a modulus function when f_1 and f_2 are modulus functions, and that the function $f^v(v \text{ is a positive integer})$, the composition of a modulus function f with itself v times, is also a modulus function.

Received January 9, 2007.

²⁰⁰⁰ Mathematics Subject Classification. 40A05, 40C05, 46A45.

Key words and phrases. Modulus function, Paranorm, Sequence space, Seminormed algebra.

In this note, we introduce the vector valued sequence space $F(X_k, f, p, s)$ using a modulus function f, which generalizes the work of Ghosh and Srivastava [4], Jakimovski and Russel [5], and Maddox [10]. Some topological results and inclusion relations for $F(X_k, f, p, s)$ have been discussed. We also give some information on multipliers for $F(X_k, f, p, s)$. The composite space $F(X_k, f^v, p, s)$ using composite modulus function f^v has also been studied. Before introducing this sequence space we recall [6, [8(second edition), 15] some terminology and notations.

An algebra X is a linear space together with an internal operation of multiplication of elements of X, such that $xy \in X$, x(yz) = (xy)z, x(y+z) = xy+xz, (x+y)z = xz+yz and $\lambda(xy) = (\lambda x)y = x(\lambda y)$, for scalar λ .

In some algebras there exists a non-zero element e such that ex = xe = x for all x. If such an e exists it is obviously unique and is called the identity of the algebra. A normed algebra is an algebra which is normed, as a linear space, and in which $||xy|| \leq ||x|| ||y||$ for all x, y.

By w we shall denote the space of all scalar sequences and ϕ is the sequence space of finitely nonzero scalar sequences. A sequence algebra is a subspace F of w such that F is closed under the multiplication defined by $xy = (x_k y_k)$; $x = (x_k) \in F$, $y = (y_k) \in F$.

A sequence space F is said to be symmetric if when x is in F, then y is in F when the coordinates of y are those of x, but in a different order.

A sequence space F is said to be balanced if $(a_k x_k)$ is in F whenever (x_k) is in F and $|a_k| \leq 1$ for each k.

A sequence space F is called solid (or normal) if $y = (y_k) \in F$ whenever $|y_k| \leq |x_k|$, $k \geq 1$, for some $x = (x_k) \in F$. If F is both normal and sequence algebra then it is called a normal sequence algebra. ϕ , w, l_1 , l_{∞} and c_0 are normal sequence algebras whereas c is a sequence algebra but not normal.

A sequence (b_k) of elements of a paranormed space (X, g) is called a Schauder basis for X if and only if, for each $x \in X$, there exists a unique sequence (λ_k) of scalars such that

$$x = \sum_{k=1}^{\infty} \lambda_k b_k$$

i.e., such that

$$g\left(x - \sum_{k=1}^{n} \lambda_k b_k\right) \to 0 \quad (n \to \infty).$$

A norm $\|.\|_F$ on a normal sequence space F is said to be absolutely monotone if $\|x\|_F \leq \|y\|_F$ for $x = (x_k), y = (y_k) \in F$ with $|x_k| \leq |y_k|$ for all $k \in \mathbb{N}$.

Let q_1 and q_2 be seminorms on a linear space X. Then q_1 is stronger than q_2 if there exists a constant L such that $q_2(x) \leq Lq_1(x)$ for all $x \in X$. If each is stronger than the other, q_1 and q_2 are said to be equivalent.

The following inequalities (see, e.g., [7; first edition, p. 190]) are needed throughout the paper.

Let $p = (p_k)$ be a bounded sequence of positive real numbers. If $H = \sup_k p_k$, then for any complex a_k and b_k ,

- (1) $|a_k + b_k|^{p_k} \leq C(|a_k|^{p_k} + |b_k|^{p_k}),$ where $C = \max(1, 2^{H-1})$. Also for any complex λ ,
- (2) $|\lambda|^{p_k} \leq \max(1, |\lambda|^H).$

We now introduce the vector valued sequence space $F(X_k, f, p, s)$ using modulus function f.

Let X_k be a seminormed space over the complex field \mathbb{C} with seminorm q_k for each $k \in \mathbb{N}$, and F be a normal sequence algebra with absolutely monotone norm $\|.\|_F$ and having a Schauder basis (e_k) , where $e_k = (0, 0, \ldots, 1, 0, \ldots)$, with 1 in the k-th place. Let $p = (p_k)$ be any sequence of strictly positive real numbers and s be any non-negative real number. By $w(X_k)$, we denote the linear space of all sequences $x = (x_k)$ with $x_k \in X_k$ for each $k \in \mathbb{N}$ under the usual coordinatewise operations:

$$x + y = (x_k + y_k)$$
 and $\alpha x = (\alpha x_k)$

for each $\alpha \in \mathbb{C}$. If $x \in w(X_k)$ and $\lambda = (\lambda_k)$ is a scalar sequence then we shall write $\lambda x = (\lambda_k x_k) \in w(X_k)$.

For a modulus function f, we define

$$F(X_k, f, p, s) = \{x = (x_k) \in w(X_k) : (k^{-s}[f(q_k(x_k))]^{p_k}) \in F\}.$$

The norm $\|.\|_F$ and the condition on $\|.\|_F$ are irrelevant as far as the definition of the sets $F(X_k, f, p, s)$ is concerned; they are needed to define a topology on it.

Some well-known spaces are obtained by specializing F, X_k, f, p and s.

- (i) If $F = l_1$, $X_k = \mathbb{C}$ for all k, s = 0, f(x) = x then $F(X_k, f, p, s) = l(p)$ (Simons [14]).
- (ii) If $F = l_1$, $X_k = \mathbb{C}$ for all k, s = 0, f(x) = x and $p_k = p$ for all k then $F(X_k, f, p, s) = l_p$.
- (iii) If $F = l_1$, $X_k = \mathbb{C}$ for all k, s = 0, f(x) = x and $p_k = 1$ for all k then $F(X_k, f, p, s) = l_1$.
- (iv) If $F = l_1$, $X_k = \mathbb{C}$ for all k, s = 0 and $p_k = 1$ for all k then $F(X_k, f, p, s) = L(f)$ (Ruckle [13]).
- (v) If $F = l_1$, $X_k = \mathbb{C}$ for all k and s = 0 then $F(X_k, f, p, s) = L(f, p)$ (Bhardwaj [2]).
- (vi) If $F = l_1$, $X_k = X$ (a Banach space over \mathbb{C}) for all k, s = 0, f(x) = x and $p_k = p$ for all k, then $F(X_k, f, p, s) = l_p(X)$ (Leonard [7]).
- (vii) If $F = l_1$, $X_k = X$ (a seminormed space over \mathbb{C} with seminorm q)for all k, then $F(X_k, f, p, s) = l(p, f, q, s)$ (Bilgin [3]).

- (viii) If $F = l_{\infty}$, $X_k = X$ (a Banach space over \mathbb{C}) for all k, s = 0, f(x) = x and $p_k = 1$ for all k, then $F(X_k, f, p, s) = l_{\infty}(X)$ (Leonard [7], Maddox [9]).
 - (ix) If $F = w_0$ or w_∞ , $X_k = \mathbb{C}$ for all k, s = 0 and $p_k = 1$ for all k then the set $F(X_k, f, p, s)$ reduces to $w_0(f)$ and $w_\infty(f)$, respectively (Maddox [10]).
 - (x) If $F = w_0$ or w_∞ , $X_k = X$ (a Banach space over \mathbb{C}) for all k, s = 0 and $p_k = 1$ for all k, then the set $F(X_k, f, p, s)$ reduces to $w_0(f, X)$ and $w_\infty(f, X)$, respectively (Bhardwaj and Singh [1]).
 - (xi) If $F = l_{\infty}$, $X_k = \mathbb{C}$ for all k, s = 0, f(x) = x and $p_k = 1$ for all k, then $F(X_k, f, p, s) = l_{\infty}$.
- (xii) If $X_k = E_k$ (Banach spaces over \mathbb{C}), s = 0 and $p_k = 1$ for all k then $F(X_k, f, p, s) = F(E_k, f)$ (Ghosh and Srivastava [4]).

We denote $F(X_k, f, p, s)$ by $F(X_k, f, s)$ when $p_k = 1$ for all k and by $F(X_k, p, s)$ when f(x) = x.

2. Linear Topological Structure of $F(X_k, f, p, s)$ Space and Inclusion Theorems

In this section we examine some algebraic and topological properties of the sequence space defined above and investigate some inclusion relations between these spaces.

Theorem 2.1. Let $H = \sup p_k < \infty$, then $F(X_k, f, p, s)$ is a linear space over the complex field \mathbb{C} .

Proof. Let $x, y \in F(X_k, f, p, s)$. For $\alpha, \beta \in \mathbb{C}$, there exist positive integers M_{α} and N_{β} such that $|\alpha| \leq M_{\alpha}$ and $|\beta| \leq N_{\beta}$. From definition of modulus function (ii) and (iii) and inequalities (1) and (2), we have

$$k^{-s} \left[f\left(q_k(\alpha x_k + \beta y_k)\right) \right]^{p_k} \le C \left(M^H_\alpha k^{-s} \left[f(q_k(x_k)) \right]^{p_k} + N^H_\beta k^{-s} \left[f(q_k(y_k)) \right]^{p_k} \right),$$

where $C = \max(1, 2^{H-1})$. Since F is a normal sequence algebra, we have $k^{-s}[f(q_k(\alpha x_k + \beta y_k))]^{p_k} \in F$ which shows that $\alpha x + \beta y \in F(X_k, f, p, s)$. Hence $F(X_k, f, p, s)$ is a linear space over \mathbb{C} .

Theorem 2.2. Let f, f_1 and f_2 be modulus functions, s, s_1 and s_2 be non-negative real numbers, then

- (i) $F(X_k, f_1, p, s) \cap F(X_k, f_2, p, s) \subseteq F(X_k, f_1 + f_2, p, s),$
- (ii) If $s_1 \le s_2$, then $F(X_k, f, p, s_1) \subseteq F(X_k, f, p, s_2)$,
- (iii) If $F_1 \subseteq F_2$, then $F_1(X_k, f, p, s) \subseteq F_2(X_k, f, p, s)$.

Proof. (i) Let $x = (x_k) \in F(X_k, f_1, p, s) \cap F(X_k, f_2, p, s)$. Then $(k^{-s}[f_1(q_k(x_k))]^{p_k})$ and $(k^{-s}[f_2(q_k(x_k))]^{p_k}) \in F$. Using (1) we have

$$k^{-s} \Big[(f_1 + f_2)(q_k(x_k)) \Big]^{p_k} \le C \{ k^{-s} \Big[f_1(q_k(x_k)) \Big]^{p_k} + k^{-s} \Big[f_2(q_k(x_k)) \Big]^{p_k} \}$$

Since F is normal, $x \in F(X_k, f_1 + f_2, p, s)$. The proofs of (ii) and (iii) are trivial.

Corollary 2.3. $F(X_k, f, p) \subseteq F(X_k, f, p, s)$ for any modulus function f.

Theorem 2.4. $F(X_k, f, p, s)$ is normal and symmetric.

Proof. Let $x = (x_k) \in F(X_k, f, p, s)$ and $y = (y_k)$ be any sequence in $w(X_k)$ such that $q_k(y_k) \leq q_k(x_k)$ for each k. Since f is increasing, we have

$$k^{-s} \Big[f(q_k(y_k)) \Big]^{p_k} \le k^{-s} \Big[f(q_k(x_k)) \Big]^{p_k}.$$

The normality of F implies that $y = (y_k) \in F(X_k, f, p, s)$ and hence $F(X_k, f, p, s)$ is normal. The proof of the fact that $F(X_k, f, p, s)$ is symmetric is obvious.

Theorem 2.5. If (X_k, q_k) is seminormed algebra for each $k \in \mathbb{N}$ then $F(X_k, f, p, s)$ is balanced.

Proof. Let $x = (x_k) \in F(X_k, f, p, s)$ and $a = (a_k)$ be any sequence in $w(X_k)$ such that $q_k(a_k) \leq 1$ for each k. Since f is increasing and each X_k is seminormed algebra we have

$$k^{-s} \left[f(q_k(a_k x_k)) \right]^{p_k} \le k^{-s} \left[f(q_k(x_k)) \right]^{p_k}$$

The normality of the space F implies that $ax = (a_k x_k) \in F(X_k, f, p, s)$ and hence $F(X_k, f, p, s)$ is balanced.

We conclude this section by considering the metrization of $F(X_k, f, s)$ space.

Theorem 2.6. For any modulus f, $F(X_k, f, s)$ is a complete topological linear space, paranormed by

$$g(x) = \left\| k^{-s} \left[f(q_k(x_k)) \right] \right\|_F$$

if X_k is complete under the seminorm q_k for each $k \in \mathbb{N}$.

Proof. Clearly $g(\theta) = 0$ for $\theta = (\theta_1, \theta_2, ...)$ the zero element of $F(X_k, f, s)$ (where θ_i is the zero element of X_i for each i). Also g(-x) = g(x). We now show that g is subadditive

$$g(x+y) = \left\| k^{-s} [f(q_k(x_k+y_k))] \right\|_F$$

$$\leq \left\| k^{-s} [f(q_k(x_k))] \right\|_F + \left\| k^{-s} [f(q_k(y_k))] \right\|_F$$

VINOD K. BHARDWAJ AND INDU BALA

$$= g(x) + g(y)$$

as f is increasing and $\|.\|_F$ is absolutely monotone norm.

We now show that the scalar multiplication is continuous. For any complex λ ,

$$g(\lambda x) \le (1 + [|\lambda|])g(x)$$

where [t] denotes the integer part of t, whence $\lambda \to 0$, $x \to \theta$ imply $\lambda x \to \theta$ and also $x \to \theta$, λ fixed imply $\lambda x \to \theta$. Suppose that $\lambda_n \to 0$ and x is fixed in $F(X_k, f, s)$. Then

$$t = (t_k) = (k^{-s} f(q_k(x_k))) \in F.$$

For arbitrary $\epsilon > 0$, let N be a positive integer such that

$$\left\| t - \sum_{k=1}^{N} t_k e_k \right\|_F = \left\| \sum_{k=N+1}^{\infty} t_k e_k \right\|_F < \frac{\epsilon}{2}$$

since (e_k) is a Schauder basis of F.

Since f is continuous everywhere in $[0, \infty)$,

$$g(u) = \left\| \sum_{k=1}^{N} k^{-s} [f(q_k(ux_k))] e_k \right\|_F,$$

is continuous at 0. So there is $1 > \delta > 0$ such that $g(u) < (\frac{\epsilon}{2})$ for $0 < u < \delta$. Let K be a positive integer such that $|\lambda_n| < \delta$ for n > K, then for n > K

$$\left\|\sum_{k=1}^{N} k^{-s} [f(q_k(\lambda_n x_k))] e_k\right\|_F < \frac{\epsilon}{2}$$

Thus

$$||k^{-s}[f(q_k(\lambda_n x_k))]||_F < \epsilon \text{ for } n > K,$$

so that $g(\lambda x) \to 0$ as $\lambda \to 0$.

To show that $F(X_k, f, s)$ is complete, let (x^i) be a Cauchy sequence in $F(X_k, f, s)$. Then $g(x^i - x^j) \to 0$ as $i, j \to \infty$. Hence for each fixed $k, q_k(x_k^i - x_k^j) \to 0$ as $i, j \to \infty$ and so (x_k^i) is a Cauchy sequence in X_k for each fixed k. Since X_k is complete, so there exists a sequence $x = (x_k)$ such that $x_k \in X_k$ for each $k \in \mathbb{N}$ and $q_k(x_k^i - x_k) \to 0$ as $i \to \infty$, for each fixed $k \in \mathbb{N}$. For given $\epsilon > 0$, choose an integer K such that $g(x^i - x^j) < \epsilon$ for i, j > K. Since F is normal and (e_k) is a Schauder basis of F,

$$\left\| \sum_{k=1}^{n} k^{-s} [f(q_k(x_k^i - x_k^j))] e_k \right\|_F \le \left\| k^{-s} [f(q_k(x_k^i - x_k^j))] \right\|_F < \epsilon \quad \text{for} \quad i, j > K.$$

Since f is continuous, so by taking $j \to \infty$ in the above expression, we get

$$\left\|\sum_{k=1}^{n} k^{-s} [f(q_k(x_k^i - x_k))]e_k\right\|_F < \epsilon \text{ for } i > K.$$

Since n is arbitrary, by taking $n \to \infty$, we obtain $g(x^i - x) < \epsilon$ for i > K. So (x^i) converges to x in the paranorm of $F(X_k, f, s)$. We now show that $x \in F(X_k, f, s)$. Since $q_k(x_k^i - x_k) \to 0$ as $i \to \infty$, for each fixed k we choose a positive number δ_k^i , $0 < \delta_k^i < 1$, such that

$$f(q_k(x_k^i - x_k)) < \delta_k^i [f(q_k(x_k^i))]$$

Consider

$$k^{-s}[f(q_k(x_k))] \le k^{-s}[f(q_k(x_k^i))] + k^{-s}[f(q_k(x_k - x_k^i))] < (1 + \delta_k^i)k^{-s}[f(q_k(x_k^i))]$$

Since F is normal, so $x = (x_k) \in F(X_k, f, s)$. Therefore, $F(X_k, f, s)$ is a complete paranormed space.

Remark 2.7. It can be easily verified that when $F = l_1$, $(X_k, q_k) = (\mathbb{C}, |.|)$ and s = 0 the paranorms defined on $F(X_k, f, s)$ and L(f) are the same.

3. The Space of Multipliers of $F(X_k, f, p, s)$

Suppose (X_k, q_k) is seminormed algebra for each $k \in \mathbb{N}$. Define $M[F(X_k, f, p, s)]$, the space of multipliers of $F(X_k, f, p, s)$, as

$$M[F(X_k, f, p, s)] = \left\{ a = (a_k) \in w(X_k) : (k^{-s}[f(q_k(a_k x_k))]^{p_k}) \in F, \text{ for all} \\ x = (x_k) \in F(X_k, f, p, s) \right\}.$$

Theorem 3.1. For any modulus f, $l_{\infty}(X_k) \subseteq M[F(X_k, f, p, s)]$, where

$$l_{\infty}(X_k) = \Big\{ x = (x_k) \in w(X_k) : \sup_k q_k(x_k) < \infty \Big\}.$$

Proof. $a = (a_k) \in l_{\infty}(X_k)$ implies $q_k(a_k) < 1 + [T]$ for all k, where $T = \sup_k q_k(a_k) < \infty$ and [T] denotes the integer part of T. Let $x = (x_k) \in F(X_k, f, p, s)$. Since X_k is seminormed algebra for each k, by definition of modulus function (ii) and (iii) and inequality (2), we have

$$k^{-s} \Big[f(q_k(a_k x_k)) \Big]^{p_k} \le \Big(1 + [T] \Big)^H k^{-s} \Big[f(q_k(x_k)) \Big]^{p_k}$$

Since F is normal, $ax \in F(X_k, f, p, s)$, as desired.

The inclusion seems to be proper but we have not been able to prove it. It is, therefore, an open problem.

Proposition 3.2. If $e = (e_1, e_2, ...) \in F(X_k, f, p, s)$, then $M[F(X_k, f, p, s)] \subseteq F(X_k, f, p, s)$, where e_k is the identity element of X_k for each $k \in \mathbb{N}$.

Proposition 3.3. If f is a modulus function such that $f(xy) \leq f(x) + f(y)$ for all $x \geq 0, y \geq 0$, then $F(X_k, f, p, s) \subseteq M[F(X_k, f, p, s)]$.

Proof. Let $a = (a_k) \in F(X_k, f, p, s)$ and $x = (x_k) \in F(X_k, f, p, s)$.

Then

$$\left(k^{-s}[f(q_k(a_k))]^{p_k}\right)$$
 and $\left(k^{-s}[f(q_k(x_k))]^{p_k}\right) \in F.$

Since X_k is seminormed algebra for each k, using (1) we have,

$$k^{-s} \Big[f(q_k(a_k x_k)) \Big]^{p_k} \le k^{-s} \Big[f(q_k(a_k) q_k(x_k)) \Big]^{p_k} \\ \le k^{-s} \Big[f(q_k(a_k)) + f(q_k(x_k)) \Big]^{p_k} \\ \le C \Big(k^{-s} [f(q_k(a_k))]^{p_k} + k^{-s} [f(q_k(x_k))]^{p_k} \Big),$$

where $C = \max(1, 2^{H-1})$. Since F is a normal sequence algebra, $ax \in F(X_k, f, p, s)$ i.e., $a \in M[F(X_k, f, p, s)]$.

Example 3.4. $f(x) = \log(1+x)$, is a modulus function which satisfies the condition of Proposition 3.3 i.e., $f(xy) \le f(x) + f(y)$ for $x \ge 0$, $y \ge 0$ (Prop. 2 of Maddox [10]).

4. Composite space $F(X_k, f^v, p, s)$ using composite modulus function f^v

Taking modulus function f^v instead of f in the space $F(X_k, f, p, s)$, we can define the composite space $F(X_k, f^v, p, s)$ as follows:

Definition 4.1. For a fixed natural number v, we define

$$F(X_k, f^v, p, s) = \left\{ x = (x_k) \in w(X_k) : (k^{-s}[f^v(q_k(x_k))]^{p_k}) \in F \right\}.$$

Theorem 4.2. Let f be a modulus function and let $v \in \mathbb{N}$. Then

- (i) $F(X_k, f^v, p, s) \subseteq F(X_k, p, s)$ if $\lim_{t \to \infty} \frac{f(t)}{t} = \beta > 0$,
- (ii) $F(X_k, p, s) \subseteq F(X_k, f^v, p, s)$ if there exists a positive constant α such that $f(t) \leq \alpha t$ for all $t \geq 0$.

Proof. (i) Let $x = (x_k) \in F(X_k, f^v, p, s)$. Then

$$\left(k^{-s}[f^v(q_k(x_k))]^{p_k}\right) \in F$$

Following the proof of Prop. 1 of Maddox [11], we have $\beta = \lim_{t\to\infty} \frac{f(t)}{t} = \inf\{\frac{f(t)}{t} : t > 0\}$, so that $0 \leq \beta \leq f(1)$. Let $\beta > 0$. By definition of β we have $\beta t \leq f(t)$ for all $t \geq 0$. Since f is increasing we have $\beta^2 t \leq f^2(t)$. So by induction, we have $\beta^v t \leq f^v(t)$. So using inequality (2),

$$k^{-s} \left[q_k(x_k) \right]^{p_k} \le k^{-s} \left[\beta^{-v} (f^v(q_k(x_k))) \right]^{p_k} \\ \le \max(1, \beta^{-vH}) k^{-s} \left[f^v(q_k(x_k)) \right]^{p_k}$$

Since F is normal, $x \in F(X_k, p, s)$ and the proof is complete.

(ii) Let $x = (x_k) \in F(X_k, p, s)$, then $(k^{-s}[q_k(x_k)]^{p_k}) \in F$. Since $f(t) \leq \alpha t$ we have $f^v(t) \leq \alpha^v t$, so using inequality (2)

$$k^{-s} \left[f^{v}(q_{k}(x_{k})) \right]^{p_{k}} \leq k^{-s} \left[\alpha^{v} q_{k}(x_{k}) \right]^{p_{k}}$$
$$\leq \max\left(1, \alpha^{vH}\right) k^{-s} \left[q_{k}(x_{k}) \right]^{p_{k}}$$

Since F is normal, $x \in F(X_k, f^v, p, s)$ and therefore, $F(X_k, p, s) \subseteq F(X_k, f^v, p, s)$.

Example 4.3. $f_1(t) = t + t^{1/2}$ and $f_2(t) = \log(1+t)$ for all $t \ge 0$ satisfy the conditions given in Theorem 4.2(i), (ii) respectively.

Theorem 4.4. Let $m, v \in \mathbb{N}$ and m < v. If f is a modulus such that $f(t) \leq \alpha t$ for all $t \geq 0$, where α is a positive constant, then

$$F(X_k, p, s) \subseteq F(X_k, f^m, p, s) \subseteq F(X_k, f^v, p, s).$$

Proof. Let r = v - m. Since $f(t) \leq \alpha t$, we have $f^v(t) < M^r f^m(t) < M^v t$, where $M = 1 + [\alpha]$. Let $x = (x_k) \in F(X_k, p, s)$. By the above inequality, we get

$$k^{-s} \left[f^{v}(q_{k}(x_{k})) \right]^{p_{k}} < M^{rH} k^{-s} \left[f^{m}(q_{k}(x_{k})) \right]^{p_{k}}$$
$$< M^{vH} k^{-s} \left[q_{k}(x_{k}) \right]^{p_{k}}$$

Since F is normal, the required inclusion follows.

References

- V. K. Bhardwaj and N. Singh, Banach space valued sequence spaces defined by a modulus, Indian J. Pure Appl. Math., 32(2001), 1869–1882.
- [2] V. K. Bhardwaj, A generalization of a sequence space of Ruckle, Bull. Cal. Math. Soc., 95(2003), 411-420.
- [3] T. Bilgin, The sequence space l(p, f, q, s) on seminormed spaces, Bull. Cal. Math. Soc., **86**(1994), 295-304.

VINOD K. BHARDWAJ AND INDU BALA

- [4] D. Ghosh and P. D. Srivastava, On some vector valued sequence spaces defined using a modulus function, Indian J. Pure Appl. Math., 30(1999), 819–826.
- [5] A. Jakimovski and D. C. Russel, Representation of continous linear functionals on a subspace of a countable cartesian product of Banach spaces, Studia Math., 72(1982), 273–284.
- [6] P. K. Kamthan and M. Gupta, Sequence Spaces and Series, Marcel Dekker Inc., New York, 1981.
- [7] I. E. Leonard, Banach sequence spaces, J. Math. Anal. Appl., 54(1976), 245–265.
- [8] I. J. Maddox, Elements of Functional Analysis, Cambridge Univ. Press, 1970(first edition), 1988(second edition).
- [9] I. J. Maddox, *Infinite matrices of operators*, Lecture Notes in Mathematics 786, Springer-Verlag Berlin, Heidelberg, New York, 1980.
- [10] I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Philos. Soc., 100(1986), 161–166.
- I. J. Maddox, Inclusion between FK spaces and Kuttner's Theorem, Math. Proc. Camb. Philos. Soc., 101(1987), 523–527.
- [12] H. Nakano, Concave modulars, J. Math. Soc. Japan, 5(1953), 29-49.
- [13] W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25(1973), 973–978.
- [14] S. Simons, The sequence spaces $l(p_v)$ and $m(p_v)$, Proc. London Math. Soc., 15(1965), 422–436.
- [15] A. Wilansky, Functional Analysis, Blaisdell Publishing Company, New York, 1964.

Department of Mathematics, Kurukshetra University, Kurukshetra -136 119, INDIA. E-mail: vinodk_bhj@rediffmail.com

Department of Mathematics, Rajiv Gandhi Government College, Saha (Ambala)-133 104, INDIA.

E-mail: bansal_indu@rediffmail.com