THE SEQUENCE SPACE $F\left(X_{k}, f, p, s\right)$ ON SEMINORMED SPACES

VINOD K. BHARDWAJ AND INDU BALA

Abstract

The object of this paper is to introduce the vector valued sequence space $F\left(X_{k}, f, p, s\right)$ using a modulus function f. Various algebraic and topological properties of this space have been investigated. Our results generalize and unify the corresponding earlier results of Ghosh and Srivastava [4], Maddox [10].

1. Introduction

Ruckle [13] used the idea of a modulus function f (definition given below) to construct a class of FK spaces

$$
L(f)=\left\{x=\left(x_{k}\right): \sum_{k=1}^{\infty} f\left(\left|x_{k}\right|\right)<\infty\right\} .
$$

He gave a negative answer to Wilansky's question: Is there a smallest FK space in which the set $\left\{e_{1}, e_{2}, \ldots\right\}$ of unit vectors is bounded?

The space $L(f)$ is closely related to the space l_{1} which is an $L(f)$ space with $f(x)=x$ for all real $x \geq 0$.

The idea of modulus was structured in 1953 by Nakano [12]. Following Ruckle [13] and Maddox [10], we recall that a modulus f is a function from $[0, \infty)$ to $[0, \infty)$ such that
(i) $f(x)=0$ if and only if $x=0$,
(ii) $f(x+y) \leq f(x)+f(y)$ for all $x \geq 0, y \geq 0$,
(iii) f is increasing,
(iv) f is continuous from the right at 0 .

Because of (ii), $|f(x)-f(y)| \leq f(|x-y|)$ so that in view of (iv), f is continuous everywhere on $[0, \infty)$. A modulus may be unbounded (for example, $f(x)=x^{p}, 0<p \leq 1$) or bounded (for example, $\left.f(x)=\frac{x}{(1+x)}\right)$.

It is easy to see that $f_{1}+f_{2}$ is a modulus function when f_{1} and f_{2} are modulus functions, and that the function $f^{v}(v$ is a positive integer), the composition of a modulus function f with itself v times, is also a modulus function.

Received January 9, 2007.

2000 Mathematics Subject Classification. 40A05, 40C05, 46A45.
Key words and phrases. Modulus function, Paranorm, Sequence space, Seminormed algebra.

In this note, we introduce the vector valued sequence space $F\left(X_{k}, f, p, s\right)$ using a modulus function f, which generalizes the work of Ghosh and Srivastava [4], Jakimovski and Russel [5], and Maddox [10]. Some topological results and inclusion relations for $F\left(X_{k}, f, p, s\right)$ have been discussed. We also give some information on multipliers for $F\left(X_{k}, f, p, s\right)$. The composite space $F\left(X_{k}, f^{v}, p, s\right)$ using composite modulus function f^{v} has also been studied. Before introducing this sequence space we recall $[6,[8$ (second edition), 15] some terminology and notations.

An algebra X is a linear space together with an internal operation of multiplication of elements of X, such that $x y \in X, x(y z)=(x y) z, x(y+z)=x y+x z,(x+y) z=x z+y z$ and $\lambda(x y)=(\lambda x) y=x(\lambda y)$, for scalar λ.

In some algebras there exists a non-zero element e such that $e x=x e=x$ for all x. If such an e exists it is obviously unique and is called the identity of the algebra. A normed algebra is an algebra which is normed, as a linear space, and in which $\|x y\| \leq\|x\|\|y\|$ for all x, y.

By w we shall denote the space of all scalar sequences and ϕ is the sequence space of finitely nonzero scalar sequences. A sequence algebra is a subspace F of w such that F is closed under the multiplication defined by $x y=\left(x_{k} y_{k}\right) ; x=\left(x_{k}\right) \in F, y=\left(y_{k}\right) \in F$.

A sequence space F is said to be symmetric if when x is in F, then y is in F when the coordinates of y are those of x, but in a different order.

A sequence space F is said to be balanced if $\left(a_{k} x_{k}\right)$ is in F whenever $\left(x_{k}\right)$ is in F and $\left|a_{k}\right| \leq 1$ for each k.

A sequence space F is called solid (or normal) if $y=\left(y_{k}\right) \in F$ whenever $\left|y_{k}\right| \leq\left|x_{k}\right|$, $k \geq 1$, for some $x=\left(x_{k}\right) \in F$. If F is both normal and sequence algebra then it is called a normal sequence algebra. $\phi, w, l_{1}, l_{\infty}$ and c_{0} are normal sequence algebras whereas c is a sequence algebra but not normal.

A sequence $\left(b_{k}\right)$ of elements of a paranormed space (X, g) is called a Schauder basis for X if and only if, for each $x \in X$, there exists a unique sequence $\left(\lambda_{k}\right)$ of scalars such that

$$
x=\sum_{k=1}^{\infty} \lambda_{k} b_{k}
$$

i.e., such that

$$
g\left(x-\sum_{k=1}^{n} \lambda_{k} b_{k}\right) \rightarrow 0 \quad(n \rightarrow \infty)
$$

A norm $\|\cdot\|_{F}$ on a normal sequence space F is said to be absolutely monotone if $\|x\|_{F} \leq\|y\|_{F}$ for $x=\left(x_{k}\right), y=\left(y_{k}\right) \in F$ with $\left|x_{k}\right| \leq\left|y_{k}\right|$ for all $k \in \mathbb{N}$.

Let q_{1} and q_{2} be seminorms on a linear space X. Then q_{1} is stronger than q_{2} if there exists a constant L such that $q_{2}(x) \leq L q_{1}(x)$ for all $x \in X$. If each is stronger than the other, q_{1} and q_{2} are said to be equivalent.

The following inequalities (see, e.g., [7; first edition, p. 190]) are needed throughout the paper.

Let $p=\left(p_{k}\right)$ be a bounded sequence of positive real numbers. If $H=\sup _{k} p_{k}$, then for any complex a_{k} and b_{k},
(1) $\left|a_{k}+b_{k}\right|^{p_{k}} \leq C\left(\left|a_{k}\right|^{p_{k}}+\left|b_{k}\right|^{p_{k}}\right)$,
where $C=\max \left(1,2^{H-1}\right)$. Also for any complex λ,
(2) $|\lambda|^{p_{k}} \leq \max \left(1,|\lambda|^{H}\right)$.

We now introduce the vector valued sequence space $F\left(X_{k}, f, p, s\right)$ using modulus function f.

Let X_{k} be a seminormed space over the complex field \mathbb{C} with seminorm q_{k} for each $k \in \mathbb{N}$, and F be a normal sequence algebra with absolutely monotone norm $\|\cdot\|_{F}$ and having a Schauder basis $\left(e_{k}\right)$, where $e_{k}=(0,0, \ldots, 1,0, \ldots)$, with 1 in the k-th place. Let $p=\left(p_{k}\right)$ be any sequence of strictly positive real numbers and s be any non-negative real number. By $w\left(X_{k}\right)$, we denote the linear space of all sequences $x=\left(x_{k}\right)$ with $x_{k} \in X_{k}$ for each $k \in \mathbb{N}$ under the usual coordinatewise operations:

$$
x+y=\left(x_{k}+y_{k}\right) \text { and } \alpha x=\left(\alpha x_{k}\right)
$$

for each $\alpha \in \mathbb{C}$. If $x \in w\left(X_{k}\right)$ and $\lambda=\left(\lambda_{k}\right)$ is a scalar sequence then we shall write $\lambda x=\left(\lambda_{k} x_{k}\right) \in w\left(X_{k}\right)$.

For a modulus function f, we define

$$
F\left(X_{k}, f, p, s\right)=\left\{x=\left(x_{k}\right) \in w\left(X_{k}\right):\left(k^{-s}\left[f\left(q_{k}\left(x_{k}\right)\right)\right]^{p_{k}}\right) \in F\right\}
$$

The norm $\|\cdot\|_{F}$ and the condition on $\|\cdot\|_{F}$ are irrelevant as far as the definition of the sets $F\left(X_{k}, f, p, s\right)$ is concerned; they are needed to define a topology on it.

Some well-known spaces are obtained by specializing F, X_{k}, f, p and s.
(i) If $F=l_{1}, X_{k}=\mathbb{C}$ for all $k, s=0, f(x)=x$ then $F\left(X_{k}, f, p, s\right)=l(p)$ (Simons [14]).
(ii) If $F=l_{1}, X_{k}=\mathbb{C}$ for all $k, s=0, f(x)=x$ and $p_{k}=p$ for all k then $F\left(X_{k}, f, p, s\right)=$ l_{p}.
(iii) If $F=l_{1}, X_{k}=\mathbb{C}$ for all $k, s=0, f(x)=x$ and $p_{k}=1$ for all k then $F\left(X_{k}, f, p, s\right)=$ l_{1}.
(iv) If $F=l_{1}, X_{k}=\mathbb{C}$ for all $k, s=0$ and $p_{k}=1$ for all k then $F\left(X_{k}, f, p, s\right)=L(f)$ (Ruckle [13]).
(v) If $F=l_{1}, X_{k}=\mathbb{C}$ for all k and $s=0$ then $F\left(X_{k}, f, p, s\right)=L(f, p)$ (Bhardwaj [2]).
(vi) If $F=l_{1}, X_{k}=X$ (a Banach space over \mathbb{C}) for all $k, s=0, f(x)=x$ and $p_{k}=p$ for all k, then $F\left(X_{k}, f, p, s\right)=l_{p}(X)$ (Leonard [7]).
(vii) If $F=l_{1}, X_{k}=X$ (a seminormed space over \mathbb{C} with seminorm q)for all k, then $F\left(X_{k}, f, p, s\right)=l(p, f, q, s)($ Bilgin [3]).
(viii) If $F=l_{\infty}, X_{k}=X$ (a Banach space over \mathbb{C}) for all $k, s=0, f(x)=x$ and $p_{k}=1$ for all k, then $F\left(X_{k}, f, p, s\right)=l_{\infty}(X)$ (Leonard [7], Maddox [9]).
(ix) If $F=w_{0}$ or $w_{\infty}, X_{k}=\mathbb{C}$ for all $k, s=0$ and $p_{k}=1$ for all k then the set $F\left(X_{k}, f, p, s\right)$ reduces to $w_{0}(f)$ and $w_{\infty}(f)$, respectively (Maddox [10]).
(x) If $F=w_{0}$ or $w_{\infty}, X_{k}=X$ (a Banach space over \mathbb{C}) for all $k, s=0$ and $p_{k}=1$ for all k, then the set $F\left(X_{k}, f, p, s\right)$ reduces to $w_{0}(f, X)$ and $w_{\infty}(f, X)$, respectively (Bhardwaj and Singh [1]).
(xi) If $F=l_{\infty}, X_{k}=\mathbb{C}$ for all $k, s=0, f(x)=x$ and $p_{k}=1$ for all k, then $F\left(X_{k}, f, p, s\right)=l_{\infty}$.
(xii) If $X_{k}=E_{k}$ (Banach spaces over $\left.\mathbb{C}\right), s=0$ and $p_{k}=1$ for all k then $F\left(X_{k}, f, p, s\right)=$ $F\left(E_{k}, f\right)$ (Ghosh and Srivastava [4]).

We denote $F\left(X_{k}, f, p, s\right)$ by $F\left(X_{k}, f, s\right)$ when $p_{k}=1$ for all k and by $F\left(X_{k}, p, s\right)$ when $f(x)=x$.

2. Linear Topological Structure of $F\left(X_{k}, f, p, s\right)$ Space and Inclusion Theorems

In this section we examine some algebraic and topological properties of the sequence space defined above and investigate some inclusion relations between these spaces.

Theorem 2.1. Let $H=\sup p_{k}<\infty$, then $F\left(X_{k}, f, p, s\right)$ is a linear space over the complex field \mathbb{C}.

Proof. Let $x, y \in F\left(X_{k}, f, p, s\right)$. For $\alpha, \beta \in \mathbb{C}$, there exist positive integers M_{α} and N_{β} such that $|\alpha| \leq M_{\alpha}$ and $|\beta| \leq N_{\beta}$. From definition of modulus function (ii) and (iii) and inequalities (1) and (2), we have

$$
k^{-s}\left[f\left(q_{k}\left(\alpha x_{k}+\beta y_{k}\right)\right)\right]^{p_{k}} \leq C\left(M_{\alpha}^{H} k^{-s}\left[f\left(q_{k}\left(x_{k}\right)\right)\right]^{p_{k}}+N_{\beta}^{H} k^{-s}\left[f\left(q_{k}\left(y_{k}\right)\right)\right]^{p_{k}}\right)
$$

where $C=\max \left(1,2^{H-1}\right)$. Since F is a normal sequence algebra, we have $k^{-s}\left[f\left(q_{k}\left(\alpha x_{k}+\right.\right.\right.$ $\left.\left.\left.\beta y_{k}\right)\right)\right]^{p_{k}} \in F$ which shows that $\alpha x+\beta y \in F\left(X_{k}, f, p, s\right)$. Hence $F\left(X_{k}, f, p, s\right)$ is a linear space over \mathbb{C}.

Theorem 2.2. Let f, f_{1} and f_{2} be modulus functions, s, s_{1} and s_{2} be non-negative real numbers, then
(i) $F\left(X_{k}, f_{1}, p, s\right) \bigcap F\left(X_{k}, f_{2}, p, s\right) \subseteq F\left(X_{k}, f_{1}+f_{2}, p, s\right)$,
(ii) If $s_{1} \leq s_{2}$, then $F\left(X_{k}, f, p, s_{1}\right) \subseteq F\left(X_{k}, f, p, s_{2}\right)$,
(iii) If $F_{1} \subseteq F_{2}$, then $F_{1}\left(X_{k}, f, p, s\right) \subseteq F_{2}\left(X_{k}, f, p, s\right)$.

Proof. (i) Let $x=\left(x_{k}\right) \in F\left(X_{k}, f_{1}, p, s\right) \bigcap F\left(X_{k}, f_{2}, p, s\right)$.
Then $\left(k^{-s}\left[f_{1}\left(q_{k}\left(x_{k}\right)\right)\right]^{p_{k}}\right)$ and $\left(k^{-s}\left[f_{2}\left(q_{k}\left(x_{k}\right)\right)\right]^{p_{k}}\right) \in F$.
Using (1) we have

$$
k^{-s}\left[\left(f_{1}+f_{2}\right)\left(q_{k}\left(x_{k}\right)\right)\right]^{p_{k}} \leq C\left\{k^{-s}\left[f_{1}\left(q_{k}\left(x_{k}\right)\right)\right]^{p_{k}}+k^{-s}\left[f_{2}\left(q_{k}\left(x_{k}\right)\right)\right]^{p_{k}}\right\}
$$

Since F is normal, $x \in F\left(X_{k}, f_{1}+f_{2}, p, s\right)$.
The proofs of (ii) and (iii) are trivial.
Corollary 2.3. $F\left(X_{k}, f, p\right) \subseteq F\left(X_{k}, f, p, s\right)$ for any modulus function f.
Theorem 2.4. $F\left(X_{k}, f, p, s\right)$ is normal and symmetric.
Proof. Let $x=\left(x_{k}\right) \in F\left(X_{k}, f, p, s\right)$ and $y=\left(y_{k}\right)$ be any sequence in $w\left(X_{k}\right)$ such that $q_{k}\left(y_{k}\right) \leq q_{k}\left(x_{k}\right)$ for each k. Since f is increasing, we have

$$
k^{-s}\left[f\left(q_{k}\left(y_{k}\right)\right)\right]^{p_{k}} \leq k^{-s}\left[f\left(q_{k}\left(x_{k}\right)\right)\right]^{p_{k}}
$$

The normality of F implies that $y=\left(y_{k}\right) \in F\left(X_{k}, f, p, s\right)$ and hence $F\left(X_{k}, f, p, s\right)$ is normal. The proof of the fact that $F\left(X_{k}, f, p, s\right)$ is symmetric is obvious.

Theorem 2.5. If $\left(X_{k}, q_{k}\right)$ is seminormed algebra for each $k \in \mathbb{N}$ then $F\left(X_{k}, f, p, s\right)$ is balanced.

Proof. Let $x=\left(x_{k}\right) \in F\left(X_{k}, f, p, s\right)$ and $a=\left(a_{k}\right)$ be any sequence in $w\left(X_{k}\right)$ such that $q_{k}\left(a_{k}\right) \leq 1$ for each k. Since f is increasing and each X_{k} is seminormed algebra we have

$$
k^{-s}\left[f\left(q_{k}\left(a_{k} x_{k}\right)\right)\right]^{p_{k}} \leq k^{-s}\left[f\left(q_{k}\left(x_{k}\right)\right)\right]^{p_{k}}
$$

The normality of the space F implies that $a x=\left(a_{k} x_{k}\right) \in F\left(X_{k}, f, p, s\right)$ and hence $F\left(X_{k}, f, p, s\right)$ is balanced.

We conclude this section by considering the metrization of $F\left(X_{k}, f, s\right)$ space.
Theorem 2.6. For any modulus $f, F\left(X_{k}, f, s\right)$ is a complete topological linear space, paranormed by

$$
g(x)=\left\|k^{-s}\left[f\left(q_{k}\left(x_{k}\right)\right)\right]\right\|_{F}
$$

if X_{k} is complete under the seminorm q_{k} for each $k \in \mathbb{N}$.
Proof. Clearly $g(\theta)=0$ for $\theta=\left(\theta_{1}, \theta_{2}, \ldots\right)$ the zero element of $F\left(X_{k}, f, s\right)$ (where θ_{i} is the zero element of X_{i} for each i). Also $g(-x)=g(x)$. We now show that g is subadditive

$$
\begin{aligned}
g(x+y) & =\left\|k^{-s}\left[f\left(q_{k}\left(x_{k}+y_{k}\right)\right)\right]\right\|_{F} \\
& \leq\left\|k^{-s}\left[f\left(q_{k}\left(x_{k}\right)\right)\right]\right\|_{F}+\left\|k^{-s}\left[f\left(q_{k}\left(y_{k}\right)\right)\right]\right\|_{F}
\end{aligned}
$$

$$
=g(x)+g(y)
$$

as f is increasing and $\|\cdot\|_{F}$ is absolutely monotone norm.
We now show that the scalar multiplication is continuous. For any complex λ,

$$
g(\lambda x) \leq(1+[|\lambda|]) g(x)
$$

where $[t]$ denotes the integer part of t, whence $\lambda \rightarrow 0, x \rightarrow \theta$ imply $\lambda x \rightarrow \theta$ and also $x \rightarrow \theta$, λ fixed imply $\lambda x \rightarrow \theta$. Suppose that $\lambda_{n} \rightarrow 0$ and x is fixed in $F\left(X_{k}, f, s\right)$.

Then

$$
t=\left(t_{k}\right)=\left(k^{-s} f\left(q_{k}\left(x_{k}\right)\right)\right) \in F
$$

For arbitrary $\epsilon>0$, let N be a positive integer such that

$$
\left\|t-\sum_{k=1}^{N} t_{k} e_{k}\right\|_{F}=\left\|\sum_{k=N+1}^{\infty} t_{k} e_{k}\right\|_{F}<\frac{\epsilon}{2}
$$

since $\left(e_{k}\right)$ is a Schauder basis of F.
Since f is continuous everywhere in $[0, \infty)$,

$$
g(u)=\left\|\sum_{k=1}^{N} k^{-s}\left[f\left(q_{k}\left(u x_{k}\right)\right)\right] e_{k}\right\|_{F},
$$

is continuous at 0 . So there is $1>\delta>0$ such that $g(u)<\left(\frac{\epsilon}{2}\right)$ for $0<u<\delta$. Let K be a positive integer such that $\left|\lambda_{n}\right|<\delta$ for $n>K$, then for $n>K$

$$
\left\|\sum_{k=1}^{N} k^{-s}\left[f\left(q_{k}\left(\lambda_{n} x_{k}\right)\right)\right] e_{k}\right\|_{F}<\frac{\epsilon}{2} .
$$

Thus

$$
\left\|k^{-s}\left[f\left(q_{k}\left(\lambda_{n} x_{k}\right)\right)\right]\right\|_{F}<\epsilon \text { for } n>K
$$

so that $g(\lambda x) \rightarrow 0$ as $\lambda \rightarrow 0$.
To show that $F\left(X_{k}, f, s\right)$ is complete, let $\left(x^{i}\right)$ be a Cauchy sequence in $F\left(X_{k}, f, s\right)$. Then $g\left(x^{i}-x^{j}\right) \rightarrow 0$ as $i, j \rightarrow \infty$. Hence for each fixed $k, q_{k}\left(x_{k}^{i}-x_{k}^{j}\right) \rightarrow 0$ as $i, j \rightarrow \infty$ and so $\left(x_{k}^{i}\right)$ is a Cauchy sequence in X_{k} for each fixed k. Since X_{k} is complete, so there exists a sequence $x=\left(x_{k}\right)$ such that $x_{k} \in X_{k}$ for each $k \in \mathbb{N}$ and $q_{k}\left(x_{k}^{i}-x_{k}\right) \rightarrow 0$ as $i \rightarrow \infty$, for each fixed $k \in \mathbb{N}$. For given $\epsilon>0$, choose an integer K such that $g\left(x^{i}-x^{j}\right)<\epsilon$ for $i, j>K$. Since F is normal and $\left(e_{k}\right)$ is a Schauder basis of F,

$$
\begin{aligned}
\left\|\sum_{k=1}^{n} k^{-s}\left[f\left(q_{k}\left(x_{k}^{i}-x_{k}^{j}\right)\right)\right] e_{k}\right\|_{F} & \leq\left\|k^{-s}\left[f\left(q_{k}\left(x_{k}^{i}-x_{k}^{j}\right)\right)\right]\right\|_{F} \\
& <\epsilon \text { for } i, j>K .
\end{aligned}
$$

Since f is continuous, so by taking $j \rightarrow \infty$ in the above expression, we get

$$
\left\|\sum_{k=1}^{n} k^{-s}\left[f\left(q_{k}\left(x_{k}^{i}-x_{k}\right)\right)\right] e_{k}\right\|_{F}<\epsilon \text { for } i>K
$$

Since n is arbitrary, by taking $n \rightarrow \infty$, we obtain $g\left(x^{i}-x\right)<\epsilon$ for $i>K$. So (x^{i}) converges to x in the paranorm of $F\left(X_{k}, f, s\right)$. We now show that $x \in F\left(X_{k}, f, s\right)$. Since $q_{k}\left(x_{k}^{i}-x_{k}\right) \rightarrow 0$ as $i \rightarrow \infty$, for each fixed k we choose a positive number $\delta_{k}^{i}, 0<\delta_{k}^{i}<1$, such that

$$
f\left(q_{k}\left(x_{k}^{i}-x_{k}\right)\right)<\delta_{k}^{i}\left[f\left(q_{k}\left(x_{k}^{i}\right)\right)\right]
$$

Consider

$$
\begin{aligned}
k^{-s}\left[f\left(q_{k}\left(x_{k}\right)\right)\right] & \leq k^{-s}\left[f\left(q_{k}\left(x_{k}^{i}\right)\right)\right]+k^{-s}\left[f\left(q_{k}\left(x_{k}-x_{k}^{i}\right)\right)\right] \\
& <\left(1+\delta_{k}^{i}\right) k^{-s}\left[f\left(q_{k}\left(x_{k}^{i}\right)\right)\right]
\end{aligned}
$$

Since F is normal, so $x=\left(x_{k}\right) \in F\left(X_{k}, f, s\right)$. Therefore, $F\left(X_{k}, f, s\right)$ is a complete paranormed space.

Remark 2.7. It can be easily verified that when $F=l_{1},\left(X_{k}, q_{k}\right)=(\mathbb{C},|\cdot|)$ and $s=0$ the paranorms defined on $F\left(X_{k}, f, s\right)$ and $L(f)$ are the same.

3. The Space of Multipliers of $\boldsymbol{F}\left(X_{k}, f, p, s\right)$

Suppose $\left(X_{k}, q_{k}\right)$ is seminormed algebra for each $k \in \mathbb{N}$. Define $M\left[F\left(X_{k}, f, p, s\right)\right]$, the space of multipliers of $F\left(X_{k}, f, p, s\right)$, as

$$
\begin{gathered}
M\left[F\left(X_{k}, f, p, s\right)\right]=\left\{a=\left(a_{k}\right) \in w\left(X_{k}\right):\left(k^{-s}\left[f\left(q_{k}\left(a_{k} x_{k}\right)\right)\right]^{p_{k}}\right) \in F,\right. \text { for all } \\
\left.x=\left(x_{k}\right) \in F\left(X_{k}, f, p, s\right)\right\}
\end{gathered}
$$

Theorem 3.1. For any modulus $f, l_{\infty}\left(X_{k}\right) \subseteq M\left[F\left(X_{k}, f, p, s\right)\right]$, where

$$
l_{\infty}\left(X_{k}\right)=\left\{x=\left(x_{k}\right) \in w\left(X_{k}\right): \sup _{k} q_{k}\left(x_{k}\right)<\infty\right\}
$$

Proof. $a=\left(a_{k}\right) \in l_{\infty}\left(X_{k}\right)$ implies $q_{k}\left(a_{k}\right)<1+[T]$ for all k, where $T=\sup _{k} q_{k}\left(a_{k}\right)<$ ∞ and $[T]$ denotes the integer part of T. Let $x=\left(x_{k}\right) \in F\left(X_{k}, f, p, s\right)$. Since X_{k} is seminormed algebra for each k, by definition of modulus function (ii) and (iii) and inequality (2), we have

$$
k^{-s}\left[f\left(q_{k}\left(a_{k} x_{k}\right)\right)\right]^{p_{k}} \leq(1+[T])^{H} k^{-s}\left[f\left(q_{k}\left(x_{k}\right)\right)\right]^{p_{k}}
$$

Since F is normal, $a x \in F\left(X_{k}, f, p, s\right)$, as desired.

The inclusion seems to be proper but we have not been able to prove it. It is, therefore, an open problem.

Proposition 3.2. If $e=\left(e_{1}, e_{2}, \ldots\right) \in F\left(X_{k}, f, p, s\right)$, then $M\left[F\left(X_{k}, f, p, s\right)\right] \subseteq$ $F\left(X_{k}, f, p, s\right)$, where e_{k} is the identity element of X_{k} for each $k \in \mathbb{N}$.

Proposition 3.3. If f is a modulus function such that $f(x y) \leq f(x)+f(y)$ for all $x \geq 0, y \geq 0$, then $F\left(X_{k}, f, p, s\right) \subseteq M\left[F\left(X_{k}, f, p, s\right)\right]$.

Proof. Let $a=\left(a_{k}\right) \in F\left(X_{k}, f, p, s\right)$ and $x=\left(x_{k}\right) \in F\left(X_{k}, f, p, s\right)$.
Then

$$
\left(k^{-s}\left[f\left(q_{k}\left(a_{k}\right)\right)\right]^{p_{k}}\right) \text { and }\left(k^{-s}\left[f\left(q_{k}\left(x_{k}\right)\right)\right]^{p_{k}}\right) \in F
$$

Since X_{k} is seminormed algebra for each k, using (1) we have,

$$
\begin{aligned}
k^{-s}\left[f\left(q_{k}\left(a_{k} x_{k}\right)\right)\right]^{p_{k}} & \leq k^{-s}\left[f\left(q_{k}\left(a_{k}\right) q_{k}\left(x_{k}\right)\right)\right]^{p_{k}} \\
& \leq k^{-s}\left[f\left(q_{k}\left(a_{k}\right)\right)+f\left(q_{k}\left(x_{k}\right)\right)\right]^{p_{k}} \\
& \leq C\left(k^{-s}\left[f\left(q_{k}\left(a_{k}\right)\right)\right]^{p_{k}}+k^{-s}\left[f\left(q_{k}\left(x_{k}\right)\right)\right]^{p_{k}}\right)
\end{aligned}
$$

where $C=\max \left(1,2^{H-1}\right)$. Since F is a normal sequence algebra, $a x \in F\left(X_{k}, f, p, s\right)$ i.e., $a \in M\left[F\left(X_{k}, f, p, s\right)\right]$.

Example 3.4. $f(x)=\log (1+x)$, is a modulus function which satisfies the condition of Proposition 3.3 i.e., $f(x y) \leq f(x)+f(y)$ for $x \geq 0, y \geq 0$ (Prop. 2 of Maddox [10]).

4. Composite space $F\left(X_{k}, f^{v}, p, s\right)$ using composite modulus function f^{v}

Taking modulus function f^{v} instead of f in the space $F\left(X_{k}, f, p, s\right)$, we can define the composite space $F\left(X_{k}, f^{v}, p, s\right)$ as follows:

Definition 4.1. For a fixed natural number v, we define

$$
F\left(X_{k}, f^{v}, p, s\right)=\left\{x=\left(x_{k}\right) \in w\left(X_{k}\right):\left(k^{-s}\left[f^{v}\left(q_{k}\left(x_{k}\right)\right)\right]^{p_{k}}\right) \in F\right\}
$$

Theorem 4.2. Let f be a modulus function and let $v \in \mathbb{N}$. Then
(i) $F\left(X_{k}, f^{v}, p, s\right) \subseteq F\left(X_{k}, p, s\right)$ if $\lim _{t \rightarrow \infty} \frac{f(t)}{t}=\beta>0$,
(ii) $F\left(X_{k}, p, s\right) \subseteq F\left(X_{k}, f^{v}, p, s\right)$ if there exists a positive constant α such that $f(t) \leq \alpha t$ for all $t \geq 0$.

Proof. (i) Let $x=\left(x_{k}\right) \in F\left(X_{k}, f^{v}, p, s\right)$. Then

$$
\left(k^{-s}\left[f^{v}\left(q_{k}\left(x_{k}\right)\right)\right]^{p_{k}}\right) \in F
$$

Following the proof of Prop. 1 of Maddox [11], we have $\beta=\lim _{t \rightarrow \infty} \frac{f(t)}{t}=\inf \left\{\frac{f(t)}{t}: t>\right.$ $0\}$, so that $0 \leq \beta \leq f(1)$. Let $\beta>0$. By definition of β we have $\beta t \leq f(t)$ for all $t \geq 0$. Since f is increasing we have $\beta^{2} t \leq f^{2}(t)$. So by induction, we have $\beta^{v} t \leq f^{v}(t)$. So using inequality (2),

$$
\begin{aligned}
k^{-s}\left[q_{k}\left(x_{k}\right)\right]^{p_{k}} & \leq k^{-s}\left[\beta^{-v}\left(f^{v}\left(q_{k}\left(x_{k}\right)\right)\right)\right]^{p_{k}} \\
& \leq \max \left(1, \beta^{-v H}\right) k^{-s}\left[f^{v}\left(q_{k}\left(x_{k}\right)\right)\right]^{p_{k}}
\end{aligned}
$$

Since F is normal, $x \in F\left(X_{k}, p, s\right)$ and the proof is complete.
(ii) Let $x=\left(x_{k}\right) \in F\left(X_{k}, p, s\right)$, then $\left(k^{-s}\left[q_{k}\left(x_{k}\right)\right]^{p_{k}}\right) \in F$. Since $f(t) \leq \alpha t$ we have $f^{v}(t) \leq \alpha^{v} t$, so using inequality (2)

$$
\begin{aligned}
k^{-s}\left[f^{v}\left(q_{k}\left(x_{k}\right)\right)\right]^{p_{k}} & \leq k^{-s}\left[\alpha^{v} q_{k}\left(x_{k}\right)\right]^{p_{k}} \\
& \leq \max \left(1, \alpha^{v H}\right) k^{-s}\left[q_{k}\left(x_{k}\right)\right]^{p_{k}}
\end{aligned}
$$

Since F is normal, $x \in F\left(X_{k}, f^{v}, p, s\right)$ and therefore, $F\left(X_{k}, p, s\right) \subseteq F\left(X_{k}, f^{v}, p, s\right)$.
Example 4.3. $f_{1}(t)=t+t^{1 / 2}$ and $f_{2}(t)=\log (1+t)$ for all $t \geq 0$ satisfy the conditions given in Theorem 4.2(i), (ii) respectively.

Theorem 4.4. Let $m, v \in \mathbb{N}$ and $m<v$. If f is a modulus such that $f(t) \leq \alpha t$ for all $t \geq 0$, where α is a positive constant, then

$$
F\left(X_{k}, p, s\right) \subseteq F\left(X_{k}, f^{m}, p, s\right) \subseteq F\left(X_{k}, f^{v}, p, s\right)
$$

Proof. Let $r=v-m$. Since $f(t) \leq \alpha t$, we have $f^{v}(t)<M^{r} f^{m}(t)<M^{v} t$, where $M=1+[\alpha]$. Let $x=\left(x_{k}\right) \in F\left(X_{k}, p, s\right)$. By the above inequality, we get

$$
\begin{aligned}
k^{-s}\left[f^{v}\left(q_{k}\left(x_{k}\right)\right)\right]^{p_{k}} & <M^{r H} k^{-s}\left[f^{m}\left(q_{k}\left(x_{k}\right)\right)\right]^{p_{k}} \\
& <M^{v H} k^{-s}\left[q_{k}\left(x_{k}\right)\right]^{p_{k}}
\end{aligned}
$$

Since F is normal, the required inclusion follows.

References

[1] V. K. Bhardwaj and N. Singh, Banach space valued sequence spaces defined by a modulus, Indian J. Pure Appl. Math., 32(2001), 1869-1882.
[2] V. K. Bhardwaj, A generalization of a sequence space of Ruckle, Bull. Cal. Math. Soc., 95(2003), 411-420.
[3] T. Bilgin, The sequence space $l(p, f, q, s)$ on seminormed spaces, Bull. Cal. Math. Soc., 86(1994), 295-304.
[4] D. Ghosh and P. D. Srivastava, On some vector valued sequence spaces defined using a modulus function, Indian J. Pure Appl. Math., 30(1999), 819-826.
[5] A. Jakimovski and D. C. Russel, Representation of continous linear functionals on a subspace of a countable cartesian product of Banach spaces, Studia Math., 72(1982), 273-284.
[6] P. K. Kamthan and M. Gupta, Sequence Spaces and Series, Marcel Dekker Inc., New York, 1981.
[7] I. E. Leonard, Banach sequence spaces, J. Math. Anal. Appl., 54(1976), 245-265.
[8] I. J. Maddox, Elements of Functional Analysis, Cambridge Univ. Press, 1970(first edition), 1988(second edition).
[9] I. J. Maddox, Infinite matrices of operators, Lecture Notes in Mathematics 786, SpringerVerlag Berlin, Heidelberg, New York, 1980.
[10] I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Philos. Soc., 100(1986), 161-166.
[11] I. J. Maddox, Inclusion between FK spaces and Kuttner's Theorem, Math. Proc. Camb. Philos. Soc., 101(1987), 523-527.
[12] H. Nakano, Concave modulars, J. Math. Soc. Japan, 5(1953), 29-49.
[13] W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25(1973), 973-978.
[14] S. Simons, The sequence spaces $l\left(p_{v}\right)$ and $m\left(p_{v}\right)$, Proc. London Math. Soc., 15(1965), 422436.
[15] A. Wilansky, Functional Analysis, Blaisdell Publishing Company, New York, 1964.

Department of Mathematics, Kurukshetra University, Kurukshetra - 136 119, INDIA.
E-mail: vinodk_bhj@rediffmail.com
Department of Mathematics, Rajiv Gandhi Government College, Saha (Ambala)-133 104, INDIA.
E-mail: bansal_indu@rediffmail.com

