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A study of statistical submersions
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Abstract. In the sixties, A. Gray [19] and B. O’Neill [27] come with the notion of
Riemannian submersions as a tool to study the geometry of a Riemannian manifold
with an additional structure in terms of the fibers and the base space. Riemannian
submersions have long been an effective tool to construct Riemannian manifolds with
positive or nonnegative sectional curvature in Riemannian geometry and compare
certain manifolds within differential geometry. In particular, many examples of Ein-
stein manifolds can be constructed by using such submersions. It is very well known
that Riemannian submersions have applications in physics, for example Kaluza-Klein
theory, Yang-Mills theory, supergravity and superstring theories.

In [41], Watson popularizes the knowledge of Riemannian submersions between
almost Hermitian manifolds under the name of almost Hermitian submersions and
many researchers discuss such submersions between various subclasses of almost Her-
mitian manifolds. Then, Sahin extends Riemannian submersions to many subclasses
of almost contact metric manifolds under the title of contact Riemannian submer-
sions in [35]. Afterwards, B. Sahin [34] comes with a self-contained exposition of
recent developments in Riemannian submersions and maps. On the other hand,
B. Nielsen and Jupp [7] discuss the Riemannian submersion from the viewpoint of
statistics. N. Abe and K. Hasegawa [1] introduce the notion of statistical submer-
sions between statistical manifolds by generalizing some basic results of B. O’Neill
concerning Riemannian submersions and geodesics. Since then, the study of sub-
mersions became an active research subject, and many papers have been published
by numerous of geometers (see [8]). The purpose of this article is to provide a com-
prehensive survey on the study of recent developments in statistical submersions.
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1 Introduction
A statistical manifold of probability distributions is a Reimannian manifold equipped with a
Riemannian metric and a pair of dual (conjugate) torsion-free affine connections. A statistical
manifold is a semi-Riemannian manifold equipped with an additional structure given by a pair of
dual torsion-free affine connections. Let Γ(TM) be the space of all vector fields on a Riemannian
or semi-Riemannian manifold (M, gM ).

Definition 1. Let M be a semi-Riemannian manifold and non-degenerate metric gM , and a
torsion-free affine connection by ′∇. The triplet (M,′ ∇, gM ) is called a statistical manifold if ′∇
is compatible to gM [3, 4].

For a statistical manifold (M,′ ∇, gM ), we describe a second connection ′∇∗ as

GgM (E,F ) = gM (′∇GE,F ) + gM (E, ′∇∗
GF ), (1.1)

for any E,F,G ∈ Γ(TM). Here affine connection ′∇∗ is called conjugate (or dual) of the connec-
tion ′∇ with respect to the gM . The affine connection ′∇∗ is torsion-free, ′∇∗

gM is also symmetric
and obeys

(′∇∗
)
∗
=′ ∇.

Also,

2′∇0 =′ ∇+′ ∇∗, (1.2)

where ′∇0 is the Levi-Civita connection on M .

The Riemann curvature tensor Rim is defined as a map Rim : Γ(TM)×Γ(TM)×Γ(TM) →
Γ(TM) by the following:

Rim(E,F )G =′ ∇′
E∇FG−′ ∇′

F∇EG−′ ∇[E,F ]G,

or equivalently we have

Rim(E,F ) = [′∇E ,
′ ∇F ]−′ ∇[E,F ],

where ′∇ denotes an affine connection, [E,F ] is the Lie bracket of vector fields and [′∇E ,
′ ∇F ] is

a commutator of differential operators.

A space form is a complete Riemannian manifold with constant sectional curvature. A
statistical manifold (M,′ ∇, gM ) is said to be of constant curvature c ∈ R if

Rim(E,F )G = c(gM (F,G)E − gM (E,G)F ),

holds for any E,F,G ∈ Γ(TM).

The theory of statistical manifolds and statistical submanifolds is a recent geometry, which
plays a crucial role in several fields of mathematics. Several results have been done by distin-
guished geometers in this area. Many relevant examples of statistical manifolds are studied such
as exponential families, whose points are probability densities of exponential form depending on
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a finite number of parameters.

The concept of submersion in differential geometry is first exposed by O’Neill [26] and Gray
[19]. Most of the research related to the various submersion can be found in [17]. Abe and
Hasegawa introduce the concept statistical submersions between statistical manifolds and K.
Takano defines the statistical model of the multivariate normal distribution as the Riemannian
manifold and constructed a good example of statistical submersion. Then, K. Takano found in-
teresting to study Kähler-like statistical manifold by using a dualistic pair of tensor fields J, J∗ of
type (1, 1) and its statistical submersion [36], Sasaki-like statistical manifold by using a dualistic
pair of tensor fields ϕ, ϕ∗ of type (1, 1) and obtains several geometric properties of statistical
submersions which are compatible with almost contact structures in [38].

Motivated by K. Takano’s studies, recently A.-D. Vilcu and G.-E. Vilcu [40] put suitable
almost quaternionic structures on statistical manifolds and define the new notion called quater-
nionic Kähler-like statistical manifold. They also investigate new submersion called quaternionic
Kähler-like statistical submersion and derive its main properties.

In [18], Furuhata, Hasegawa, Okuyama and Sato define a warped product of two statistical
manifolds and then construct a Kenmotsu statistical manifold as the warped product of a holo-
morphic statistical manifold and a line. Later on, Murathan and Sahin [25] get inspiration from
them and used usual product of trivial Euclidean statistical axis and a Kähler-like statistical man-
ifold to construct Kenmotsu-like statistical and cosymplectic-like statistical manifolds. Motivated
by above studies, Aytimur and Ozgur [6] come with the concept of cosymplectic-like statistical
submersions. For such statistical submersion, they show that the base space is a Kähler-like
statistical manifold and each fiber is a cosymplectic-like statistical manifold.

In continuation of study of different classes of statistical submersions, G.-E. Vilcu [39] give
new concept of statistical manifolds endowed with almost product structures called para-Kähler-
like statistical manifold and its statistical submersion. He derives interesting properties of such
statistical submersions [39]. Similar to the Takano’s definition for Sasaki-like statistical submer-
sion, Danish, Siddiqui and Aytimur define and discuss nice properties of Kenmotsu-like statistical
submersion in [33]. Also, they study Kenmotsu-like statistical submersions with conformal fibers.

2 Preliminaries

Let (M, gM ) and (N, gN ) be two connected semi-Riemannian manifolds of respective index r and s
provided s ≤ r and 0 ≤ r ≤ m, 0 ≤ s ≤ n, where dim(M) = m and dim(N) = n. Then a smooth
and onto map ω : M → N is said to be a semi-Riemannian submersion, if ω∗|x : TxM → Tω(x)N

is onto for x ∈ M ; for each p ∈ N , the fibres M = ω−1(p) are called semi-Riemannian submani-
folds of M and the dimension of each fiber is m − n; and ω∗ preserves the lengths of horizontal
vectors. Here, each fiber is denoted by (M, g = g|M ), the total space is (M, gM ), and the base
space is (N, gN ).

If a vector field on M is always tangent to fibers, we call it a vertical vector and a horizontal
vector if it is always normal to fibers. In the tangent bundle TM of M , we denote the vertical
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distribution by V(M) and the horizontal distribution by H(M). Then

TM = V(M)⊕H(M). (2.1)

A horizontal vector field X on M is called basic if X is ω-related to a vector field X∗ on N
such that ω∗(Xx) = X∗ω(x). If X and Y are the basic vector fields on M , ω-related to X∗, Y∗ on
N , we have the following facts:

1. gM (X,Y ) = gN (X∗, Y∗) ◦ ω;
2. H[X,Y ] is the basic vector field and is ω-related to [X∗, Y∗];
3. for any vertical vector field U , [X,U ] is vertical.

Let (M,′ ∇, gM ) and (N,∇, gN ) be two statistical manifolds and. Let ∇ and ∇∗ be the
induced affine connections on M by ′∇ and ′∇∗ on M . It is clear that ∇UV = V ′∇UV and
∇∗

UV = V ′∇∗
UV , for U, V ∈ Γ(V). It can be simply observed that ∇ and ∇∗ are torsion-free and

conjugate to each other with respect to gM .

Definition 2. Let a submersion ω : (M,′ ∇, gM ) → (N,∇, gN ) between two statistical manifolds
is called a statistical submersion if ω fulfils ω∗(

′∇XY )x = (∇ω∗(X)ω∗(Y ))x for basic vector fields
X,Y on M and x ∈ M .

In [37], K. Takano treats the statistical model of the multivariate normal distribution as the
Riemannian manifold and constructed the statistical submersion that the total space is of the
multivariate normal distribution.

The geometry of semi-Riemannian submersions is characterized by the author O′Neill’s ten-
sors T and A, defined as follows [26]:

TEF = V ′∇VEHF +H′∇VEVF, (2.2)

and

AEF = V ′∇HEHF +H′∇HEVF, (2.3)

for any E,F ∈ Γ(TM).

It is easy to see that T and A are skew-symmetric operators on the tangent bundle of M
reversing the vertical and the horizontal distributions.

We summarize the properties of the tensor fields T and A. Let V,W be vertical and X,Y
be horizontal vector fields on M , then we have

TV W = TWV, (2.4)

AXY = −AY X =
1

2
V[X,Y ]. (2.5)

By changing ′∇ for ′∇∗ in (2.2) and (2.3), we define T∗ and A∗ [36]. A = 0 = A∗ if and
only if H(M) is integrable with respect to ′∇ and ′∇∗, respectively. For X,Y ∈ H(M) and
V,W ∈ V(M), we turn up

gM (TV W,X) = −gM (W,T∗
V X) and g(AXY, V ) = −gM (Y,A∗

XV ). (2.6)
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Now, we will discuss some useful properties of statistical submersion proposed by Takano
[36]. First we have the following lemmas for this study. Therefore, for a statistical submersion
ω : (M,′ ∇, gM ) → (N,∇, gN ), we have [26, 36]

Lemma 2.1. [36] If X and Y are horizontal vector field, then AXY = −A∗
Y X.

Lemma 2.2. [36] For X,Y ∈ H(M) and V,W ∈ V(M). Then we have

′∇V W = TV W +∇V W, ′∇∗
V W = T∗

V W +∇∗
V W, (2.7)

′∇V X = TV X +H′∇V X, ′∇∗
V X = T∗

V X +H′∇∗
V X, (2.8)

′∇XV = AXV + V ′∇XV, ′∇∗
XV = A∗

XV + V ′∇∗
XV, (2.9)

′∇XY = H′∇XY +AXY, ′∇∗
XY = H′∇∗

XY +A∗
XY. (2.10)

Furthermore, if X is basic, then H′∇V X = AXV and H′∇∗
V X = A∗

XV .

Let Rim (resp. Rim
∗) be the curvature tensor with respect to the induced affine connection

∇ (resp. ∇∗) of each fiber. Moreover, let ˆRim(X,Y )Z (resp. ˆRim
∗
(X,Y )Z) be horizontal vector

field such that

ω∗( ˆRim(X,Y )Z) = ˆRim(ω∗X,ω∗Y )ω∗Z

at each point x ∈ M , where ˆRim (resp. ˆRim
∗
) be the curvature tensor of N with respect to ∇

(resp. ∇∗). Then we have the following theorem [36]:

Theorem 2.1. [36, 38] If ω : (M,′ ∇, gM ) → (N,∇, gN ) is a statistical submersion then for
E,F,G,H ∈ V(M) and X,Y, Z,W ∈ H(M), we have

gM (Rim(E,F )G,H) = gM (Rim(E,F )G,H) + gM (TEG,T∗
FH)

−gM (TFG,T∗
EH), (2.11)

gM (Rim(X,Y )Z,W ) = gM ( ˆRim(X,Y )Z,W ) + gM ((AX +A∗
X)Y,A∗

ZW )

−gM (AY Z,A
∗
XW ) + gM (AXZ,A∗

Y W ), (2.12)

gM (Rim(X,E)F, Y ) = gM ((′∇XT)EF, Y )− gM ((′∇EA)X , F )

+gM (AXE,A∗
Y F )− gM (TEX,T∗

FY ), (2.13)

gM (Rim(X,E)Y, F ) = gM ((′∇XT)EY, F )− gM ((′∇EA)XY, F )

−gM (AXE,AY F )− gM (TEX,TFY ). (2.14)

Now, we respectively describe the orthonormal basis of Tx(M), x ∈ M , Hx(M) and Vx(M)
by {E1, E2, . . . , Em}, {e1, e2, . . . , en} and {ẽ1, ẽ2 . . . , ẽm−n} such that Ei = ei, 1 ≤ i ≤ n and
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En+t = ẽt, 1 ≤ t ≤ m− n. Now, the connection forms in terms of local coordinates with respect
to {e1, e2, . . . , em} of the affine connections ′∇ and ′∇∗ are given by εAB and ε∗BA .

The mean curvature vector field of the fiber with respect to ′∇ and ′∇∗ are given by the
horizontal vector fields, accordingly,

N =
1

m− n
T =

m−n∑
t=1

Tẽt ẽt and N ∗ =
1

m− n
T ∗ =

m−n∑
t=1

T∗
ẽt ẽt.

Note that the mean curvature vector fields N and N ∗ vanish identically if and only if the fibers
of the statistical submersion ω are minimal.

Definition 3. ω is said to be a statistical submersion with

1. isometric fibers if TUV = 0,
2. conformal fibers if TUV = 1

m−ngM (U, V )N ,

for U, V ∈ V(M).

The scalar and the normalized scalar curvatures on the vertical space are respectively given
by

R =
∑

1≤t<t′≤m−n

gM (Rim(ẽt, ẽt′)ẽt′ , ẽt),

ρ = 2R/(m− n)(m− n− 1),

if m− n ̸= 1.
We put Ti

tt′ = gM (Tẽt ẽt′ , ei) and At
ij = gM (Aeiej , ẽt), then we have

n∑
i=1

m−n∑
t,t′=1

Ti
tt′ =

n∑
i=1

m−n∑
t,t′=1

gM (Tẽt ẽt′ , ei), (2.15)

m−n∑
t=1

n∑
i,j=1

At
ij =

m−n∑
t=1

n∑
i,j=1

gM (Aeiej , ẽt). (2.16)

On replacing T,A by T∗,A∗, we get equations (2.15) and (2.16) for T∗i
tt′ and A∗t

ij , respectively.
The squared norms of T with respect to ′∇ and T∗ with respect to ′∇∗, respectively represented
by C and C∗, are called the vertical Casorati curvatures of the vertical space Vx(M). Therefore,
we have

C =
1

m− n

m∑
i=m−n+1

m−n∑
t,t′=1

(Ti
tt′)

2, (2.17)

C∗ =
1

m− n

m∑
i=m−n+1

m−n∑
t,t′=1

(T∗i
tt′)

2. (2.18)

Next, we suppose that L is a s-dimensional vertical subspace of Vx(M), s ≥ 2 and let
{ẽ1, ẽ2, . . . , ẽs} be an orthonormal basis of L. Then, the vertical Casorati curvature C(L) of L
given by

C(L) = 1

s

n∑
i=s+1

s∑
t,t′=1

(Ti
tt′)

2. (2.19)
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The normalized δ-vertical Casorati curvatures δC(m−n−1) and δ̂C(m−n−1) of the vertical
space are defined by[

δC(m− n− 1)
]
x
=

1

2
Cx +

(m− n+ 1

2(m− n)

)
inf{C(L)|L a hyperplane of Vx(M)}, (2.20)

and [
δ̂C(m− n− 1)

]
x
= 2Cx −

(2(m− n)− 1

2(m− n)

)
sup{C(L)|L a hyperplane of Vx(M)}. (2.21)

From (1.2), we have 2C0 = C + C∗, 2δ0C(m − n − 1) = δC(m − n − 1) + δ∗C(m − n − 1) and
2δ̂0C(m− n− 1) = δ̂C(m− n− 1) + δ̂∗C(m− n− 1).

The first author, et al. give a nice example on statistical submersion in [32].

Example 1. [32] Let {ei : 1 ≤ i ≤ 6} be an orthonormal frame field on a statistical manifold
(M =

{
(x1, x2, x3, x4, x5, x6) ∈ R6

}
,′ ∇, gM =

∑6
i,j=1 dxi ⊗ dxj) then an affine connection ′∇ is

given by

′∇e1e1 = −e6,
′∇e2e2 = −e6,

′∇e3e3 = −e6,
′∇e4e4 = −e6,

′∇e5e5 = −e6,

′∇e6e6 = 0, ′∇e6ei = 0, ′∇eie6 = ei, 1 ≤ i ≤ 5,

and
′∇eiej = 0, 1 ≤ i, j ≤ 5, i ̸= j

where
{e1 = ∂x1, e2 = ∂x2, e3 = ∂x3, e4 = ∂x4, e5 = ∂x5, e6 = ∂x6}

is a set of linearly independent vector fields at each point of the manifold R6 and therefore it
forms a basis for the tangent space TxM , x ∈ M . Thus, (M,′ ∇, gM ) is statistical manifold of
constant curvature −1 and the scalar curvature is −20. In addition, we can say that (M,′ ∇, gM )
is Einstein statistical manifold.

In continuation, it is required to prove that ω : (M = R6,′ ∇, gM ) → (N = R3,∇, gN ) is a
statistical submersion between two statistical manifolds, defined by

ω(x1, x2, . . . , x6) = (y1, y2, y3),

where
y1 =

x1 + x2√
2

, y2 =
x3 + x4√

2
and y3 =

x5 + x6√
2

.

The Jacobian matrix of ω is given below:

ω∗ =


1√
2

1√
2

0 0 0 0

0 0 1√
2

1√
2

0 0

0 0 0 0 1√
2

1√
2

 .

Since the rank of matrix above is 3, which is equal to dim(N). On the other hand, it is easy
to see that ω fulfils the conditions of statistical submersion. A straight computations yields

V(M) = span{V1 =
1√
2
(−∂x1 + ∂x2), V2 =

1√
2
(−∂x3 + ∂x4),
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V3 =
1√
2
(−∂x5 + ∂x6)},

H(M) = span{H1 =
1√
2
(∂x1 + ∂x2), H2 =

1√
2
(∂x3 + ∂x4),

H3 =
1√
2
(∂x5 + ∂x6)},

Also, by direct computations, we get

ω∗(H1) = ∂y1, ω∗(H2) = ∂y2, ω∗(H3) = ∂y3.

Hence, it is easy to see that

gR6(Hi,Hi) = gR3(ω∗(Hi), ω∗(Hi)), i = 1, 2, 3.

3 Classes of statistical submersions
In this section, we discuss different types of statistical submersions have been studied by known
authors till now.

3.1 Kähler-like statistical submersions

Definition 4. [36] If the semi-Riemannian manifold (M, gM ) with the almost complex structure
J and another tensor field J∗ of type (1, 1) satisfying

J2 = −I, gM (JE, F ) + gM (E, J∗F ) = 0, (3.1)

for vector fields E and F on M and here I is the identity tensor field of type (1, 1) on M . Then
(M, gM , J) is called an almost Hermite-like manifold. Moreover, if the statistical structure on
(M, gM , J) and J is parallel with respect to ′∇, then (M,′ ∇, gM , J) is known by a Kähler-like
statistical manifold.

Also, (M,′ ∇, gM , J) is a Kähler-like statistical manifold if and only if so is (M,′ ∇∗, gM , J∗)
because the following relation holds

gM ((′∇GJ)E,F ) + gM (E, (′∇∗
GJ

∗)F ) = 0,

for vector fields E,F and G on M .

Remark 1. [36] It is easy to verify the following:

(J∗)∗ = J, (J∗)2 = −I,

gM (JE, J∗F ) = gM (E,F ).

On a Kähler-like statistical manifold (M,′ ∇, gM , J), the curvature tensor Rim with respect
to ′∇ is given by [36]

Rim(E,F )G =
c

4
[gM (F,G)E − gM (E,G)F − gM (F, JG)JE
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+gM (E, JG)JF + gM (E, JF )JG

−gM (JE, F )JG], (3.2)

for vector fields E,F and G on M and here c ∈ R. On replacing J by J∗ in (3.2), one can get
the curvature tensor Rim∗ with respect to ′∇∗.

Definition 5. [36] Let (M, gM , J) and (N, gN , J̃) be two almost Hermite-like statistical man-
ifolds. Then a semi-Riemannian submersion ω : M → N is said to be an almost Hermite-like
statistical submersion, if ω∗J = J̃ω∗ hold.

Definition 6. [36] A statistical submersion ω : (M,′ ∇, gM ) → (N,∇, gN ) is said to be a Kähler-
like statistical submersion, if (M,′ ∇, gM , J) is a Kähler-like statistical manifold and each fiber is
a J-invariant semi-Riemannian submanifold of M .

Example 2. Let us recall example from [36] in which K. Takano shows that ω : (M2m
2s ,′ ∇, gM ) →

(N2n
2r ,∇, gN ) is a Kähler-like statistical submersion defined by ω(x1, y1, x2, yn, . . . , xm, ym) =

(x1, y1, x2, yn, . . . , xn, yn) provided n ≥ m and s ≥ r, where (M2m
2s ,′ ∇, gM , J) is Kähler-like

statistical manifold (see [36]).

K. Takano gives the following interesting results on Kähler-like statistical submersions ω in
[36].

Theorem 3.1. [36] If ω : (M, gM ) → (N, gN ) is an almost Hermite-like submersion, then each
fiber is an almost Hermite-like manifold.

Theorem 3.2. [36] If ω : (M,′ ∇, gM ) → (N,∇, gN ) is a Kähler-like statistical submersion, then
(M,′ ∇, gM , J) and (M,∇, g, J) are Kähler-like statistical manifolds, where J = J |M .

Theorem 3.3. [36] Let ω : (M,′ ∇, gM ) → (N,∇, gN ) is a Kähler-like statistical submersion. If
rank(J + J

∗
) = dim(M), then we have A = 0.

Remark 2. K. Takano [36] also stated that the result above is true when J = J
∗ holds.

In the same article [36], K. Takano proves the following results on Kähler-like statistical
submersion ω with the property that the curvature tensor with respect to the affine connection
of M satisfying the certain conditions.

Theorem 3.4. [36] Let ω : (M,′ ∇, gM ) → (N,∇, gN ) is a Kähler-like statistical submersion. If
rank(J + J

∗
) = dim(M) and the curvature tensor of M fulfils (3.2) with constant c, then the

curvature tensor of N fulfils (3.2) with constant c.

Theorem 3.5. [36] Let ω : (M,′ ∇, gM ) → (N,∇, gN ) is a Kähler-like statistical submersion. If
the curvature tensor of M fulfils (3.2) with constant c, rank(J+J

∗
) = dim(M) and H′∇XN = 0,

for X ∈ H(M). Then we have

1. if gM is positive definite, then c ≤ 0. Also, if c = 0 then each fiber and N are flat and each
fiber is a totally geodesic submanifold of M .

2. if X ∈ H(M) is spacelike (resp. timelike) then c ≥ 0 and T∗X is timelike (resp. spacelike)
or c < 0 and T∗X is spacelike (resp. timelike).

3. if X ∈ H(M) is null, then T∗X is also null.
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Remark 3. K. Takano also mentions that Theorem 3.5 is valid when N is constant. He also
studies the dual case to Theorem 3.5 in [36].

K. Takano [36] proves that a Kähler-like statistical submersion ω has isometric fibers if ω
has conformal fibers. The next results on isometric and conformal fibers are also obtained in [36].

Theorem 3.6. [36] Let ω : (M,′ ∇, gM ) → (N,∇, gN ) is a Kähler-like statistical submersion with
conformal fibers such that the curvature tensor of M fulfils (3.2) with constant c. Then each fiber
is a totally geodesic submanifold of M and the curvature tensor of M fulfils (3.2) with constant
c.

Theorem 3.7. [36] Let ω : (M,′ ∇, gM ) → (N,∇, gN ) is a Kähler-like statistical submersion with
conformal fibers such that the curvature tensor of M fulfils (3.2) with constant c. If rank(J+J

∗
) =

dim(M), then

1. the base space N and each fiber M are flat.
2. the total space M is a locally product space of N and M .

3.2 Quaternionic Kähler-like statistical submersions

Let a rank 3-subbundle σ of End(TM) on a differentiable manifold M , then there exists a local
basis {Jα|α ∈ {1, 2, 3}} on sections of σ satisfying J2

α = −I, JαJα+1 = −Jα+1Jα = Jα+2, where
the indices are taken from {1, 2, 3} modulo 3.

Definition 7. [40] If the semi-Riemannian manifold (M, gM ) endowed with an almost quater-
nionic structure σ which any canonical local basis {Jα|α ∈ {1, 2, 3}} and has three other tensor
fields {J∗

α|α ∈ {1, 2, 3}} of type (1, 1) satisfying

gM (JαE,F ) + gM (E, J∗
αF ) = 0, (3.3)

for vector fields E and F on M . Then (M,σ, gM ) is called an almost Hermite-like quaternionic
manifold. Moreover, if the statistical structure is defined on (M,σ, gM ), then (M,′ ∇, σ, gM ) is
known by an almost Hermite-like quaternionic statistical manifold.

Remark 4. It can be verified that (J∗
α)

∗ = Jα and gM (JαE, J∗
αF ) = g(E,F ).

Definition 8. [40] An almost Hermite-like quaternionic statistical manifold (M,′ ∇, σ, gM ) is said
to be a quaternionic Kähler-like statistical manifold if there exist three locally defined 1-forms
υ1, υ2, υ3 for {J∗

α|α = {1, 2, 3}} of σ on M such that we have

(′∇EJα)F = υα+2(E)Jα+1F − υα+1(E)Jα+2F, (3.4)

for vector fields E and F on M , where the indices are taken from {1, 2, 3} modulo 3.

Theorem 3.8. [40] (M,′ ∇, σ, gM ) is a quaternionic Kähler-like statistical manifold if and only
if (M,′ ∇∗, σ∗, gM ) is, where σ∗ is a subbundle of End(TM) which has canonical local basis
{J∗

α|α ∈ {1, 2, 3}}.

On quaternionic Kähler-like statistical manifold, the curvature tensor Rim with respect to
′∇ fulfils [40]

Rim(E,F )G =
c

4

{
gM (F,G)E − gM (E,G)F
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+

3∑
α=1

[gM (G, JαF )JαE − gM (G, JαE)JαF ]

+

3∑
α=1

[gM (E, JαF )− gM (JαE,F )]JαG

}
, (3.5)

for vector fields E,F,G on M and here c is a real constant. The statistical manifold (M,′ ∇, σ, gM )
is said to be of type quaternionic space form. On replacing J by J∗ in (3.5), one can get the
curvature tensor Rim∗ with respect to ′∇∗.

In [40], A.-D. Vilcu and G.-E. Vilcu clearly observed that (M,′ ∇, σ, gM ) is said to be a
locally hyper-Kähler-like statistical manifold [40] if υα = 0, α ∈ {1, 2, 3} in (3.4). Also, if
{J∗

α|α ∈ {1, 2, 3}} are globally defined on M , then (M,′ ∇, J∗
α|α ∈ {1, 2, 3}, gM ) is said to be a

hyper-Kähler-like statistical manifold.

The following result is given in [40] based on Theorem 3.8 and above definition.

Corollary 3.9. [40] (M,′ ∇, σ, gM ) is a hyper-Kähler-like statistical manifold if and only if
(M,′ ∇∗, σ∗, gM ) is.

Remark 5. A.-D. Vilcu and G.-E. Vilcu [40] noticed that it is easy to prove that (TM,′ ∇TM , σ, gTM )
is a hyper-Kähler-like statistical manifold if and only if (M,′ ∇, J, gM ) is a flat Kähler-like statis-
tical manifold. Here gTM and ′∇TM denote the Sasaki metric and a torsion free affine connection
on TM which is compatible to gTM , respectively.

Now, consider a (σ, σ̃)-holomorphic map as follows [40]: let f : (M,σ, gM )→ (N, σ̃, gN ) be
a map between two almost Hermite-like quaternionic manifolds. Then f is a (σ, σ̃)-holomorphic
map if and only if there exists a canonical local basis {J̃α|α = {1, 2, 3}} of σ̃f(x), for any canonical
local basis {Jα|α = {1, 2, 3}} of σx at a point x ∈ M , such that f∗ ◦Jα = J̃α ◦ f∗. It is acceptable
that a semi-Riemannian submersion ω : (M,′ ∇, σ, gM ) → (N,∇, σ̃, gN ) between two almost
Hermite-like quaternionic statistical manifolds is a (σ, σ̃)-holomorphic map if and only if it is a
(σ∗, σ̃∗)-holomorphic map [40].

Definition 9. [40] A statistical submersion ω : (M,′ ∇, σ, gM ) → (N,∇, σ̃, gN ) between two al-
most Hermite-like quaternionic statistical manifolds is said to be an almost Hermite-like quater-
nionic statistical submersion if ω is a (σ, σ̃)-holomorphic map.

Definition 10. [40] An almost Hermite-like quaternionic statistical submersion

ω : (M,′ ∇, σ, gM ) → (N,∇, σ̃, gN )

is called a quaternionic Kähler-like statistical submersion if (M,′ ∇, σ, gM ) is a quaternionic
Kähler-like statistical manifold. In particular, if (M,′ ∇, σ, gM ) is a (locally) hyper-Kähler-like
statistical manifold, then ω is called a (locally) hyper-Kähler-like statistical submersion.

We recall the following interesting and useful results of A.-D. Vilcu and G.-E. Vilcu from
[40].

Theorem 3.10. [40] If ω : (M,′ ∇, σ, gM ) → (N,∇, σ̃, gN ) is an almost Hermite-like quaternionic
statistical submersion, then the fibers are almost Hermite-like quaternionic statistical manifolds.
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Theorem 3.11. [40] If ω : (M,′ ∇, σ, gM ) → (N,∇, σ̃, gN ) is a quaternionic Kähler-like statistical
submersion, then N is a quaternionic Kähler-like statistical manifold. Moreover, the fibers are
also quaternionic Kähler-like statistical manifolds.

The immediate assertion can be made from Theroem 3.11.

Corollary 3.12. [40] If ω : (M,′ ∇, σ, gM ) → (N,∇, σ̃, gN ) is a locally hyper-Kähler-like statis-
tical submersion, then N is a locally hyper-Kähler-like statistical manifold. Moreover, the fibers
are also locally hyper-Kähler-like statistical manifolds.

Theorem 3.13. [40] If ω : (M,′ ∇, σ, gM ) → (N,∇, σ̃, gN ) is a quaternionic Kähler-like statistical
submersion, then ω has isometric fibers.

In particular, Theorem 3.13 implies the following.

Corollary 3.14. [40] If ω : (M,′ ∇, σ, gM ) → (N,∇, σ̃, gN ) is a quaternionic Kähler-like statis-
tical submersion, then A∗

XY = 0, for horizontal vector fields X,Y on M .

Corollary 3.15. [40] If ω : (M,′ ∇, σ, gM ) → (N,∇, σ̃, gN ) is a quaternionic Kähler-like statis-
tical submersion, then the horizontal distribution is completely integrable.

By taking into account of Theorem 3.13, the next result can be proved by using the equations
for a statistical submersion given in [36].

Theorem 3.16. [40] Let ω : (M,′ ∇, σ, gM ) → (N,∇, σ̃, gN ) is a quaternionic Kähler-like statis-
tical submersion. If M is a quaternionic space form, then N is also the quaternionic space form
and each fiber is a totally geodesic submanifold of M of type quaternionic space form.

3.3 para-Kähler-like statistical submersions

Definition 11. [39] The triple (M,P, gM ) is said to be an almost para-Hermitian-like manifold
if (M, gM ) is a semi-Riemannian manifold endowed with an almost product structure P and
another tensor field P ∗ of type (1, 1) satisfying

P 2 = I, gM (PE,F ) + gM (E,P ∗F ) = 0, (3.6)

for vector fields E and F on M . Here, P ∗ is the negative of the adjoint of P . Moreover, if the
statistical structure on (M,P, gM ) and P is parallel with respect to ′∇, then (M,′ ∇, P, gM ) is
said to be a para-Kähler-like statistical manifold.

Remark 6. [39] It is easy to check that the relations gM (PE,P ∗F ) = −gM (E,F ) and (P ∗)∗ = P
hold.

On a para-Kähler-like statistical manifold (M,′ ∇, P, gM ), the curvature tensor Rim with
respect to ′∇ fulfils [39]

Rim(E,F )G =
c

4

{
gM (F,G)E − gM (E,G)F

+gM (PF,G)PE − gM (PE,G)PF

+[g(E,PF )− gM (PE,F )]PG

}
, (3.7)
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for vector fields E,F,G on M , where c is a real constant, then (M,′ ∇, P, gM ) is known by a
statistical manifold of type para-Kähler space form. If we replace P by P ∗, then we get the
expression of the curvature tensor Rim∗ with respect to ′∇∗.

In [39], G.-E. Vilcu gives an interesting result that the statistical structure of a para-Kähler-
like statistical manifold of constant curvature in the Kurose’s sense is a Hessian structure by
showing that the curvature tensor field Rim(E,F )G = c[gM (F,G)E − gM (E,G)F ] with respect
to the affine connection ′∇ identically vanishes.

By adopting the similar approach as in [40], G.-E. Vilcu introduces new statistical submersion
as follows.

Definition 12. [39] A statistical submersion ω : (M,′ ∇, P, gM ) → (N,∇, P̃ , gN ) is called an
almost para-Hermitian-like statistical submersion, if ω is a para-holomorphic map (ω∗ ◦ P =
P̃ ◦ ω∗). Moreover, ω is called a para-Kähler-like statistical submersion if (M,′ ∇, P, gM ) is a
para-Kähler-like statistical manifold.

Example 3. Let us recall example from [39] in which G.-E. Vilcu shows that

ω : (M2m,′ ∇, gM ) → (N2n,∇, gN )

is a para-Kähler-like statistical submersion defined by

ω(x1, y1, x2, yn, . . . , xm, ym) = (x1, y1, x2, yn, . . . , xn, yn)

provided n ≥ m and s ≥ r, where (M2m,′ ∇, gM , P ) and (N2m,∇, gM , P̃ ) are para-Kähler-like
statistical manifolds respectively having signature (s, 2m− s) and (r, 2m− r) (see [39]) and .

The following main properties of para-Kähler-like statistical submersion are derived by G.-E.
Vilcu in [39].

Theorem 3.17. [39] If ω : (M,P, gM ) → (N, P̃ , gN ) is an almost para-Hermitian -like statistical
submersion, then each fiber is an almost para-Hermitian-like statistical manifold.

Theorem 3.18. [39] Let (M,′ ∇, P, gM ) be a para-Kähler-like statistical manifold and (N,∇, P̃ , gN )
be an almost para-Hermitian-like statistical manifold. If ω : (M,′ ∇, P, gM ) → (N,∇, P̃ , gN ) is a
para-Kähler-like statistical submersion, then (N,∇, P̃ , gN ) is a para-Kähler-like statistical man-
ifold. Moreover, the fibres (M,∇, P , g) are also para-Kähler-like statistical manifolds, where
P = P |M .

Theorem 3.19. [39] Let (M,′ ∇, P, gM ) be a para-Kähler-like statistical manifold and (N,∇, P̃ , gN )
be an almost para-Hermitian-like statistical manifold. If ω : (M,′ ∇, P, gM ) → (N,∇, P̃ , gN ) is
a para-Kähler-like statistical submersion and AXY = A∗

XY = 0, for X,Y ∈ H(M), given that
rank(P + P

∗
) = dim(M).

Immediate corollaries on the result above can be stated as follows.

Corollary 3.20. [39] If ω : (M,′ ∇, P, gM ) → (N,∇, P̃ , gN ) is a para-Kähler-like statistical
submersion and P = P

∗ holds, then AXY = A∗
XY = 0, for X,Y ∈ H(M).

The tensor fields A and A∗ of type (1, 2) are equal to zero if and only if the horizontal
distribution H(M) is integrable with respect to ′∇ and ′∇∗, respectively. Thus, we have



162 A.N. Siddiqui and K. Ahmad

Corollary 3.21. [39] If ω : (M,′ ∇, P, gM ) → (N,∇, P̃ , gN ) is a para-Kähler-like statistical
submersion and P = P

∗ holds, then H(M) is completely integrable.

By following K. Takano’s results on Kähler-like statistical submersions, G.-E. Vilcu [39] gives
an interesting result for para-Kähler-like statistical submersions as follows.

Theorem 3.22. [39] If ω : (M,′ ∇, P, gM ) → (N,∇, P̃ , gN ) is a para-Kähler-like statistical
submersion such that M is of type para-Kähler space form. Then we have

1. If rank(P + P
∗
) = dim(M), then N is of type para-Kähler space form.

2. If ω is a statistical submersion with isometric fibers, then each fiber is a totally geodesic
submanifold of M , of type para-Kähler space form.

3. If ω is a statistical submersion with isometric fibers such that rank(P + P
∗
) = dim(M),

then the N and each fiber are flat. Moreover, M is a locally product space of N and fiber.

Remark 7. Several examples of a para-Kähler statistical manifold and its statistical submersion
are collected in [39].

3.4 Sasaki-like statistical submersions

Definition 13. [38] If the semi-Riemannian manifold (M, gM ) with the almost contact structure
(ϕ, ξ, η) and another tensor field ϕ∗ of type (1, 1) satisfying

η(ξ) = 1, ϕ2E = −E + η(E)ξ, (3.8)
gM (ϕE,F ) + gM (E, ϕ∗F ) = 0, (3.9)

for vector fields E and F on M . Then (M, gM , ϕ, ξ, η) is known an almost contact metric manifold
of certain kind. Moreover, if the statistical structure on (M, gM , ϕ, ξ, η) and the following relations
hold

′∇Eξ = −ϕE, (′∇Eϕ)F = gM (E,F )ξ − η(F )E.

Then (M,′ ∇, gM , ϕ, ξ, η) is called a Sasaki-like statistical manifold.

Remark 8. We can see that (ϕ∗)∗ = ϕ, (ϕ∗)2E = −E + η(E)ξ, gM (ϕE, ϕ∗F ) = g(E,F ) −
η(E)η(F ), ϕ∗ξ = 0 and η(ϕ∗E) = 0.

Also, (M,′ ∇, gM , ϕ, ξ, η) is a Sasaki-like statistical manifold if and only if so is (M,′ ∇∗, gM , ϕ∗, ξ, η)
because the following relations hold

gM (ϕF,′ ∇∗
Eξ) = η(E)η(F )− gM (E,F ), ′∇∗

Eξ = −ϕ∗E,

for vector fields E,F and G on M .

On a Sasaki-like statistical manifold, the curvature tensor Rim with respect to ′∇ such that

Rim(E,F )G =
1

4
(c+ 3)[gM (F,G)E − gM (E,G)F ]

+
1

4
(c− 1)[η(E)η(G)F − η(F )η(G)E
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+gM (E,G)η(F )ξ − gM (F,G)η(E)ξ

−gM (F, ϕG)ϕE + gM (E, ϕG)ϕF

+gM (E, ϕF )ϕG− gM (ϕE,F )ϕG], (3.10)

where c is a constant. On replacing ϕ by ϕ∗ in (3.10), we get the curvature tensor Rim∗ with
respect to ′∇∗.

K. Takano defines Sasaki-like statistical submersion in [38] as follows.

Definition 14. [38] If ω : (M, gM ) → (N, gN ) is a semi-Riemannian submersion such that
(M, gM , ϕ, ξ, η) is an almost contact metric manifold of certain kind, each fiber is a ϕ-invariant
semi-Riemannian submanifold of M and tangent to the vector ξ, then ω is said to be an almost
contact metric submersion of certain kind.

Definition 15. [38] A statistical submersion ω : (M,′ ∇, gM ) → (N,∇, gN ) is a called Sasaki-like
statistical submersion if (M,′ ∇, gM , ϕ, ξ, η) is a Sasaki-like statistical manifold, each fiber is a
ϕ-invariant semi-Riemannian submanifold of M and tangent to the vector ξ.

We recall some useful and interesting results on Sasaki-like statistical submersions given by
K. Takano in [38] as follows.

Theorem 3.23. [38] Let ω : (M, gM ) → (N, gN ) be an almost contact metric submersion of
certain kind. Then the base space is an almost Hermite-like manifold and each fiber is an almost
contact metric manifold of certain kind.

Theorem 3.24. [38] If ω : (M,′ ∇, gM ) → (N,∇, gN ) is a Sasaki-like statistical submersion, then
the base space (N,∇, gN , J̃) is a Kähler-like statistical manifold and each fiber (M,∇, g, ϕ, ξ, η)
is a Sasaki-like statistical manifold, where ϕ = ϕ|M .

Theorem 3.25. [38] Let ω : (M,′ ∇, gM ) → (N,∇, gN ) is a Sasaki-like statistical submersion. If
rank(ϕ+ϕ

∗
) = dim(M)− 1, or ϕ = ϕ

∗, then we have AXY = −gM (X,ϕY )ξ, for X,Y ∈ H(M).

Following results are based on curvature tensor of M .

Theorem 3.26. [38] Let ω : (M,′ ∇, gM ) → (N,∇, gN ) be a Sasaki-like statistical submersion.
If rank(ϕ + ϕ

∗
) = dim(M) − 1 or dim(M) = 1 and the curvature tensor of M fulfils the form

(3.10) with c, then the curvature tensor of N fulfils the form (3.2) with c+ 3.

The following result is the contact version to the Theorem 3.5. If H′∇XN = 0, then we
have two cases, either c+ 3 = 0 or trace(ϕ) = 0.

Theorem 3.27. [38] Let ω : (M,′ ∇, gM ) → (N,∇, gN ) be a Sasaki-like statistical submersion
such that the curvature tensor of the total space fulfils the form (3.10) with c. We assume that
rank(ϕ + ϕ

∗
) = dim(M) − 1 and H′∇XN = 0, for X ∈ H(M) or N is a constant vector field.

Then the following statements hold.

1. if c + 3 = 0, then N is flat and each fiber M is a totally geodesic submanifold of M such
that the curvature tensor fulfils the form (3.10) with −3,

2. when trace(ϕ) = 0 and m− n > 1,

(a) if gM is a positive definite, then c+ 3 ≤ 0,
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(b) c + 3 < 0 and X is spacelike (resp. timelike) or c + 3 > 0 and X is timelike (resp.
spacelike) if and only if T∗X is spacelike (resp. timelike),

(c) the horizontal vector X is null if and only if T∗X is null.

Remark 9. It is quite obvious to prove the dual case of the result above can be seen in [38].

In contact case also, K. Takano proves that if ω : (M,′ ∇, gM ) → (N,∇, gN ) is a Sasaki-like
statistical submersion with conformal fibers, then ω has isometric fibers.

Theorem 3.28. [38] Let ω : (M,′ ∇, gM ) → (N,∇, gN ) be a Sasaki-like statistical submersion
with conformal fibers such that the curvature tensor of the total space fulfils the form (3.10) with
c. Then each fiber M is a totally geodesic submanifold of M such that the curvature tensor fulfils
the form (3.10) with c.

Theorem 3.29. [38] Let ω : (M,′ ∇, gM ) → (N,∇, gN ) be a Sasaki-like statistical submersion
with conformal fibers such that the curvature tensor of the total space fulfils the form (3.10) with
c. If rank(ϕ+ ϕ

∗
) = dim(M)− 1, then

1. the total space M fulfils the form (3.10) with c = −3,

2. the base space N is flat,

3. each fiber M fulfils the form (3.10) with c = −3.

The last two results stated above are the contact version of Theorems 3.6 and 3.7, respec-
tively.

3.5 Cosymplectic-like statistical submersions

Definition 16. [6] If the statistical structure on an almost contact metric manifold (M, gM , ϕ, ξ, η)
of certain kind and the following relations hold

′∇Eξ = 0, ′∇Eϕ = 0.

Then (M,′ ∇, gM , ϕ, ξ, η) is called a cosymplectic-like statistical manifold.

On a cosymplectic-like statistical manifold, the curvature tensor Rim with respect to ′∇ is
given by

Rim(E,F )G =
c

4

{
gM (F,G)E − gM (E,G)F

+gM (E, ϕG)ϕF − gM (F, ϕG)ϕE

+[gM (E, ϕF )− gM (ϕE,F )]ϕG

+η(E)η(G)F − η(F )η(G)E

+gM (E,G)η(F )ξ − gM (F,G)η(E)ξ

}
, (3.11)

where c is a real constant. On changing ϕ by ϕ∗ in above relation, we get the expression of the
curvature tensor Rim∗.
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Remark 10. In [25], Murathan and Sahin construct cosymplectic-like statistical manifold based
on the existence of Kähler-like statistical manifold. So, they prove that under the conditions of
Proposition 2.2 (see [25]) the product manifold R×M is a cosymplectic-like statistical manifold,
if (M,′ ∇, gM , J) is Kähler-like statistical manifold and (R,∇R, dt) is a trivial statistical manifold.

Aytimur and Ozgur [6] get inspiration from the definition of Sasaki-like statistical submersion
given by K. Takano in [38] and define cosymplectic-like statistical submersion as follows.

Definition 17. [6] A statistical submersion ω : (M,′ ∇, gM ) → (N,∇, gN ) is called a cosymplectic-
like statistical submersion if (M,′ ∇, gM , ϕ, ξ, η) is a cosymplectic-like statistical manifold, each
fiber is a ϕ-invariant Riemannian submanifold of M and tangent to ξ.

Similar to the findings for Sasaki-like statistical submersion, the following important result
is also given in [6].

Theorem 3.30. [6] Let ω : (M,′ ∇, gM ) → (N,∇, gN ) be a cosymplectic-like statistical sub-
mersion. Then (N,∇, gN , J̃) is a Kähler-like statistical manifold and (M,∇, g, ϕ, ξ, η) is a
cosymplectic-like statistical manifold.

Following K. Takano’s results in [38] and [36], some nice results on integrable horizontal
distribution for a cosymplectic-like statistical submersion ω : (M,′ ∇, gM ) → (N,∇, gN ) can
be found in [6]. It is proved that for a cosymplectic-like statistical submersion ω such that
dim(M) = 1, the horizontal distribution H is integrable. Moreover, it is shown that if rank(ϕ+

ϕ
∗
) = dim(M) − 1 on ω, then H is integrable in [6]. In the consequence of this result, Aytimur

and Ozgur also found a condition ϕ = ϕ
∗ under which H(M) is again integrable in [6]. Similar

to Theorem 3.26, they give following result.

Theorem 3.31. [6] Let ω : (M,′ ∇, gM ) → (N,∇, gN ) be a cosymplectic-like statistical submer-
sion. If the horizontal distribution is integrable and the curvature tensor of M fulfils the form
(3.11) with c, then the curvature tensor of N fulfils the form (3.2) with c.

Now, we recall the following result similar to Theorem 3.27.

Theorem 3.32. [6] Let ω : (M,′ ∇, gM ) → (N,∇, gN ) be a cosymplectic-like statistical submer-
sion such that the curvature tensor of M is of the form (3.11). Assume that H(M) is integrable
and H′∇XN = 0, for X ∈ H(M) (or N is a constant vector field).

1. If c = 0, then both M and N are flat, each fiber M is a totally geodesic submanifold of M .
2. If trace(ϕ) = 0 and c < 0, then dim(M) > 1.

We note that the dual case of Theorem 3.32 is also discussed in [6]. Next, the result on
isometric fibers can also be seen for a cosymplectic-like statistical submersion ω : (M,′ ∇, gM ) →
(N,∇, gN ) in [6]. It is proved that if a cosymplectic-like statistical submersion ω with conformal
fibers, then ω has isometric fibers. Furthermore, we have

Theorem 3.33. [6] Let ω : (M,′ ∇, gM ) → (N,∇, gN ) be a cosymplectic-like statistical submer-
sion with isometric fibers such that the curvature tensor of M is of the form (3.11). Then each
fiber M is a totally geodesic submanifold of M such that the curvature tensor is of the form
(3.11).

Theorem 3.34. [6] Let ω : (M,′ ∇, gM ) → (N,∇, gN ) be a cosymplectic-like statistical submer-
sion with isometric fibers such that the curvature tensor of M is of the form (3.11). If the
horizontal distribution is integrable, then M and N are flat.
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3.6 Kenmotsu-like statistical submersions

Murathan and Sahin [25] set up Kenmotsu-like statistical manifold provided Kähler-like statistical
manifold exists. They define β-Kenmotsu-like statistical manifold as follows: an almost contact
metric like statistical manifold (M,′ ∇, gM , ϕ, ξ, η) is called β-Kenmotsu-like statistical manifold
if

(′∇Eϕ)F = β{gM (E, ϕF )ξ + η(F )ϕE}, (3.12)
′∇Eξ = βϕ2E, (3.13)

where β is a non-zero smooth function on M . They prove the following theorem [25].

Theorem 3.35. Let (M,′ ∇, gM , J) be a Kähler-like statistical manifold and (R,∇R, dt) be trivial
statistical manifold. R×M . Under the Proposition 2.2 (see [25]), R×f M is a β = f ′

f Kenmotsu-
like statistical manifold.

On a Kenmotsu-like statistical manifold, the curvature tensor Rim with respect to ′∇ such
that

Rim(E,F )G =
c− 3

4

{
gM (F,G)E − gM (E,G)F

}
+
c+ 1

4

{
gM (ϕF,G)ϕE − gM (ϕE,G)ϕF

−2gM (ϕE,F )ϕG− gM (F, ξ)gM (G, ξ)E

+gM (E, ξ)gM (G, ξ)F + gM (F, ξ)gM (G,E)ξ

−gM (E, ξ)gM (G,F )ξ

}
, (3.14)

where c ∈ R. After, shifting ϕ to ϕ∗ in (3.14), we turn up the equation of the curvature tensor
Rim∗ with respect to the ′∇∗.

Analogous to the Sasaki-like statistical submersion [38], we describe the Kenmotsu-like sta-
tistical submersion as follows.

Definition 18. [33] A statistical submersion ω : (M,′ ∇, gM ) → (N,∇, gN ) is said to be
Kenmotsu-like statistical submersion, if (M,′ ∇, gM , ϕ, ξ, η) is a Kenmotsu-like statistical mani-
fold, each fiber is a ϕ-invariant semi-Riemannian submanifold of M and tangent to the vector
field ξ.

Similar to the Takano’s results in [38] and Aytimur and Ozgur’s results in [6], Danish, the
first author, Mofarreh and Aytimur [33] examine that, for Kenmotsu-like statistical submersion ω,
the base space (N,∇, gN , J̃) is a Kähler-like statistical manifold and each fiber (M,∇, g, ϕ, ξ, η)
is a Kenmotsu-like statistical manifold (see Theorems 3.24 and 3.30). Secondly, they study
Kenmotsu-like statistical submersions admit the axioms that the curvature tensor with respect
to the affine connection ′∇ of M follows certain conditions (see Theorems 3.26, 3.27). Lastly,
they give a glimpse of ω with conformal fibers (see Theorems 3.28 and 3.29).
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4 Statistical solitons on statistical submersions
The Ricci �flow equation is introduced by Richard S. Hamilton [21]. He put an evolution equation
for metrics, called the Ricci fl�ow, on a Riemannian manifold (M, gM )

∂

∂t
g(t) = −2Ric(g(t)), g(0) = gM , (4.1)

which is used to deform a metric by smoothing out its singularities. Here g and Ric are (0, 2)
type symmetric tensor fields. This equation is used to deform a metric by smoothing out its sin-
gularities. The differential geometry of Ricci solitons is the natural extensions of Einstein metrics.

The main theorem of his pioneering ”Richard S. Hamilton. Three-manifolds with positive
Ricci curvature. J. Differential Geom., 17(2):255�306, 198” named paper states that every com-
pact three-dimensional manifold which admits a Riemannian metric with strictly positive Ricci
curvature also admits a metric of constant positive curvature.

A Ricci soliton emerges as the limit of the solutions of the Ricci fl�ow. A solution to the
Ricci �flow is called Ricci soliton if it moves only by a one parameter group of diffeomorphism
and scaling. A Ricci soliton (gM , ζ, λ) on a Riemannian manifold (M, gM ) is a generalization of
an Einstein metric such that [21]

Ric+
1

2
LζgM + λgM = 0, (4.2)

where Ric is the Ricci tensor, Lζ is the Lie derivative operator along the vector field ζ on M and
λ is any real number. The Ricci soliton is said to be shrinking, steady and expanding according
as λ < 0, λ = 0 and λ > 0, respectively. During the last two decades, the geometry of Ricci soli-
tons has been the focus of attention of many mathematicians. In particular, it has become more
important after Perelman applied Ricci solitons to solve the long standing Poincare conjecture
posed in 1904. In [23], Meric and Kilic study Riemannian submersions whose total manifolds
admit a Ricci soliton.

A a statistical manifold (M,′ ∇, gM ) is called Ricci-symmetric if the Ricci operator Q with
respect to ′∇ (equivalently, the dual operator Q∗ with respect to ′∇∗) is symmetric (see [16, 30]).
An extension of Ricci solitons on the statistical manifold M is defined as follows.

Definition 19. A pair (ζ, λ) is called a statistical soliton on a Ricci-symmetric statistical mani-
fold (M,′ ∇, gM ) if the triplet (ζ, λ, gM ) is ′∇-Ricci and ′∇∗-Ricci solitons, that is,

′∇ζ +Q+ λI = 0, and ′∇∗ζ +Q∗ + λI = 0, (4.3)

where gM (QE,F ) = Ric(E,F ) and gM (Q∗E,F ) = Ric∗(E,F ), for all vector fields E and F on
M , and Ric and Ric∗ indicates the Ricci tensor fields with respect to ′∇ and ′∇∗, respectively.

We recall the following interesting results on statistical submersion ω : (M,′ ∇, gM ) →
(N,∇, gN ) from the statistical solitons onto a statistical manifold given by the first author,
et al. in [32].

Lemma 4.1. [32] Let ω : (M,′ ∇, gM ) → (N,∇, gN ) be a statistical submersion between statistical
manifolds. Then the vertical distribution V(M) is parallel with respect to the connection ′∇ (resp.
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′∇∗), if the horizontal parts TV W
′ (resp. T∗

V W
′) and AXV (resp. A∗

XV ) of Lemma 2.2 vanish
identically for any X,Y ∈ H(M) and V,W

′ ∈ V(M).
Similarly, the horizontal distribution H(M) is parallel with respect to the connection ∇ (resp.
∇∗), if the vertical parts TV X (resp. T∗

V X) and AXY (resp. A∗
XY ) of Lemma 2.2 vanish

identically, for any X,Y ∈ H(M) and V,W
′ ∈ V(M).

Theorem 4.1. [32] Let (M, gM , ζ, λ) be a statistical soliton with vertical potential vector field ζ
and ω : (M,′ ∇, gM ) → (N,∇, gN ) be a statistical submersion. If the vertical distribution V(M)
is parallel, then any fiber of the statistical submersion ω is a statistical soliton which fulfils

gM (′∇Uζ, V ) + gM (QU, V ) + λgM (U, V ) = 0, (4.4)
for any U, V ∈ V(M).
Theorem 4.2. [32] Let (M, gM , ζ, λ) be a statistical soliton with vertical potential vector field
ζ and ω : (M,′ ∇, gM ) → (N,∇, gN ) be a statistical submersion. If the horizontal distribution
H(M) is parallel, then the following are fulfilled.

1. If the potential vector field ζ is vertical, then N is an Einstein manifold,
2. If the potential vector field ζ is horizontal, then N is a statistical soliton with potential

vector field ζ
′
= ω∗ζ.

Dual case of Theorems 4.1 and 4.2 are stated in [32].

5 Inequalities on statistical submersions
B.-Y. Chen [10, 11] introduces a sharp relationship between Riemannian submersions and mini-
mal immersions. By this result he prominently proves that if a Riemannian manifold M admits
a non-trivial Riemannian submersion ω : (M, gM ) → (N, gN ) with totally geodesic fibres, then
it cannot be isometrically immersed in any Riemannian manifold of non-positively sectional cur-
vature as a minimal submanifold. Then, P. Alegre, B.-Y. Chen and M. I. Munteanu [2] give a
sharp relationship between the δ-invariants (see [15]) and Riemannian submersions with totally
geodesic fibers. Gulbahar, Meric and Kilic [20] prove some optimal inequalities for Riemannian
submersions involving the Ricci curvature. B.-Y. Chen continued this study and formulated a
series of fundamental question in the development of inequalities as follows:

Problem. How can we establish simple relationship between the main intrinsic invariants
and the main extrinsic invariants of the vertical spaces and horizontal space of a Riemannian
manifold admitting a Riemannian submersion?

A solution to the proposed problem is obtained by using the fundamental equations for sta-
tistical submersions to establish sharp relationships involving the basic curvature invariants. The
purpose of this section to collect all the sharp inequalities are derived for statistical submersions
till now.

5.1 Chen-Ricci inequality

In this subsection, we recall Chen–Ricci inequalities for statistical submersions between statistical
manifolds derived by the first author, Chen, and Danish in [31]. The next lemmas are required
to obtain the main inequalities.
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Lemma 5.1. [31] Let ω : (M,′ ∇, gM ) → (N,∇, gN ) be a statistical submersion. Then we have

2R = 2R− (m− n)2gM (N ,N ∗) +

m−n∑
t,t′=1

gM (Tẽt ẽt′ ,T
∗
ẽt ẽt′), (5.1)

where R denotes the scalar curvature of M with respect to ∇.

Lemma 5.2. [31] Let ω : (M,′ ∇, gM ) → (N,∇, gN ) be a statistical submersion. Then we have
n∑

i=1

m−n∑
t,t′=1

[
(Ti

tt′)
2 + (T∗i

tt′)
2
]
≥ 2

n∑
i=1

∑
2≤t<t′≤m−n

Ti
ttT

∗i
t′t′

+

n∑
i=1

∑
2≤t<t′≤m−n

[
(Ti

tt′)
2 + (T∗i

tt′)
2
]
−

n∑
i=1

∑
2≤t<t′≤m−n

(Ti
tt +T∗i

tt )

(Ti
t′t′ +T∗i

t′t′) +
(m− n)2

2

(
|N |2 + |N ∗|2

)
.

(5.2)

Lemma 5.3. [31] Let ω : (M,′ ∇, gM ) → (N,∇, gN ) be a statistical submersion. Then we have

Ric(ẽ1) ≥ Ric(ẽ1) + (m− n)2|N 0|2 − (m− n)2

8

(
|N |2 + |N ∗|2

)
−

n∑
i=1

m−n∑
t,t′=1

(T0i
tt′)

2 −
n∑

i=1

∑
2≤t<t′≤m−n

[
T0i

ttT
0i
t′t′ − (T0i

tt′)
2
]
.

(5.3)

The Gauss equation for ∇0 gives∑
1≤t<t′≤m−n

g(Rim0(ẽt, ẽt′)ẽt′ , ẽt) = 2R
0 − (m− n)2|N 0|2

+

n∑
i=1

m−n∑
t,t′=1

(T0i
tt′)

2, (5.4)

and ∑
2≤t<t′≤m−n

g(Rim0(ẽt, ẽt′)ẽt′ , ẽt) =
∑

2≤t<t′≤m−n

g(Rim
0
(ẽt, ẽt′)ẽt′ , ẽt)

−
n∑

i=1

∑
2≤t<t′≤m−n

[
T0i

ttT
0i
t′t′ − (T0i

tt′)
2
]
.

(5.5)

Therefore, Chen–Ricci inequality for the vertical distribution V of a statistical submersion
ω is stated below.

Theorem 5.1. [31] Let ω : (M,′ ∇, gM ) → (N,∇, gN ) be a statistical submersion between statis-
tical manifolds. Then, for each unit vector U ∈ Vx(M), we have

2Ric
0
(U) +Ric(U)−Ric(U)− 2(m− n− 1)maxK0(U ∧ · )

≤ (m− n)2

8
(|N |2 + |N ∗|2),

(5.6)

where maxK0(U ∧ · ) denotes the maximum of the sectional curvature function of M with respect
to ′∇ restricted to 2-plane sections of Vx(M) containing U .
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Theorem 5.2. [31] Let ω : (M,′ ∇, gM ) → (N,∇, gN ) be a statistical submersion. Then the
equality of inequality (5.6) holds identically if and only if the following two conditions are satisfied

1. 2TUU = (m− n)N (x), TUV = 0 and

2. 2T∗
UU = (m− n)N ∗(x), T∗

UV = 0,

for any vector V ∈ V(M) orthogonal to U .

Remark 11. It is noticed that if Ric = Ric = 0, then the Chen–Ricci inequality obtained in
[20, Theorem 4.1] (see also [5, Theorem 4.1]) for Rimmannian submersions between Riemannian
manifolds can be rediscover from Theorem 5.1.

On putting

δV(m− n− 1)(x) = max
U∈V(M)

{2Ric
0
(U) +Ric(U)−Ric(U)

−2(m− n− 1)maxK0(U ∧ · )},

the inequality (5.6) turns into a new relation [31]

δV(m− n− 1) ≤ (m− n)2

8
(|N |2 + |N ∗|2). (5.7)

The following is an interesting consequence of derived inequality (5.7).

Corollary 5.3. [31] Let ω : (M,′ ∇, gM ) → (N,∇, gN ) be a statistical submersion between two
statistical manifolds. If

δV(m− n− 1)(x) > 0

holds at some point x ∈ M , then either N ̸= 0 or N ∗ ̸= 0 holds.

Next, for any tensor field Θ, we define [31]

δ̃Θ = −
n∑

i=1

(∇eiΘ)ei , δΘ = −
m−n∑
t=1

(∇ẽtΘ)ẽt ,

δ̃∗Θ = −
n∑

i=1

(∇∗
eiΘ)ei , δ

∗
Θ = −

m−n∑
t=1

(∇∗
ẽtΘ)ẽt .

We recall the following lemmas for the second Chen–Ricci inequality for statistical submer-
sions of this subsection.

Lemma 5.4. [36] Let ω : (M,′ ∇, gM ) → (N,∇, gN ) be a statistical submersion. Then we have

2R = 2R+ 2R̃− 2|A|2 + gM (A,A∗)− δ̃T − δ̃∗T ∗

− δσ + δ
∗
β + |β|2 − gM (T,T∗)− (m− n)2gM (N ,N ∗),

where R̃ denotes the scalar curvature of N with respect to ∇ and β is defined by

β =

n∑
i=1

Aeiei. (5.8)
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Lemma 5.5. [31] Let ω : (M,′ ∇, gM ) → (N,∇, gN ) be a statistical submersion. Then we have

2R ≥ 2R+ 2R̃− 2|A|2 + gM (A,A∗)− δ̃T − δ̃∗T ∗ − δβ + δ
∗
β

+ |β|2 − 2

n∑
i=1

m−n∑
t,t′=1

(T0i
tt′)

2 +

n∑
i=1

∑
2≤t<t′≤m−n

Ti
ttT

∗i
t′t′

− 2

n∑
i=1

∑
2≤t<t′≤m−n

T0i
ttT

0i
t′t′ +

1

2

n∑
i=1

∑
2≤t<t′≤m−n

[(Ti
tt′)

2 + (T∗i
tt′)

2]

+
3(m− n)2

4
(|N |2 + |N ∗|2)− 2(m− n)2|N 0|2.

Consequently, the second Chen–Ricci inequality for statistical submersions proved by the
first author, Chen and Danish in [31].

Theorem 5.4. [31] Let ω : (M,′ ∇, gM ) → (N,∇, gN ) be a statistical submersion between statis-
tical manifolds. Then, for each unit vector U ∈ Vx(M), we have

2
{
Ric(U)−Ric(U)− R̃

}
≥ 4

[
R−R

]
+ 6

[
R

0 −R0
]

− 2
[
Ric

0
(U)−Ric0(U)]− 2|A|2 + gM (A,A∗)− δ̃T − δ̃∗T ∗

− δβ + δ
∗
β + |β|2 − 4(m− n)2|N 0|2 + 3(m− n)2

4

(
|N |2 + |N ∗|2

)
.

(5.9)

Theorem 5.5. [31] Let ω : (M,′ ∇, gM ) → (N,∇, gN ) be a statistical submersion between statis-
tical manifolds. Then the equality of inequality (5.9) holds identically if and only if

1. 2TUU = (m− n)N (x), TUV = 0,

2. 2T∗
UU = (m− n)N ∗(x), T∗

UV = 0,

for any V ∈ V(M) orthogonal to U .

Remark 12. If the horizontal distribution H of ω is integrable, then (5.9) reduces to

Ric(U)−Ric(U)− R̃ ≥ 2
[
R−R

]
+ 3

[
R

0 −R0
]
−Ric

0
(U) +Ric0(U)

− 1

2
(δ̃T − δ̃∗T ∗)− 2(m− n)2|N 0|2 + 3(m− n)2

8
(|N |2 + |N ∗|2).

5.2 δ(2, 2) Chen-type inequality

B.-Y. Chen introduces a new type of curvature invariant, called δ(2)-invariant or known today as
the first Chen invariant in [12]. For an n-dimensional Riemannian manifold M , it is defined by
δ(2) = R − inf K, where R denotes the scalar curvature and K the sectional curvature function
of M . Then, he derives the Chen first inequality for any submanifold in a Riemannian space
form. Later on, he introduces a sequence of δ-invariants on M , denoted by δ(n1, . . . , nk), for
integers n1, . . . , nk ≥ 2 such that n1 < n and n1 + · · ·+ nk ≤ n (see [13, 14]). In particular, the
δ(n− 1)-invariant and δ(2, 2)-invariant for a Riemannian n-manifold M are given respectively by

δ(n− 1)(x) = maxRic(x),

δ(2, 2)(x) = R(x)− inf(K(L1) +K(L2)),
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where maxRic is the maximum of the Ricci curvature, L1, L2 are mutually orthogonal 2-plane
sections at x ∈ M , and K(Li) denotes the sectional curvature of Li for i = 1, 2. The correspond-
ing inequality for δ(n− 1) is known today as the Chen-Ricci inequality.

We need the following algebraic lemma from [24] to prove the δ(2, 2) Chen-type inequality
for statistical submersions in [31].

Lemma 5.6. [24] Let x1, x2, x3, . . . , xm be m ≥ 4 real numbers. Then we have

∑
1≤α<β≤m

xαxβ − x1x2 − x3x4 ≤ m− 3

2(m− 2)

( m∑
α=1

xα

)2

.

Equality holds if and only if x1 + x2 = x3 + x4 = x5 = · · · = xm.

Theorem 5.6. [31] Let ω : (M,′ ∇, gM ) → (N,∇, gN ) be a statistical submersion between statis-
tical manifolds. Then, for any orthonormal vectors ẽ1, ẽ2, ẽ3, ẽ4 ∈ Vx(M), we have

[R
0 −K0

(ẽ1 ∧ ẽ2)−K0
(ẽ3 ∧ ẽ4)]− [R−K(ẽ1 ∧ ẽ2)−K(ẽ3 ∧ ẽ4)]

− 2[R0 −K0(ẽ1 ∧ ẽ2)−K0(ẽ3 ∧ ẽ4)]

+ [R∇,∇∗
−K

′∇,′∇∗
(ẽ1 ∧ ẽ2)−K

′∇,′∇∗
(ẽ3 ∧ ẽ4)]

≤ (m− n)2(m− n− 3)

4(m− n− 2)

[
|N |2 + |N ∗|2

]
,

(5.10)

where K′∇,′∇∗ denotes the sectional curvature of M with respect to the dual affine connections
given by [28, 29]

2K
′∇,′∇∗

(ẽ1 ∧ ẽ2) = gM (Rim(ẽ1, ẽ2)ẽ2, ẽ1)

+gM (Rim∗(ẽ1, ẽ2)ẽ2, ẽ1). (5.11)

Theorem 5.7. Let ω : (M,′ ∇, gM ) → (N,∇, gN ) be a statistical submersion. Then the equality
sign of (5.10) holds identically if and only if we have

1. Ti
11 +Ti

22 = Ti
33 +Ti

44 = Ti
55 = · · · = Ti

m−nm−n

2. T∗i
11 +T∗i

22 = T∗i
33 +T∗i

44 = T∗i
55 = · · · = T∗i

m−nm−n

3. Ti
tt′ = T∗i

tt′ = 0

for 1 ≤ t < t′ ≤ m− n, t ̸= t′, (t, t′) ̸= (1, 2), (2, 1), (3, 4), (4, 3), i ∈ {1, 2, . . . , n}.

The following corollary is an immediate consequence of Theorem 5.6.

Corollary 5.8. Let ω : (M,′ ∇, gM ) → (N,∇, gN ) be a statistical submersion. If

[R
0 −K0

(ẽ1 ∧ ẽ2)−K0
(ẽ3 ∧ ẽ4)]

− [R−K(ẽ1 ∧ ẽ2)−K(ẽ3 ∧ ẽ4)]

− 2[R0 −K0(ẽ1 ∧ ẽ2)−K0(ẽ3 ∧ ẽ4)]

+ [R
′∇,′∇∗

−K
′∇,′∇∗

(ẽ1 ∧ ẽ2)−K
′∇,′∇∗

(ẽ3 ∧ ẽ4)] > 0

holds at some point, then either N ̸= 0 or N ∗ ̸= 0.
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5.3 Inequality involving vertical Casorati curvatures

A new concept of curvature for regular surfaces in Euclidean space of dimension three introduced
by Casorati as the normalized sum of the squared principal curvatures of the surface in [9]. Nowa-
days, it is called a Casorati curvature. For a submanifold B in a Riemannian manifold M , the
Casorati curvature (an extrinsic invariant) of B is defined as the normalized square of the length
of the second fundamental form.

From isometric immersions, many research problems for optimal inequalities on submanifolds
in different kinds ambient spaces involving δ-Casorati curvatures are driven. Recently, in [22],
Lee, et al. establish optimal inequalities for a Riemannian submersion between a space form and
a Riemannian manifold involving the Casorati curvature of the vertical space. In this subsection,
we recall the lower bounds for the normalized scalar curvature on statistical submersion with the
normalized δ-vertical Casorati curvatures obtained by the first author in [32].

Theorem 5.9. [32] Let ω : (M,′ ∇, gM ) → (N,∇, gN ) be a statistical submersion between statisti-
cal manifolds. Then, the normalized δ-vertical Casorati curvatures δ0C(m−n−1) and δ̂0C(m−n−1)
satisfy

ρ− ρ ≤ δ0C(m− n− 1) +
1

(m− n− 1)
C0 − m− n

2(m− n− 1)

(
|N |2 + |N ∗|2

)
(5.12)

and
ρ− ρ ≤ δ̂0C(m− n− 1) +

1

(m− n− 1)
C0 − m− n

2(m− n− 1)

(
|N |2 + |N ∗|2

)
(5.13)

Theorem 5.10. [32] Let ω : (M,′ ∇, gM ) → (N,∇, gN ) be a statistical submersion. Then
the equality sign of (5.12) and (5.13) hold identically if and only if with respect to suitable
orthonormal basis {ẽ1, ẽ2, . . . , ẽm−n} on the vertical space and {em−n+1, em−n+2, . . . , en} on the
horizontal space, the components of T satisfy

1. T0i
11 = T0i

22 = · · · = T0i
m−n−1m−n−1 = 1

2T
0i
m−nm−n

2. Ti
tt′ = −T∗i

tt′ , t, t′ ∈ {1, 2, . . . ,m− n}, provided t ̸= t′

for i ∈ {m− n+ 1,m− n+ 2, . . . , n}.

Some immediate inequalities for submersions from different kinds of statistical manifold.

Theorem 5.11. [32] Let ω : (M,′ ∇, gM ) → (N,∇, gN ) be a statistical submersion from a
statistical manifold of constant curvature c to a statistical manifolds. Then, the normalized
δ-vertical Casorati curvatures δ0C(m− n− 1) and δ̂0C(m− n− 1) satisfy

ρ ≤ δ0C(m− n− 1) + c+
1

(m− n− 1)
C0 − m− n

2(m− n− 1)

(
|N |2 + |N ∗|2

)
, (5.14)

and
ρ ≤ δ̂0C(m− n− 1) + c+

1

(m− n− 1)
C0 − m− n

2(m− n− 1)

(
|N |2 + |N |2

)
, (5.15)

(1) Kähler-like statistical manifold

ρ ≤ δ0C(m− n− 1) +
1

(m− n− 1)
C0 +

c

4
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+
c

4(m− n)(m− n− 1)
{2|P|2 − trace2(P)− trace(P)2}

− m− n

2(m− n− 1)

(
|N |2 + |N ∗|2

)
,

and

ρ ≤ δ̂0C(m− n− 1) +
1

(m− n− 1)
C0 +

c

4

+
c

4(m− n)(m− n− 1)
{2|P|2 − trace2(P)− trace(P)2}

− m− n

2(m− n− 1)

(
|N |2 + |N ∗|2

)
.

(2) Sasaki-like statistical manifold

ρ ≤ δ0C(m− n− 1) +
1

(m− n− 1)
C0 +

c+ 3

4

+
c− 1

4(m− n)(m− n− 1)
{(2−m+ n)− trace2(F)

−trace(F)2 + 2|F|2} − m− n

2(m− n− 1)

(
|N |2 + |N ∗|2

)
,

and

ρ ≤ δ̂0C(m− n− 1) +
1

(m− n− 1)
C0 +

c+ 3

4

+
c− 1

4(m− n)(m− n− 1)
{(2−m+ n)− trace2(F)

−trace(F)2 + 2|F|2} − m− n

2(m− n− 1)

(
|N |2 + |N ∗|2

)
.

(3) Quaternionic Kähler-like statistical manifold

ρ ≤ δ0C(m− n− 1) +
1

(m− n− 1)
C0 +

c

4

+
c

4(m− n)(m− n− 1)

3∑
α=1

{2|Pα|2 − trace2(Pα)

−trace(Pα)
2} − m− n

2(m− n− 1)

(
|N |2 + |N ∗|2

)
,

and

ρ ≤ δ̂0C(m− n− 1) +
1

(m− n− 1)
C0 +

c

4

+
c

4(m− n)(m− n− 1)

3∑
α=1

{2|Pα|2 − trace2(Pα)

−trace(Pα)
2} − m− n

2(m− n− 1)

(
|N |2 + |N ∗|2

)
.
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(4) Cosymplectic-like statistical manifold

ρ ≤ δ0C(m− n− 1) +
1

(m− n− 1)
C0 +

c

4

+
c

4(m− n)(m− n− 1)
{(2−m+ n)− trace2(F)

−trace(F)2 + 2|F|2} − m− n

2(m− n− 1)

(
|N |2 + |N ∗|2

)
,

and

ρ ≤ δ̂0C(m− n− 1) +
1

(m− n− 1)
C0 +

c

4

+
c

4(m− n)(m− n− 1)
{(2−m+ n)− trace2(F)

−trace(F)2 + 2|F|2} − m− n

2(m− n− 1)

(
|N |2 + |N ∗|2

)
.

(5) Kenmotsu-like statistical manifold

ρ ≤ δ0C(m− n− 1) +
1

(m− n− 1)
C0 +

c− 3

4

+
c+ 1

4(m− n)(m− n− 1)
{(2−m+ n)− trace2(F)

−trace(F)2 + 2|F|2} − m− n

2(m− n− 1)

(
|N |2 + |N ∗|2

)
,

and

ρ ≤ δ̂0C(m− n− 1) +
1

(m− n− 1)
C0 +

c− 3

4

+
c+ 1

4(m− n)(m− n− 1)
{(2−m+ n)− trace2(F)

−trace(F)2 + 2|F|2} − m− n

2(m− n− 1)

(
|N |2 + |N ∗|2

)
.

Here, P denotes the tangential component of J . Likewise, F and Pα are the tangential compo-
nents of ϕ and Jα, respectively.
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