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ON SOLUTIONS OF SEMILINEAR EVOLUTION

INTEGRODIFFERENTIAL EQUATIONS

WITH NONLOCAL CONDITIONS

ZUOMAO YAN

Abstract. In this paper, by using the theory of evolution families, Banach’s con-

traction principle and Schauder’s fixed point theorem, we prove the existence of mild

solutions of a class of semilinear evolution integrodifferential equations with nonlo-

cal conditions in Banach space. An example is provided to illustrate the obtained

results.

1. Introduction

In this paper, we study the existence of solutions for semilinear evolution integrodif-
ferential equations with nonlocal conditions of the following form:

x′(t) = A(t)x(t) + F

(

t, x(t),

∫ t

0

h(t, s, x(s))ds

)

, t ∈ J = [0, b],

x(0) + g(x) = x0, (1.1)

where the family {A(t) : 0 ≤ t ≤ b} of linear operator generates a linear evolution
systems. The nonlinear operators F : J × X × X → X , h : J × J × X → X and
g : C(J,X) → D(A) are given funnctions.

The abstract nonlocal problem was first studied by Byszewski [1], and subsequently,
as it can be applied in physics with better than the classical initial condition, it has been
studied extensively. Byszewski and Akca [2] established the existence of mild and classi-
cal solutions of nonlocal Cauchy problem for semilinear functional differential evolution
equation with the help of Schauder’s fixed point theorem. Ntouyas and Tsamatos [3]
studied the global existence of solution for semilinear evolution equations with nonlocal
conditions by using the Leray-Schauder Alternative. In [4], Lin and Liu discussed the
existence of mild solution for autonomous semilinear integrodifferential equations under
Lipschitz-type conditions. Ezzinbi and Fu [5] studied the existence and regularity of so-
lutions for some neutral partial differential equations with nonlocal conditions. Recently,
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Liang et al. [6] proved the existence of mild solutions for the nonlinear nonlocal Cauchy
problem, and give a related condition for a general mapping g. Aizicovici and Lee [7]
investigated the existence of integral solutions to the associated nonlocal problem, where
A(t) = A is an m-accretive operators in X generating a compact nonlinear contraction
semigroup. In paper [8] the authors also obtained the existence of integral solutions to
the associated nonlocal problem, where {A(t)}0≤t≤b is a family of m-accretive operators
in X generating a compact evolution family. Sakthivel et al. [9] have shown that the
existence of mild solutions for a class of nonautonomous semilinear evolution integrod-
ifferential systems in Banach spaces, where A(t) is a closed linear operator on X with
dense domain D(A) which is independent of t. The main tools and techniques in [9]
are the properties of resolvent operators and Banach’s contraction principle. In this pa-
per, our main approach has two wedges, on one hand, the g is continuous but without
impose severe compactness condition and the convexity. Further, g is not assumed to
be Lipschitz. On the other hand, we shall investigate the existence of mild solutions of
nonlocal Cauchy problem (1.1) in Banach spaces, by means of a different method, that is,
by using the theory of evolution families, Banach’s contraction principle and Schauder’s
fixed point theorem.

This paper will be organized as follows. In Section 2 give some preliminaries about
the theory of evolution families which will be used in paper. Section 3 is devoted to the
existence of mild solutions of equations (1.1). Further, we present existence results for
the nonlocal problem (1.1) for a spacial case. Finally, a concrete example is presented in
Section 4 to show the applications of our main results.

2. Preliminaries

LetX be a Banach space endowed with the norm ‖·‖ and the family {A(t) : 0 ≤ t ≤ b}
of linear operators, we need the following assumptions (see [10]).

(I) the domain D(A) of {A(t) : 0 ≤ t ≤ b} is dense in the Banach space X and
independent of t, A(t) is a closed linear operator.

(II) For each t ∈ J , the resolvent R(λ,A(t)) exists for all λ with Re λ ≥ 0 and there
exists K > 0 such that

‖R(λ,A(t))‖ ≤
K

(|λ| + 1)
.

(III) For any t, s, τ ∈ J , there exists a 0 < β < 1 and K > 0 such that

‖(A(t) −A(τ))A−1(s)‖ ≤ K|t− τ |β .

And for each t ∈ J and some λ ∈ ρ(A(t)), the resolvent R(λ,A(t)) set of A(t) is a
compact operator.

If conditions (I)−(III) are satisfied, then the family {A(t) : 0 ≤ t ≤ b|} generates
a unique linear evolution system {U(t, s) : 0 ≤ s ≤ t ≤ b} satisfying the following
properties: (see [11])
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(a) U(t, s) ∈ L(X) the space of bounded linear transformations of X whenever 0 ≤ s ≤
t ≤ b and for each x ∈ X the mapping (t, s) → U(t, s)x is continuous;

(b) U(t, s)U(s, τ) = U(t, τ) whenever 0 ≤ τ ≤ s ≤ t ≤ b;

(c) U(t, t) = I, the identity operator on X , for each t ∈ J ;

(d) U(t, s) is a compact linear operator on X wherever t− s > 0 (0 ≤ s < t ≤ b).

For the evolution system {U(t, s) : 0 ≤ s ≤ t ≤ b}, the following properties and proposi-
tion are well known and we will need them in paper.

(e) There exist constant M > 0, such that ‖U(t, s)‖ ≤M , 0 ≤ s < t ≤ b.

Proposition 2.1. The family operators {U(t, s), t > s} is continuous in t in the

uniform operator topology uniformly for s.

Definition 2.1. A continuous function x(·) : J → X is a said to be a mild solution
to problem (1.1) if for all x0 ∈ X , it satisfies the following integral equation:

x(t) = U(t, 0)[x0 − g(x)] +

∫ t

0

U(t, s)F

(

s, x(s),

∫ s

0

h(s, τ, x(τ))dτ

)

ds. (2.1)

Further we assume the following hypotheses:

(H1) The function F : J ×X ×X → X is continuous and there exist constants L > 0,
L1 > 0, such that for all xi, yi ∈ X , i = 1, 2, we have

‖F (t, x1, y1) − F (t, x2, y2)‖ ≤ L
[

‖x1 − x2‖ + ‖y1 − y2‖
]

,

and
L1 = max

t∈J
‖F (t, 0, 0)‖.

(H2) The function h : J × J ×X → X is continuous and there exist constants N > 0,
N1 > 0, such that for all xi ∈ X , i = 1, 2,

‖h(t, s, x1) − h(t, s, x2)‖ ≤ N‖x1 − x2‖,

and
N1 = max

0≤s≤t≤b
‖h(t, s, 0)‖.

(H3) The function g(·) : C(J,X) → D(A) is continuous and there exists a δ ∈ (0, b) such
that g(φ) = g(ψ) for any φ, ψ ∈ C := C(J,X) with φ = ψ on [δ, b]; In addition,
there is a continuous nondecreasing function Λ : [0,∞) → (0,∞) such that

‖g(φ)‖ ≤ Λ(‖φ‖), φ ∈ C,

and for ρ > 0

lim
ρ→∞

sup
Λ(ρ)

ρ
= γ <∞.
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3. Main Result

Theorem 3.1. Let x0 ∈ D(A). Assume that assumptions (H1)−(H3) hold. Also

assume that

MebML(1+Nb)γ < 1. (3.1)

Then the nonlocal Cauchy problem (1.1) has at least one mild solution on J .

Proof. Consider the space C := C(J,X) the Banach space of all continuous functions
from J to X endowed with sup norm.

Let L0 := 2ML(1+Nb) and we introduce in the space C the equivalent norm defined
as

‖φ‖V := sup
t∈J

e−L0t‖φ(t)‖.

Then, it is easy to see that V := (C(J,X), ‖ · ‖V ) is a Banach space. Fix v ∈ C and for
t ∈ J , φ ∈ V , we now defined an operator

(Qvφ)(t) = U(t, 0)[x0 − g(v)] +

∫ t

0

U(t, s)F

(

s, φ(s),

∫ s

0

h(s, τ, φ(τ))dτ

)

ds. (3.2)

Since U(·, 0)(x0 − g(v)) ∈ C(J,X), so, it follows from (a), (e) that (Qvφ)(t) ∈ V for all
φ ∈ V . Let φ, ψ ∈ V , we have

e−L0t‖(Qvφ)(t) − (Qvψ)(t)‖

≤ e−L0t

∫ t

0

‖U(t, s)‖

∥

∥

∥

∥

F

(

s, φ(s),

∫ s

0

h(s, τ, φ(τ))dτ

)

−F

(

s, ψ(s),

∫ s

0

h(s, τ, ψ(τ))dτ

)∥

∥

∥

∥

ds

≤ML

∫ t

0

e−L0t

[

‖φ(s) − ψ(s)‖ +

∥

∥

∥

∥

∫ s

0

h(s, τ, φ(τ))dτ −

∫ s

0

h(s, τ, ψ(τ))dτ

∥

∥

∥

∥

]

ds

≤ML

∫ t

0

eL0(s−t)
[

e−L0s‖φ(s) − ψ(s)‖ +Nb sup
s∈J

e−L0s‖φ(s) − ψ(s)‖
]

ds

≤ML(1 +Nb)

∫ t

0

eL0(s−t)ds‖φ− ψ‖V

≤
ML(1 +Nb)

L0
‖φ− ψ‖V , t ∈ J,

which implies that

e−L0t‖(Qvφ)(t) − (Qvψ)(t)‖ ≤
1

2
‖φ− ψ‖V , t ∈ J.

Thus

‖Qvφ−Qvψ‖V ≤
1

2
‖φ− ψ‖V , φ, ψ ∈ V.
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Therefore, Qv is a strict contraction. By Banach’s contraction principle we conclude that
Qv has a unique fixed point φv ∈ V and Eq. (3.2) has a unique mild solution on [0, b].
Now let r > 0 and

v ∈ Cr(δ) :=

{

φ ∈ C([δ, b], X); sup
δ≤t≤b

‖φ(t)‖ ≤ r

}

.

Set

ṽ(t) :=

{

v(t) if t ∈ (δ, b],

v(δ) if t ∈ [0, δ].

From (3.2), we have

φṽ(t) = U(t, 0)[x0 − g(ṽ)] +

∫ t

0

U(t, s)F

(

s, φṽ(s),

∫ s

0

h(s, τ, φṽ(τ))dτ

)

ds. (3.3)

Then, for t ∈ (0, b],

‖φṽ(t)‖ ≤
∥

∥

∥
U(t, 0)[x0 − g(ṽ)]

∥

∥

∥
+

∫ t

0

∥

∥

∥

∥

U(t, s)F

(

s, φṽ(s),

∫ s

0

h(s, τ, φṽ(τ))dτ

)∥

∥

∥

∥

ds

≤ ‖U(t, 0)‖ ‖x0 − g(ṽ)‖ +

∫ t

0

‖U(t, s)‖

[

∥

∥

∥

∥

F

(

s, φṽ(s),

∫ s

0

h(s, τ, φṽ(τ))dτ

)

−F (s, 0, 0)

∥

∥

∥

∥

+ ‖F (s, 0, 0)‖

]

ds

≤M
[

‖x0‖ + ‖g(ṽ)‖
]

+M

∫ t

0

{

L

[

‖φṽ(s)‖ +

∥

∥

∥

∥

∫ s

0

h(s, τ, φ(τ))dτ

∥

∥

∥

∥

]

+ L1

}

ds

≤M
[

‖x0‖ + Λ(r)
]

+M

∫ t

0

{

L

[

‖φṽ(s)‖ +

∫ s

0

[

‖h(s, τ, φṽ(τ)) − h(s, τ, 0)‖

+‖h(s, τ, 0)‖
]

dτ

]

+ L1

}

ds

≤M
[

‖x0‖ + Λ(r)
]

+M

∫ t

0

{

L

[

‖φṽ(s)‖ + b
[

N sup
s∈(0,b]

‖φṽ(s)‖ +N1

]

]

+ L1

}

ds

≤M
[

‖x0‖ + Λ(r) + LbN1 + bL1

]

+ML(1 +Nb)

∫ t

0

sup
s∈(0,b]

‖φṽ(s)‖ds.

Making use of the Gronwall’s inequality, such that

sup
t∈(0,b]

‖φṽ(t)‖ ≤M
[

‖x0‖ + Λ(r) + LbN1 + bL1

]

ebML(1+Nb). (3.4)

Next we claim that φṽ(t) ∈ Cr(δ) for v ∈ Cr(δ). If it is not true, then for some positive
number r, there is a function v ∈ Cr(δ), but φṽ(t) 6∈ Cr(δ), that is, sup

t∈[δ,b]

‖φṽ(t)‖ > r for
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some t ∈ (0, b]. However, on the other hand, we have

r < sup
t∈[δ,b]

‖φṽ(t)‖

≤M
[

‖x0‖ + Λ(r) + LbN1 + bL1

]

ebML(1+Nb).

Thus

1 <
1

r
M

[

‖x0‖ + LbN1 + bL1

]

ebML(1+Nb) +MebML(1+Nb) Λ(r)

r
.

Using (H3) and r enough large we conclude that

MebML(1+Nb)γ > 1, (3.5)

which is contradicts (3.1). Hence there exists a positive noumber r, φṽ(t) ∈ Cr(δ) for

v ∈ Cr(δ).

Based on this fact, we will show a mapping P : Cr(δ) → Cr(δ) definde by

(Pv)(t) = φṽ(t), t ∈ [δ, b]. (3.6)

From (3.3), (H1) and (H2), we deduce that for v1, v2 ∈ Cr(δ), t ∈ [0, b],

‖φṽ1
(t) − φṽ2

(t)‖

≤ ‖U(t, 0)‖ ‖g(ṽ1) − g(ṽ2)‖ +

∫ t

0

‖U(t, s)‖

∥

∥

∥

∥

F

(

s, φṽ1
(s),

∫ s

0

h(s, τ, φṽ1
(τ))dτ

)

−F

(

s, φṽ2
(s),

∫ s

0

h(s, τ, φṽ2
(τ))dτ

)
∥

∥

∥

∥

ds

≤M‖g(ṽ1) − g(ṽ2)‖ +ML

∫ t

0

[

‖φṽ1
(s) − φṽ2

(s)‖ +

∥

∥

∥

∥

∫ s

0

h(s, τ, φṽ1
(τ))dτ

−

∫ s

0

h(s, τ, φṽ2
(τ))dτ

∥

∥

∥

∥

]

ds

≤M
∥

∥

∥
g(ṽ1) − g(ṽ2)

∥

∥

∥
+ML

∫ t

0

[

∥

∥

∥
φṽ1

(s) − φṽ2
(s)

∥

∥

∥
+Nb sup

s∈J

∥

∥

∥
φṽ1

(s) − φṽ2
(s)

∥

∥

∥

]

ds

≤M
∥

∥

∥
g(ṽ1) − g(ṽ2)

∥

∥

∥
+ML(1 +Nb)

∫ t

0

sup
s∈J

∥

∥

∥
φṽ1

(s) − φṽ2
(s)

∥

∥

∥
ds.

Using again the Gronwall’s inequality, that for t, v1, v2 as above

sup
t∈J

‖φṽ1
(t) − φṽ2

(t)‖ ≤MeMLb(1+Nb)‖g(ṽ1) − g(ṽ2)‖,

for all t ∈ [δ, b], v1, v2 ∈ Cr(δ), which implies that

‖Pv1 − Pv2‖ ≤MeMLb(1+Nb)‖g(ṽ1) − g(ṽ2)‖.
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Therefore, P is continuous.

Next we will prove that the P has a fixed point on Cr(δ), which implies equation
(2.1) has a mild solution. To this end, we will show that the family {Pv : v ∈ Cr(δ)} is

family of equicontinuous functions. Let δ ≤ t1 ≤ t2 ≤ b, we have

‖Pv(t2) − Pv(t1)‖ ≤
∥

∥

∥
[U(t2, 0) − U(t1, 0)][x0 − g(ṽ)]

∥

∥

∥

+

∫ t1

0

∥

∥

∥

∥

∥

[

U(t2, s) − U(t1, s)
]

F

(

s, φṽ(s),

∫ s

0

h(s, τ, φṽ(τ))dτ

)

∥

∥

∥

∥

∥

ds

+

∫ t2

t1

‖U(t2, s)‖

∥

∥

∥

∥

∥

F

(

s, φṽ(s),

∫ s

0

h(s, τ, φṽ(τ))dτ

)

∥

∥

∥

∥

∥

ds

≤ ‖U(t2, 0) − U(t1, 0)‖
[

‖x0‖ + Λ(r)
]

+

∫ t1

0

‖U(t2, s) − U(t1, s)‖

∥

∥

∥

∥

∥

F

(

s, φṽ(s),

∫ s

0

h(s, τ, φṽ(τ))dτ

)

∥

∥

∥

∥

∥

ds

+M

∫ t2

t1

∥

∥

∥

∥

∥

F

(

s, φṽ(s),

∫ s

0

h(s, τ, φṽ(τ))dτ

)

∥

∥

∥

∥

∥

ds.

Noting that

∥

∥

∥

∥

∥

F

(

s, φṽ(s),

∫ s

0

h(s, τ, φṽ(τ))dτ

)

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

F

(

s, φṽ(s),

∫ s

0

h(s, τ, φṽ(τ))dτ

)

− F (s, 0, 0)

∥

∥

∥

∥

∥

+ ‖F (s, 0, 0)‖

≤ L

[

‖φṽ(s)‖ +

∥

∥

∥

∥

∫ s

0

h(s, τ, φṽ(τ))dτ

∥

∥

∥

∥

]

+ L1

≤ L

[

‖φṽ(s)‖ +

∫ s

0

[

‖h(s, τ, φṽ) − h(s, τ, 0)‖ + ‖h(s, τ, 0)‖
]

dτ

]

+ L1

≤ L

[

‖φṽ(s)‖ + b

[

N sup
s∈[δ,b]

‖φṽ(s)‖ +N1

]

]

+ L1

≤ L

[

(1 +Nb) sup
s∈[δ,b]

‖φṽ(s)‖ +N1

]

+ L1

≤ L
[

(1 +Nb)r + bN1

]

+ L1.

We see that ‖Pv(t2) − Pv(t1)‖ tend to zero independently of v ∈ Cr(δ) tend to zero as

t2 − t1 → 0, since Proposition 2.1 which implies the family operators {U(t, s), t > s} is
continuous in t in the uniform operator topology uniformly for s. Hence, the family of

functions {(Pv) : v ∈ Cr(δ)} is equicontinuous on [δ, b].
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It remains to show that P (Cr(δ)) is a precompact subset of Cr(δ).
Let δ < t ≤ s ≤ b be fixed and ε a real number satisfying 0 < ε < t, for v ∈ Cr(δ),

we define

(Pεv)(t) = U(t, 0)[x0 − g(v)] +

∫ t−ε

0

U(t, s)F

(

s, φṽ(s),

∫ s

0

h(s, τ, φṽ(τ))dτ

)

ds. (3.7)

Using the compactness of U(t, s) (t − s > 0), we obtain the set {Pεv(t) : v ∈ Yr(δ)} is
precompact v ∈ Cr(δ) for every ε, 0 < ε < t. Moreover for every v ∈ Cr(δ) we have

‖(Pv)(t) − Pεv(t)‖

≤

∫ t

t−ε

‖U(t, s)‖

∥

∥

∥

∥

∥

F

(

s, φṽ(s),

∫ s

0

h(s, τ, φṽ(τ))dτ

)

∥

∥

∥

∥

∥

ds

≤M

∫ t

t−ε

[

∥

∥

∥

∥

F

(

s, φṽ(s),

∫ s

0

h(s, τ, φṽ(τ))dτ

)

− F (s, 0, 0)

∥

∥

∥

∥

+ ‖F (s, 0, 0)‖

]

ds

≤M

∫ t

t−ε

{

L

[

‖φṽ(s)‖ +

∥

∥

∥

∥

∫ s

0

h(s, , τ, φṽ(τ))dτ

∥

∥

∥

∥

]

+ L1

}

ds

≤M

∫ t

t−ε

{

L

[

‖φṽ(s)‖ +

∫ s

0

[

‖h(s, τ, φṽ(τ)) − h(s, τ, 0)‖

+‖h(s, τ, 0)‖
]

dτ

]

+ L1

}

ds

≤M

∫ t

t−ε

{

L

[

‖φṽ(s)‖ + b
[

N sup
s∈[δ,b]

‖φṽ(s)‖ +N1

]

]

+ L1

}

ds

≤M

∫ t

t−ε

[

L(1 +Nb) sup
s∈[δ,b]

‖φṽ(s)‖ + LN1 + L1

]

ds

≤M
[

L(1 +Nb)r + LN1 + L1

]

ε.

Therefore there are precompact sets arbitrarily close to the set {(Pv) : v ∈ Cr(δ)}. Hence
the set {(Pv) : v ∈ Cr(δ)} is a precompact in X . These arguments enable us to conclude
that P is completely continuous. We can now apply Schauder’s fixed point theorem to
conclude that P has at least fixed point ṽ∗ ∈ Cr(δ). Let x = φṽ∗ . Then, we have

x(t) = U(t, 0)[x0 − g(ṽ∗)] +

∫ t

0

U(t, s)F

(

s, x(s),

∫ s

0

h(s, τ, x(τ))dτ

)

ds. (3.8)

Noting that x = φṽ − (Pṽ∗)(t) = ṽ∗, t ∈ [δ, b]. By (H3), we obtain

g(x) = g(ṽ∗).

This implies that x is an mild solution of the nonlocal Cauchy problem (1.1), and com-
pletes the proof of Theorem 3.1.
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At last, we discuss a special case of the nonlocal condition, we propose the following

equation:

x′(t) = A(t)x(t) + F

(

t, x(t),

∫ t

0

h(t, s, x(s))ds

)

, t ∈ J = [0, b],

x(0) +

p
∑

i=0

gi(x(ti)) = x0, (3.9)

where p ∈ N+, 0 < t1 < · · · < tp ≤ b.

We suppose the frllowing conditions:

(H4) (i) The function gi(·) : X → D(A) is continuous and there exists a δ ∈ (0, b) such

that gi(φ) = gi(ψ) for any φ, ψ ∈ C := C(J,X) with φ = ψ on [δ, b].

(ii) There is a continuous nondecreasing function Λi : [0,∞) → (0,∞) such that

‖gi(φ)‖ ≤ Λi(‖φ‖), φ ∈ C,

and for ρ > 0

lim
ρ→∞

sup
Λi(ρ)

ρ
= 0.

Theorem 3.2. Let x0 ∈ D(A). Assume that assumptions (H1), (H2) and (H4) hold.

Then the nonlocal Cauchy problem (3.9) has at least one mild solution.

Proof. Let L0, C, V , Qv, ṽ as in Theorem 3.1. Therefore, Qv has a unique fixed
point φ(t, v) ∈ V and Eq. (3.2) has a unique solution φ(t, v) such that for 0 ≤ t ≤ b,

v ∈ C

φ(t, v) = U(t, 0)[x0 − g(v)] +

∫ t

0

U(t, s)F

(

s, φ(s, v),

∫ s

0

h(s, τ, φ(τ, v))dτ

)

ds. (3.10)

Define the mapping g : X → X by

g(v) =

p
∑

i=0

gi(v(ti)).

Let r > 0 and

v ∈ Cr(δ) :=

{

φ ∈ C([δ, b], X); sup
δ≤t≤b

‖φ(t, v)‖ ≤ r

}

.

From (3.10), we have

φ(t, ṽ) = U(t, 0)[x0 − g(ṽ)] +

∫ t

0

U(t, s)F

(

s, φ(s, ṽ),

∫ s

0

h(s, τ, φ(τ, ṽ)dτ

)

ds. (3.11)
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Then, for t ∈ (0, b],

‖φ(t, ṽ)‖ ≤

∥

∥

∥

∥

∥

U(t, 0)

[

x0 −

p
∑

i=0

gi(ṽ(ti))

]

∥

∥

∥

∥

∥

+

∫ t

0

∥

∥

∥

∥

∥

U(t, s)F

(

s, φ(s, ṽ),

∫ s

0

h(s, τ, φ(τ, ṽ))dτ

)

∥

∥

∥

∥

∥

ds

≤M

∥

∥

∥

∥

x0 −

p
∑

i=0

gi(ṽ(ti))

∥

∥

∥

∥

+M

∫ t

0

[

∥

∥

∥

∥

F

(

s, φ(s, ṽ),

∫ s

0

h(s, τ, φ(τ, ṽ))dτ

)

−F (s, 0, 0)

∥

∥

∥

∥

+ ‖F (s, 0, 0)‖

]

ds

≤M

[

‖x0‖ +

∥

∥

∥

∥

p
∑

i=0

gi(ṽ(ti))

∥

∥

∥

∥

]

+M

∫ t

0

{

L

[

‖φ(s, ṽ)‖ +

∥

∥

∥

∥

∫ s

0

h(s, τ, φ(τ, ṽ))dτ

∥

∥

∥

∥

]

+ L1

}

ds

≤M

[

‖x0‖ +

p
∑

i=0

Λi

(

‖ṽ(ti)‖
)

]

+M

∫ s

0

{

L

[

‖φ(s, ṽ)‖ +

∫ s

0

[

‖h(s, τ, φ(τ, ṽ))

−h(s, τ, 0)‖ + ‖h(s, τ, 0)‖
]

dτ

]

+ L1

}

ds

≤M

[

M∗∗ +

p
∑

i=0

Λi(r)

]

+ML(1 +Nb)

∫ t

0

sup
x∈(0,b]

‖φ(s, ṽ)‖ds,

where M∗∗ > 0 is independent of r. Making use of the Gronwall’s inequality, such that

sup
t∈(0,b]

‖φ(t, ṽ)‖ ≤M

[

M∗∗ +

p
∑

i=0

Λi(r)

]

ebML(1+Nb). (3.12)

Suppose that φ(t, ṽ) ∈ Cr(δ) is not the case for v ∈ Cr(δ). Then for some positive
number r, there is a function v ∈ Cr(δ), but φ(t, ṽ) 6∈ Cr(δ), that is, sup

t∈[δ,b]

‖φ(t, ṽ)‖ > r

for some t ∈ (0, b]. Then

1 <
1

r
sup

t∈[δ,b]

‖φ(t, ṽ)‖

≤
1

r
MM∗∗e

bML(1+Nb) +MebML(1+Nb)

p
∑

i=0

Λi(r)

r
.

Using (H4)(ii) and r enough large we conclude that 1 < 0 which is not true. Hence there
exists a positive number r, φ(t, ṽ) ∈ Cr(δ) for v ∈ Cr(δ). The proofs of the other steps
are similar to those in Theorem 3.1. Therefore we omit the details.
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Remark 3.1. In Theorem 3.1, we use the condition (H3). But in Theorem 3.2, we
only study a special case of the nonlocal condition namely:

g(x) =

p
∑

i=0

gi(x(ti)),

where gi satisfies the hypothesis (H4). Then g satisfies the condition (H3). In that case,
we give sufficient conditions for the existence of mild solutions, which are more better
than general case.

From the above proof of Theorem 3.2, we immediately obtain the following corollaries.

Corollary 3.1. Let x0 ∈ D(A). Assume that assumptions (H1)−(H2), (H4)(i) and

the following conditions are satisfied.

(H5) There exist constants ci, i = 0, . . . , p, such that

‖gi(φ)‖ ≤ ci, φ ∈ C.

Then the nonlocal Cauchy problem (3.9) has at least one mild solution.

Corollary 3.2. Let x0 ∈ D(A). Assume that assumptions (H1)−(H2), (H4)(i) and

the following conditions are satisfied.

(H6) There exist constanrs ai and bi, αi ∈ [0, 1), i = 0, . . . , p, such that

‖gi(φ)‖ ≤ ai + bi‖φ‖
αi , φ ∈ C.

Then the nonlocal Cauchy problem (3.9) has at least one mild solution.

Corollary 3.3. Let x0 ∈ D(A). Assume that assumptions (H1)−(H2), (H4)(i) and

the following conditions are satisfied.

(H7)

lim
‖φ‖→∞

sup
‖gi(φ)‖

‖φ‖
= 0, i = 0, . . . , p.

Then the nonlocal Cauchy problem (3.9) has at least one mild solution.

4. Application

To illustrate the application of the obtained results of this paper we study the follow-
ing example in this section:

∂

∂t
z(t, x) = a0(t, x)

∂2

∂x2
z(t, x) + z(t, x) + sin z(t, x) +

1

1 + t2

∫ t

0

a(s)z(s, x)ds,

z(t, 0) = z(t, π) = 0,
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z(0, x) +

∫ 1

δ

[

z(s, x) + log(1 + |z(s, x)|)
]

ds = z0(x), 0 ≤ t ≤ 1, 0 ≤ x ≤ π, (4.1)

where δ > 0, z0(x) ∈ X = L2([0, π]) and z0(0) = x0(π) = 0. Here, the functions a0(t, x)

is continuous and is uniformly Hölder continuous in t.

Let X = L2([0, 1]) and the operators A(t) be defined by

A(t)w = a0(t, x)w
′′

with the domain D(A) = {w ∈ X : w,w′′ are absolutely continuous, w′′ ∈ X , w(0) =

w(1) = 0}, then A(t) generates an evolution system U(t, s) satisfying assumptions

(I)−(III) (see [12]).

We assume that the function a(·) is continuous on [0, 1], and l = sup
0≤s≤1

|a(s)| < 1.

Define respectively F : [0, 1]×X ×X → X , h : [0, 1]×X → X and g : C([0, 1], X) →

D(A) by
∫ t

0

h(t, s, z(s))(x)ds =
1

1 + t2

∫ t

0

a(s)z(s, x)ds,

F

(

t, z(t),

∫ t

0

h(t, s, x(s))ds

)

(x) = z(t, x) + sin z(t, x) +
1

1 + t2

∫ t

0

a(s)z(s, x)ds,

and

g(z)(x) =

∫ 1

δ

[

z(s, x) + log(1 + |z(s, x)|)
]

ds, z ∈ C([0, 1], X).

Then Eq. (4.1) takes the abstract form (1.1). If we assume that MeM(2+l)(1+l)(1−δ) < 1.

From Theorem 3.1, we deduce that nonlocal Cauchy problems (4.1) has a mild solution.
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