INVERSE SPECTRAL PROBLEMS FOR DIFFERENTIAL OPERATORS ON A GRAPH WITH A ROOTED CYCLE

V. YURKO

Abstract

An inverse spectral problem is studied for Sturm-Liouville differential operators on graphs with a cycle and with standard matching conditions in internal vertices. A uniqueness theorem is proved, and a constructive procedure for the solution is provided.

1. Introduction

1.1. We study inverse spectral problems for Sturm-Liouville differential operators on graphs with the so-called rooted cycle. Inverse spectral problems consist in recovering operators from their spectral characteristics. The main results on inverse spectral problems on an interval are presented in the monographs [1]-[8]. Differential operators on graphs (networks, trees) often appear in natural sciences and engineering (see [9, 10] and the references therein). Most of the works in this direction are devoted to the so-called direct problems of studying properties of the spectrum and the root functions for operators on graphs. Inverse spectral problems, because of their nonlinearity, are more difficult to investigate, and nowaday there are only a number of papers in this area. In particular, inverse spectral problems of recovering coefficients of differential operators on trees (i.e on graphs without cycles) were studied in [11]-[17] and other papers. The inverse spectral problem for graphs with a cycle is solved in [18] but only for a very particular case. In this paper we study more general graphs than in [18]. We give a formulation and obtain the solution of the inverse spectral problem for Sturm-Liouville operators on graphs with a rooted cycle and with standard matching conditions in the internal vertex. We prove the corresponding uniqueness theorem and provide a constructive procedure for the solution of this class of inverse problems. For solving the inverse problem we develop ideas from [12] and [18].
1.2. Consider a compact graph G in \mathbf{R}^{m} with the set of vertices $V=\left\{v_{0}, \ldots, v_{r}\right\}$ and the set of edges $\mathcal{E}=\left\{e_{0}, \ldots, e_{r}\right\}$, where e_{0} is a cycle, $v_{0} \in e_{0}$. The graph has the form $G=e_{0} \cup T$, where T is a tree (i.e. graph without cycles) with the root v_{0}, the set of

Received November 4, 2008.
2000 Mathematics Subject Classification. 34A55, 34B24, 47E05.
Key words and phrases. Sturm-Liouville operators, graph with a rooted cycle, inverse spectral problems.
vertices $\left\{v_{0}, \ldots, v_{r}\right\}$ and the set of edges $\left\{e_{1}, \ldots, e_{r}\right\}, T \cap e_{0}=v_{0}$, and v_{0} is a boundary vertex for T, but v_{0} is an internal vertex for the graph G.

For two points $a, b \in T$ we will write $a \leq b$ if a lies on a unique simple path connecting the root v_{0} with b. We will write $a<b$ if $a \leq b$ and $a \neq b$. The relation $<$ defines a partial ordering on T. If $a<b$ we denote $[a, b]:=\{z \in T: a \leq z \leq b\}$. In particular, if $e=[v, w]$ is an edge, we call v its initial point, w its end point and say that e emanates from v and terminates at w. For each internal vertex v we denote by $R(v):=\{e \in$ $\mathcal{E}: \quad e=[v, w], w \in V\}$ the set of edges emanated from v. For each $v \in V$ we denote by $|v|$ the number of edges between v_{0} and v. For any $v \in V$ the number $|v|$ is a nonnegative integer, which is called the order of v. For $e \in \mathcal{E}$ its order is defined as the order of its end point. The number $\sigma:=\max _{j=\overline{1, r}}\left|v_{j}\right|$ is called the height of the tree T. Let $V^{(\mu)}:=\{v \in V:|v|=\mu\}, \mu=\overline{0, \sigma}$ be the set of vertices of order μ, and let $\mathcal{E}^{(\mu)}:=\left\{e \in \mathcal{E}: \quad e=[v, w], v \in V^{(\mu-1)}, w \in V^{(\mu)}\right\}, \mu=\overline{1, \sigma}$ be the set of edges of order μ.

For definiteness we enumerate the vertices v_{j} as follows: $\Gamma:=\left\{v_{1}, \ldots, v_{p}\right\}$ are boundary vertices of $G, v_{p+1} \in V^{(1)}$, and $v_{j}, j>p+1$ are enumerated in order of increasing $\left|v_{j}\right|$. We enumerate the edges similarly, namely: $e_{j}=\left[v_{j_{k}}, v_{j}\right], j=\overline{1, r}, j_{k}<j$. In particular, $E:=\left\{e_{1}, \ldots, e_{p}\right\}$ is the set of boundary edges, $e_{p+1}=\left[v_{0}, v_{p+1}\right]$. The edge e_{p+1}, emanated from the root v_{0}, is called the rooted edge of T. Clearly, $e_{j} \in \mathcal{E}^{(\mu)}$ iff $v_{j} \in V^{(\mu)}$. As an example see figure 1 where $r=9, p=5, \sigma=4$.

Figure 1

Let d_{j} be the length of the edge $e_{j}, j=\overline{0, r}$. Each edge $e \in \mathcal{E}$ is viewed as a segment $\left[0, d_{j}\right]$ and is parameterized by the parameter $x_{j} \in\left[0, d_{j}\right]$. It is convenient for us to choose the following orientation: for $j=\overline{1, r}$ the end vertex v_{j} corresponds to $x_{j}=0$, and the initial vertex $v_{j_{k}}$ corresponds to $x_{j}=d_{j}$; for the cycle e_{0} both ends $x_{0}=+0$ and $x_{0}=d_{0}-0$ correspond to v_{0}.
1.3. An integrable function Y on G may be represented as $Y=\left\{y_{j}\right\}_{j=\overline{0, r}}$, where the function $y_{j}\left(x_{j}\right)$ is defined on the edge e_{j}. Let $q=\left\{q_{j}\right\}_{j=\overline{0, r}}$ be an integrable real-valued
function on G which is called the potential. Consider the Sturm-Liouville equation on G :

$$
\begin{equation*}
-y_{j}^{\prime \prime}\left(x_{j}\right)+q_{j}\left(x_{j}\right) y_{j}\left(x_{j}\right)=\lambda y_{j}\left(x_{j}\right), \quad x_{j} \in\left[0, d_{j}\right] \tag{1}
\end{equation*}
$$

where $j=\overline{0, r}, \lambda$ is the spectral parameter, the functions $y_{j}\left(x_{j}\right), y_{j}^{\prime}\left(x_{j}\right)$ are absolutely continuous on $\left[0, d_{j}\right]$ and satisfy the following matching conditions in the internal vertices v_{0} and $v_{k}, k=\overline{p+1, r}$: For $k=\overline{p+1, r}$,

$$
\begin{equation*}
y_{j}\left(d_{j}\right)=y_{k}(0) \text { for all } e_{j} \in R\left(v_{k}\right), \quad \sum_{e_{j} \in R\left(v_{k}\right)} y_{j}^{\prime}\left(d_{j}\right)=y_{k}^{\prime}(0), \tag{2}
\end{equation*}
$$

and for v_{0},

$$
\begin{equation*}
y_{p+1}\left(d_{p+1}\right)=y_{0}\left(d_{0}\right)=y_{0}(0), \quad y_{p+1}^{\prime}\left(d_{p+1}\right)+y_{0}^{\prime}\left(d_{0}\right)=y_{0}^{\prime}(0) . \tag{3}
\end{equation*}
$$

Matching conditions (2)-(3) are called the standard conditions. In electrical circuits, (2) expresses Kirchhoff's law; in elastic string network, it expresses the balance of tension, and so on.

Let us consider the boundary value problem $L_{0}(G)$ for equation (1) with the matching conditions (2)-(3) and with the Dirichlet boundary conditions at the boundary vertices v_{1}, \ldots, v_{p} :

$$
y_{j}(0)=0, \quad j=\overline{1, p}
$$

Moreover, we also consider the boundary value problems $L_{k}(G), k=\overline{1, p}$ for equation (1) with the matching conditions (2)-(3) and with the boundary conditions

$$
y_{k}^{\prime}(0)=0, \quad y_{j}(0)=0, j=\overline{1, p} \backslash k
$$

We denote by $\Lambda_{k}=\left\{\lambda_{k n}\right\}_{n \geq 1}$ the eigenvalues (counting with multiplicities) of $L_{k}(G)$, $k=\overline{0, p}$. We recall that the multiplicity of an eigenvalue is a number of linear independent eigenfunctions related to this eigenvalue. In contrast to the case of trees (see [12]), here the specification of the spectra $\Lambda_{k}, k=\overline{0, p}$, does not uniquely determines the potential, and we need an additional information. Let $S_{j}\left(x_{j}, \lambda\right), C_{j}\left(x_{j}, \lambda\right), j=\overline{0, r}$ be the solutions of equation (1) on the edge e_{j} with the initial conditions

$$
S_{j}(0, \lambda)=C_{j}^{\prime}(0, \lambda)=0, \quad S_{j}^{\prime}(0, \lambda)=C_{j}(0, \lambda)=1
$$

For each fixed $x_{j} \in\left[0, d_{j}\right]$, the functions $S_{j}^{(\nu)}\left(x_{j}, \lambda\right), C_{j}^{(\nu)}\left(x_{j}, \lambda\right), j=\overline{0, r}, \nu=0,1$, are entire in λ of order $1 / 2$. Moreover,

$$
\left\langle C_{j}\left(x_{j}, \lambda\right), S_{j}\left(x_{j}, \lambda\right)\right\rangle \equiv 1
$$

where $\langle y, z\rangle:=y z^{\prime}-y^{\prime} z$ is the Wronskian of y and z. Denote

$$
h(\lambda):=S_{0}\left(d_{0}, \lambda\right), \quad H(\lambda):=C_{0}\left(d_{0}, \lambda\right)-S_{0}^{\prime}\left(d_{0}, \lambda\right)
$$

Let $\left\{\nu_{n}\right\}_{n \geq 1}$ be zeros of the entire function $h(\lambda)$, and put $\omega_{n}:=\operatorname{sign} H\left(\nu_{n}\right), \Omega=\left\{\omega_{n}\right\}_{n \geq 1}$. The inverse problem is formulated as follows.

Inverse problem 1. Given $\Lambda_{k}, k=\overline{0, p}$ and Ω, construct the potential q on G.
Let us formulate the uniqueness theorem for the solution of Inverse Problem 1. For this purpose together with q we consider a potential \tilde{q}. Everywhere below if a symbol α denotes an object related to q, then $\tilde{\alpha}$ will denote the analogous object related to \tilde{q}.

Theorem 1. If $\Lambda_{k}=\tilde{\Lambda}_{k}, k=\overline{0, p}$, and $\Omega=\tilde{\Omega}$, then $q=\tilde{q}$ on G. Thus, the specification of $\Lambda_{k}, k=\overline{0, p}$ and Ω uniquely determines the potential q on G.

This theorem will be proved in section 3. Moreover, we give a constructive procedure for the solution of Inverse Problem 1. In section 2 we introduce the main notions and prove some auxiliary propositions.

2. Characteristic functions

2.1. Fix $k=\overline{p+1, r}$. Denote $Q_{k}:=\left\{z \in T: v_{k}<z\right\}, G_{k}:=\overline{G \backslash Q_{k}}$. Then

$$
Q_{k}=\bigcup_{e_{i} \in R\left(v_{k}\right)} T_{k i},
$$

where $T_{k i}$ is the tree with the root v_{k} and with the rooted edge e_{i}. Clearly, $G_{k}=e_{0} \cup T_{k}$, where $T_{k}=\overline{T \backslash Q_{k}}$.

Notation. If D is a graph, then we will denote by $L_{0}(D)$ the boundary value problem for equation (1) on D with the standard matching conditions in internal vertices and with the Dirichlet boundary conditions in boundary vertices. Let $\{Y\}_{D}:=\left\{y_{j}\right\}_{e_{j} \in D}$. If v_{j} is a boundary vertex of D, then $L_{j}(D)$ will denote the boundary value problem for equation (1) on D with the standard matching conditions in internal vertices, with the Neuman boundary condition $Y_{\mid v_{j}}^{\prime}=0$ at v_{j} and with the Dirichlet boundary conditions in all other boundary vertices. For example, $L_{0}\left(G_{k}\right)$ is the boundary value problem on G_{k} with the boundary conditions $y_{m}(0)=0, e_{m} \in E \cap G_{k}$, and $L_{k}\left(G_{k}\right)$ is the boundary value problem on G_{k} with the boundary conditions $y_{k}^{\prime}(0)=0, y_{m}(0)=0, e_{m} \in\left(E \cap G_{k}\right) \backslash e_{k}$. We also consider the BVP $L^{1}(T)$ for equation (1) on T with the boundary conditions $Y_{\mid v_{0}}^{\prime}=0, Y_{\mid v_{j}}=0, j=\overline{1, p}$.

Fix $k=\overline{1, p}$. Let $\Phi_{k}=\left\{\Phi_{k j}\right\}_{j=\overline{0, r}}$, be solutions of equation (1) satisfying the matching conditions (2)-(3) and the boundary conditions

$$
\begin{equation*}
\Phi_{k j}(0, \lambda)=\delta_{k j}, \quad j=\overline{1, p} \tag{4}
\end{equation*}
$$

where $\delta_{k j}$ is the Kronecker symbol. Denote

$$
M_{k}(\lambda):=\Phi_{k k}^{\prime}(0, \lambda), \quad k=\overline{1, p}
$$

The function $M_{k}(\lambda)$ is called the Weyl function with respect to the boundary vertex v_{k}.
Denote $M_{k j}^{0}(\lambda)=\Phi_{k j}^{\prime}(0, \lambda), M_{k j}^{1}(\lambda)=\Phi_{k j}(0, \lambda), j=\overline{0, r}$. Then

$$
\begin{equation*}
\Phi_{k j}\left(x_{j}, \lambda\right)=M_{k j}^{1}(\lambda) C_{j}\left(x_{j}, \lambda\right)+M_{k j}^{0}(\lambda) S_{j}\left(x_{j}, \lambda\right), \quad j=\overline{0, r} . \tag{5}
\end{equation*}
$$

In particular, $M_{k k}^{0}(\lambda)=M_{k}(\lambda), M_{k k}^{1}(\lambda)=1, M_{k j}^{1}(\lambda)=0$ for $j=\overline{1, p} \backslash k$. Hence

$$
\Phi_{k k}\left(x_{k}, \lambda\right)=C_{k}\left(x_{k}, \lambda\right)+M_{k}(\lambda) S_{k}\left(x_{k}, \lambda\right)
$$

and consequently,

$$
\left\langle\Phi_{k k}\left(x_{k}, \lambda\right), S_{k}\left(x_{k}, \lambda\right)\right\rangle \equiv 1 .
$$

Substituting (5) into (2)-(3) and (4) we obtain a linear algebraic system s_{k} with respect to $M_{k j}^{0}(\lambda), M_{k j}^{1}(\lambda), j=\overline{0, r}$. The determinant $\Delta_{0}(\lambda, G)$ of this system does not depend on k and has the form

$$
\begin{equation*}
\Delta_{0}(\lambda, G)=\Delta_{0}(\lambda, T) d(\lambda)+\Delta^{1}(\lambda, T) h(\lambda) \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
d(\lambda)=C_{0}\left(d_{0}, \lambda\right)+S_{0}^{\prime}\left(d_{0}, \lambda\right)-2, \quad h(\lambda)=S_{0}\left(d_{0}, \lambda\right) \tag{7}
\end{equation*}
$$

$\Delta_{0}(\lambda, T)$ and $\Delta^{1}(\lambda, T)$ are the characteristic functions of the boundary value problems $L_{0}(T)$ and $L^{1}(T)$ respectively, which were defined and studied in [17]. For convenience of the readers in the Appendix at the end of the paper we provide formulae for constructing the functions $\Delta_{0}(\lambda, T)$ and $\Delta^{1}(\lambda, T)$ from [17]. The function $\Delta_{0}(\lambda, G)$ is entire in λ of order $1 / 2$, and its zeros (counting with multiplicities) coincide with the eigenvalues of the boundary value problem $L_{0}(G)$. Solving the algebraic system s_{k} we get by Cramer's rule: $M_{k j}^{\nu}(\lambda)=\Delta_{k j}^{\nu}(\lambda, G) / \Delta_{0}(\lambda, G), \nu=0,1, j=\overline{0, r}$, where the determinant $\Delta_{k j}^{\nu}(\lambda, G)$ is obtained from $\Delta_{0}(\lambda, G)$ by the replacement of the column which corresponds to $M_{k j}^{\nu}(\lambda)$ with the column of free terms. In particular,

$$
\begin{equation*}
M_{k}(\lambda)=-\frac{\Delta_{k}(\lambda, G)}{\Delta_{0}(\lambda, G)}, \quad k=\overline{1, p} \tag{8}
\end{equation*}
$$

where $\Delta_{k}(\lambda, G), k=\overline{1, p}$, is obtained from $\Delta_{0}(\lambda, G)$ by the replacement of $S_{k}^{(\nu)}\left(d_{k}, \lambda\right)$, $\nu=0,1$, with $C_{k}^{(\nu)}\left(d_{k}, \lambda\right)$. The zeros of $\Delta_{k}(\lambda, G)$ (counting with multiplicities) coincide with eigenvalues of the boundary value problem $L_{k}(G)$. The function $\Delta_{k}(\lambda, G), k=\overline{0, p}$, is called the characteristic function for the boundary value problem $L_{k}(G)$.

Fix $k=\overline{p+1, r}$. Let $\Delta_{0}\left(\lambda, G_{k}\right)$ and $\Delta_{k}\left(\lambda, G_{k}\right)$ be the characteristic functions for $L_{0}\left(G_{k}\right)$ and $L_{k}\left(G_{k}\right)$, respectively. Using (6), (7) and formulae for $\Delta_{0}(\lambda, T), \Delta^{1}(\lambda, T)$ from [17] (see also the Appendix) one can get

$$
\begin{equation*}
\Delta_{0}(\lambda, G)=\Delta_{0}\left(\lambda, Q_{k}\right) \Delta_{0}\left(\lambda, G_{k}\right)+\left(\prod_{e_{i} \in R\left(v_{k}\right)} \Delta_{0}\left(\lambda, T_{k i}\right)\right) \Delta_{k}\left(\lambda, G_{k}\right) \tag{9}
\end{equation*}
$$

where $\Delta_{0}\left(\lambda, Q_{k}\right)$ and $\Delta_{0}\left(\lambda, T_{k i}\right)$ are the characteristic functions for $L_{0}\left(Q_{k}\right)$ and $L_{0}\left(T_{k i}\right)$, respectively, which were defined and studied in [17] (see also the Appendix). Similarly, for $e_{j} \in E \cap T_{k s}$,

$$
\begin{equation*}
\Delta_{j}(\lambda, G)=\Delta_{j}\left(\lambda, Q_{k}\right) \Delta_{0}\left(\lambda, G_{k}\right)+\left(\Delta_{j}\left(\lambda, T_{k s}\right) \prod_{e_{i} \in R\left(v_{k}\right), i \neq s} \Delta_{0}\left(\lambda, T_{k i}\right)\right) \Delta_{k}\left(\lambda, G_{k}\right) \tag{10}
\end{equation*}
$$

where $\Delta_{j}\left(\lambda, Q_{k}\right)$ and $\Delta_{j}\left(\lambda, T_{k i}\right)$ are constructed from $\Delta_{0}\left(\lambda, Q_{k}\right)$ and $\Delta_{0}\left(\lambda, T_{k i}\right)$ by the replacement of $S_{j}^{(\nu)}\left(d_{j}, \lambda\right), j=0,1$, with $C_{j}^{(\nu)}\left(d_{j}, \lambda\right)$.

Example 1. Let $\sigma=1$. Then $r=1$,
$\Delta_{0}(\lambda, G)=S_{1}\left(d_{1}, \lambda\right) d(\lambda)+S_{1}^{\prime}\left(d_{1}, \lambda\right) h(\lambda), \quad \Delta_{0}(\lambda, T)=S_{1}\left(d_{1}, \lambda\right), \quad \Delta^{1}(\lambda, T)=S_{1}^{\prime}\left(d_{1}, \lambda\right)$.
Example 2. Let $\sigma=2$. Then $r=p+1, T_{p+1, i}=\left\{e_{i}\right\}, i=\overline{1, p}$, hence

$$
\begin{aligned}
& \Delta_{0}(\lambda, T)=\prod_{m=1}^{p} S_{m}\left(d_{m}, \lambda\right)\left(\sum_{i=1}^{p} \frac{S_{i}^{\prime}\left(d_{i}, \lambda\right)}{S_{i}\left(d_{i}, \lambda\right)} S_{p+1}\left(d_{p+1}, \lambda\right)+C_{p+1}\left(d_{p+1}, \lambda\right)\right) \\
& \Delta^{1}(\lambda, T)=\prod_{m=1}^{p} S_{m}\left(d_{m}, \lambda\right)\left(\sum_{i=1}^{p} \frac{S_{i}^{\prime}\left(d_{i}, \lambda\right)}{S_{i}\left(d_{i}, \lambda\right)} S_{p+1}^{\prime}\left(d_{p+1}, \lambda\right)+C_{p+1}^{\prime}\left(d_{p+1}, \lambda\right)\right)
\end{aligned}
$$

In particular, for $p=2$,
$\Delta_{0}(\lambda, T)=\left(S_{1}\left(d_{1}, \lambda\right) S_{2}^{\prime}\left(d_{2}, \lambda\right)+S_{1}^{\prime}\left(d_{1}, \lambda\right) S_{2}\left(d_{2}, \lambda\right)\right) S_{3}\left(d_{3}, \lambda\right)+S_{1}\left(d_{1}, \lambda\right) S_{2}\left(d_{2}, \lambda\right) C_{3}\left(d_{3}, \lambda\right)$,
$\Delta^{1}(\lambda, T)=\left(S_{1}\left(d_{1}, \lambda\right) S_{2}^{\prime}\left(d_{2}, \lambda\right)+S_{1}^{\prime}\left(d_{1}, \lambda\right) S_{2}\left(d_{2}, \lambda\right)\right) S_{3}^{\prime}\left(d_{3}, \lambda\right)+S_{1}\left(d_{1}, \lambda\right) S_{2}\left(d_{2}, \lambda\right) C_{3}^{\prime}\left(d_{3}, \lambda\right)$, and (9) takes the form

$$
\begin{aligned}
\Delta_{0}(\lambda, G)=(& \left.S_{1}\left(d_{1}, \lambda\right) S_{2}^{\prime}\left(d_{2}, \lambda\right)+S_{1}^{\prime}\left(d_{1}, \lambda\right) S_{2}\left(d_{2}, \lambda\right)\right)\left(S_{3}\left(d_{3}, \lambda\right) d(\lambda)+S_{3}^{\prime}\left(d_{3}, \lambda\right) h(\lambda)\right) \\
& +S_{1}\left(d_{1}, \lambda\right) S_{2}\left(d_{2}, \lambda\right)\left(C_{3}\left(d_{3}, \lambda\right) d(\lambda)+C_{3}^{\prime}\left(d_{3}, \lambda\right) h(\lambda)\right) \\
= & \Delta_{0}\left(\lambda, Q_{3}\right) \Delta_{0}\left(\lambda, G_{3}\right)+\Delta_{0}\left(\lambda, T_{31}\right) \Delta_{0}\left(\lambda, T_{32}\right) \Delta_{3}\left(\lambda, G_{3}\right)
\end{aligned}
$$

where

$$
\begin{gathered}
\Delta_{0}\left(\lambda, Q_{3}\right)=S_{1}\left(d_{1}, \lambda\right) S_{2}^{\prime}\left(d_{2}, \lambda\right)+S_{1}^{\prime}\left(d_{1}, \lambda\right) S_{2}\left(d_{2}, \lambda\right) \\
\Delta_{0}\left(\lambda, G_{3}\right)=S_{3}\left(d_{3}, \lambda\right) d(\lambda)+S_{3}^{\prime}\left(d_{3}, \lambda\right) h(\lambda) \\
\Delta_{0}\left(\lambda, T_{31}\right)=S_{1}\left(d_{1}, \lambda\right), \quad \Delta_{0}\left(\lambda, T_{32}\right)=S_{2}\left(d_{2}, \lambda\right) \\
\Delta_{3}\left(\lambda, G_{3}\right)=C_{3}\left(d_{3}, \lambda\right) d(\lambda)+C_{3}^{\prime}\left(d_{3}, \lambda\right) h(\lambda)
\end{gathered}
$$

2.2. Let $\lambda=\rho^{2}, \operatorname{Im} \rho \geq 0$. Denote $\Lambda:=\{\rho: \operatorname{Im} \rho \geq 0\}, \Lambda^{\delta}:=\{\rho: \arg \rho \in[\delta, \pi-\delta]\}$. It is known (see [19]) that for each fixed $j=\overline{0, r}$ on the edge e_{j}, there exists a fundamental system of solutions of equation (1) $\left\{e_{j 1}\left(x_{j}, \rho\right), e_{j 2}\left(x_{j}, \rho\right)\right\}, x_{j} \in\left[0, d_{j}\right], \rho \in \Lambda,|\rho| \geq \rho^{*}$ with the properties:
(1) the functions $e_{j s}^{(\nu)}\left(x_{j}, \rho\right), \nu=0,1$, are continuous for $x_{j} \in\left[0, d_{j}\right], \rho \in \Lambda,|\rho| \geq \rho^{*}$;
(2) for each $x_{j} \in\left[0, d_{j}\right]$, the functions $e_{j s}^{(\nu)}\left(x_{j}, \rho\right), \nu=0,1$, are analytic for $\operatorname{Im} \rho>0,|\rho|>$ $\rho^{*} ;$
(3) uniformly in $x_{j} \in\left[0, d_{j}\right]$, the following asymptotical formulae hold $e_{j 1}^{(\nu)}\left(x_{j}, \rho\right)=(i \rho)^{\nu} \exp \left(i \rho x_{j}\right)[1], e_{j 2}^{(\nu)}\left(x_{j}, \rho\right)=(-i \rho)^{\nu} \exp \left(-i \rho x_{j}\right)[1], \rho \in \Lambda,|\rho| \rightarrow \infty$,
where $[1]=1+O\left(\rho^{-1}\right)$.
Fix $k=\overline{1, p}$. One has

$$
\begin{equation*}
\Phi_{k j}\left(x_{j}, \lambda\right)=A_{k j}^{1}(\rho) e_{j 1}\left(x_{j}, \rho\right)+A_{k j}^{0}(\rho) e_{j 2}\left(x_{j}, \rho\right), \quad x_{j} \in\left[0, d_{j}\right], j=\overline{0, r} \tag{12}
\end{equation*}
$$

Substituting (12) into (2)-(3) and (4) we obtain a linear algebraic system s_{k}^{0} with respect to $A_{k j}^{\nu}(\lambda), \nu=0,1, j=\overline{0, r}$. The determinant $\delta_{0}(\rho)$ of s_{k}^{0} does not depend on k and has the form

$$
\delta_{0}(\rho)=2(-2 i \rho)^{r+1} \Delta_{0}(\lambda, G), \quad \rho \in \Lambda
$$

Moreover,

$$
\delta_{0}(\rho)=\beta \exp \left(-i \rho \sum_{j=0}^{r} d_{j}\right)[1], \quad \rho \in \Lambda^{\delta},|\rho| \rightarrow \infty, \beta \neq 0
$$

Solving the algebraic system s_{k}^{0} by Cramer's rule and using (11), we get

$$
A_{k k}^{1}(\rho)=[1], A_{k k}^{0}(\rho)=\beta_{k} \exp \left(2 i \rho d_{k}\right)[1], \quad \rho \in \Lambda^{\delta},|\rho| \rightarrow \infty
$$

where β_{k} are constants. Together with (11) and (12) this yields for each fixed $x_{k} \in$ $\left[0, d_{k}\right), \nu=0,1$:

$$
\begin{equation*}
\Phi_{k k}^{(\nu)}\left(x_{k}, \lambda\right)=(i \rho)^{\nu} \exp \left(i \rho x_{k}\right)[1], \quad \rho \in \Lambda^{\delta},|\rho| \rightarrow \infty \tag{13}
\end{equation*}
$$

In particular, $M_{k}(\lambda)=(i \rho)[1], \rho \in \Lambda^{\delta},|\rho| \rightarrow \infty$. Moreover, uniformly in $x_{j} \in\left[0, d_{j}\right]$,

$$
\begin{align*}
S_{j}^{(\nu)}\left(x_{j}, \lambda\right) & =\frac{1}{2 i \rho}\left((i \rho)^{\nu} \exp \left(i \rho x_{j}\right)[1]-(-i \rho)^{\nu} \exp \left(-i \rho x_{j}\right)[1]\right), \rho \in \Lambda,|\rho| \rightarrow \infty \tag{14}\\
C_{j}^{(\nu)}\left(x_{j}, \lambda\right) & =\frac{1}{2}\left((i \rho)^{\nu} \exp \left(i \rho x_{j}\right)[1]+(-i \rho)^{\nu} \exp \left(-i \rho x_{j}\right)[1]\right), \rho \in \Lambda,|\rho| \rightarrow \infty \tag{15}
\end{align*}
$$

Let $\lambda_{k n}^{0}=\left(\rho_{k n}^{0}\right)^{2}, k=\overline{0, p}$, be the eigenvalues of the boundary value problem $L_{k}^{0}(G)$ with the zero potential $q=0$, and let $\Delta_{k}^{0}(\lambda, G)$ be the characteristic functions of $L_{k}^{0}(G)$. Clearly, $\Delta_{k}^{0}(\lambda, G)$ can be calculated by (9) and (10) but with $\cos \rho x_{j}$ and $\frac{\sin \rho x_{j}}{\rho}$ instead of $C_{j}\left(x_{j}, \lambda\right)$ and $S_{j}\left(x_{j}, \lambda\right), j=\overline{0, r}$, respectively.

Using (6), (7), (9), (10), (14) and (15), by the well-known method (see, for example, [20]), one can obtain the following properties of the eigenvalues of $L_{k}(G), k=\overline{0, p}$:
(1) There exists $h>0$ such that the eigenvalues $\lambda_{k n}=\rho_{k n}^{2}$ lie in the domain $|\operatorname{Im} \rho|<h$.
(2) The number $N_{\xi k}$ of zeros of $\Delta_{k}(\lambda, G)$ in the rectangle $\Pi_{\xi}=\{\rho:|\operatorname{Im} \rho| \leq h, \operatorname{Re} \rho \in$ $[\xi, \xi+1]\}$ is bounded with respect to ξ.
(3) For $\rho \in \Lambda^{\delta},|\rho| \rightarrow \infty$,

$$
\Delta_{k}(\lambda, G)=\Delta_{k}^{0}(\lambda, G)\left(1+O\left(\rho^{-1}\right)\right)
$$

(4) For $n \rightarrow \infty$,

$$
\rho_{k n}=\rho_{k n}^{0}+O\left(\frac{1}{\rho_{k n}^{0}}\right)
$$

2.3. Now we study the reconstruction of the characteristic functions from their zeros. Denote

$$
\lambda_{k n}^{01}=\left\{\begin{array}{lll}
\lambda_{k n}^{0} & \text { if } & \lambda_{k n}^{0} \neq 0 \tag{16}\\
1 & \text { if } & \lambda_{k n}^{0}=0
\end{array}\right.
$$

By Hadamard's factorization theorem [21],

$$
\begin{equation*}
\Delta_{k}^{0}(\lambda, G)=A_{k}^{0} \prod_{n=0}^{\infty} \frac{\lambda_{k n}^{0}-\lambda}{\lambda_{k n}^{01}}, \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{k}^{0}=\frac{(-1)^{s_{k}}}{s_{k}!}\left(\frac{\partial^{s_{k}}}{\partial \lambda^{s_{k}}} \Delta_{k}^{0}(\lambda, G)\right)_{\mid \lambda=0}, \tag{18}
\end{equation*}
$$

and $s_{k} \geq 0$ is the multiplicity of the zero eigenvalue of $L_{k}^{0}(G)$.
Let us show that

$$
\begin{equation*}
\Delta_{k}(\lambda, G)=A_{k}^{0} \prod_{n=1}^{\infty} \frac{\lambda_{k n}-\lambda}{\lambda_{k n}^{01}} . \tag{19}
\end{equation*}
$$

Indeed, by Hadamard's factorization theorem,

$$
\begin{equation*}
\Delta_{k}(\lambda, G)=A_{k} \prod_{n=1}^{\infty} \frac{\lambda_{k n}-\lambda}{\lambda_{k n}^{1}}, \tag{20}
\end{equation*}
$$

where $A_{k} \neq 0$ is a constant, and

$$
\lambda_{k n}^{1}=\left\{\begin{array}{lll}
\lambda_{k n} & \text { if } & \lambda_{k n} \neq 0 \\
1 & \text { if } & \lambda_{k n}=0
\end{array}\right.
$$

It follows from (17) and (20) that

$$
\frac{\Delta_{k}(\lambda, G)}{\Delta_{k}^{0}(\lambda, G)}=\frac{A_{k}}{A_{k}^{0}} \prod_{n=1}^{\infty} \frac{\lambda_{k n}^{01}}{\lambda_{k n}^{1}} \prod_{n=1}^{\infty}\left(1+\frac{\lambda_{k n}-\lambda_{k n}^{0}}{\lambda_{k n}^{0}-\lambda}\right)
$$

Using properties of the characteristic functions and the eigenvalues one gets for negative λ :

$$
\lim _{\lambda \rightarrow-\infty} \frac{\Delta_{k}(\lambda, G)}{\Delta_{k}^{0}(\lambda, G)}=1, \quad \lim _{\lambda \rightarrow-\infty} \prod_{n=1}^{\infty}\left(1+\frac{\lambda_{k n}-\lambda_{k n}^{0}}{\lambda_{k n}^{0}-\lambda}\right)=1
$$

and consequently,

$$
A_{k}=A_{k}^{0} \prod_{n=1}^{\infty} \frac{\lambda_{k n}^{1}}{\lambda_{k n}^{01}}
$$

Substituting this relation into (20) we arrive at (19).
Thus, the specification of the spectrum $\Lambda_{k}=\left\{\lambda_{k n}\right\}_{n \geq 1}$ uniquely determines the characteristic function $\Delta_{k}(\lambda, G)$ by (19) where $\left\{\lambda_{k n}^{01}\right\}$ and A_{k}^{0} are defined by (16) and (18).

3. Solution of inverse problem 1

3.1. In this section we provide a constructive procedure for the solution of Inverse Problem 1 and prove its uniqueness. First we consider the following auxiliary inverse problem for G on the edge $e_{k}, k=\overline{1, p}$, which is called $\operatorname{IP}(k)$.
$\operatorname{IP}(\mathbf{k})$. Given $M_{k}(\lambda)$, construct $q_{k}\left(x_{k}\right), x_{k} \in\left[0, d_{k}\right]$.
In $\operatorname{IP}(\mathrm{k})$ we construct the potential only on the edge e_{k}, but the Weyl function $M_{k}(\lambda)$ brings a global information from the whole graph, i.e. $\operatorname{IP}(\mathrm{k})$ is not a local inverse problem related only to the edge e_{k}. Let us prove the uniqueness theorem for the solution of $\operatorname{IP}(\mathrm{k})$.

Theorem 2. If $M_{k}(\lambda)=\tilde{M}_{k}(\lambda)$, then $q_{k}\left(x_{k}\right)=\tilde{q}_{k}\left(x_{k}\right)$ a.e. on $\left[0, d_{k}\right]$. Thus, the specification of the Weyl function M_{k} uniquely determines the potential q_{k} on the edge e_{k}.

Proof. Let us define the matrix $P^{k}\left(x_{k}, \lambda\right)=\left[P_{j s}^{k}\left(x_{k}, \lambda\right)\right]_{j, s=1,2}$ by the formula

$$
P^{k}\left(x_{k}, \lambda\right)\left[\begin{array}{c}
\tilde{\Phi}_{k k}\left(x_{k}, \lambda\right) \tilde{S}_{k}\left(x_{k}, \lambda\right) \\
\tilde{\Phi}_{k k}^{\prime}\left(x_{k}, \lambda\right) \tilde{S}_{k}^{\prime}\left(x_{k}, \lambda\right)
\end{array}\right]=\left[\begin{array}{c}
\Phi_{k k}\left(x_{k}, \lambda\right) S_{k}\left(x_{k}, \lambda\right) \\
\Phi_{k k}^{\prime}\left(x_{k}, \lambda\right) S_{k}^{\prime}\left(x_{k}, \lambda\right)
\end{array}\right]
$$

Then

$$
\left.\begin{array}{c}
\Phi_{k k}\left(x_{k}, \lambda\right)=P_{11}^{k}\left(x_{k}, \lambda\right) \tilde{\Phi}_{k k}\left(x_{k}, \lambda\right)+P_{12}^{k}\left(x_{k}, \lambda\right) \tilde{\Phi}_{k k}^{\prime}\left(x_{k}, \lambda\right) \tag{21}\\
S_{k}\left(x_{k}, \lambda\right)=P_{11}^{k}\left(x_{k}, \lambda\right) \tilde{S}_{k}\left(x_{k}, \lambda\right)+P_{12}^{k}\left(x_{k}, \lambda\right) \tilde{S}_{k}^{\prime}\left(x_{k}, \lambda\right)
\end{array}\right\}
$$

Since $\left\langle\Phi_{k k}\left(x_{k}, \lambda\right), S_{k}\left(x_{k}, \lambda\right)\right\rangle \equiv 1$, one has

$$
\begin{equation*}
P_{1 s}^{k}\left(x_{k}, \lambda\right)=(-1)^{s}\left(\Phi_{k k}\left(x_{k}, \lambda\right) \tilde{S}_{k}^{(2-s)}\left(x_{k}, \lambda\right)-\tilde{\Phi}_{k k}^{(2-s)}\left(x_{k}, \lambda\right) S_{k}\left(x_{k}, \lambda\right)\right) \tag{22}
\end{equation*}
$$

It follows from (13), (14) and (22) that

$$
\begin{equation*}
P_{1 s}^{k}\left(x_{k}, \lambda\right)=\delta_{1 s}+O\left(\rho^{-1}\right), \quad \rho \in \Lambda^{\delta},|\rho| \rightarrow \infty, x_{k} \in\left(0, d_{k}\right], s=0,1 \tag{23}
\end{equation*}
$$

Using (22) and the relation $\Phi_{k k}\left(x_{k}, \lambda\right)=C_{k}\left(x_{k}, \lambda\right)+M_{k}(\lambda) S_{k}\left(x_{k}, \lambda\right)$, we calculate

$$
\begin{aligned}
P_{1 s}^{k}\left(x_{k}, \lambda\right)= & (-1)^{s}\left(\left(C_{k}\left(x_{k}, \lambda\right) \tilde{S}_{k}^{(2-s)}\left(x_{k}, \lambda\right)-\tilde{C}_{k}^{(2-s)}\left(x_{k}, \lambda\right) S_{k}\left(x_{k}, \lambda\right)\right)\right. \\
& \left.+\left(M_{k}(\lambda)-\tilde{M}_{k}(\lambda)\right) S_{k}\left(x_{k}, \lambda\right) \tilde{S}_{k}^{(2-s)}\left(x_{k}, \lambda\right)\right) .
\end{aligned}
$$

Since $M_{k}(\lambda)=\tilde{M}_{k}(\lambda)$, it follows that for each fixed x_{k}, the functions $P_{1 s}^{k}\left(x_{k}, \lambda\right)$ are entire in λ of order $1 / 2$. Together with (23) this yields $P_{11}^{k}\left(x_{k}, \lambda\right) \equiv 1, P_{12}^{k}\left(x_{k}, \lambda\right) \equiv 0$. Substituting these relations into (21) we get $\Phi_{k k}\left(x_{k}, \lambda\right) \equiv \tilde{\Phi}_{k k}\left(x_{k}, \lambda\right)$ and $S_{k}\left(x_{k}, \lambda\right) \equiv$ $\tilde{S}_{k}\left(x_{k}, \lambda\right)$ for all x_{k} and λ, and consequently, $q_{k}\left(x_{k}\right)=\tilde{q}_{k}\left(x_{k}\right)$ a.e. on $\left[0, d_{k}\right]$.

Using the method of spectral mappings [5] for the Sturm-Liouville operator on the edge e_{k} one can get a constructive procedure for the solution of the inverse problem $\operatorname{IP}(\mathrm{k})$. Here we only explain ideas briefly; for details and proofs see [5]. Take $\tilde{q}=0$. Then $\tilde{S}_{k}\left(x_{k}, \lambda\right)=\frac{\sin \rho x_{k}}{\rho}$. Fix $k=\overline{1, p}$. Denote $\lambda^{\prime}=\min _{l \geq 1}\left(\lambda_{0 l}, \tilde{\lambda}_{0 l}\right)$ and take a fixed $\delta>0$. In the λ - plane we consider the contour γ (with counterclockwise circuit) of the form $\gamma=\gamma^{+} \cup \gamma^{-} \cup \gamma^{\prime}$, where $\gamma^{ \pm}=\left\{\lambda: \quad \pm \operatorname{Im} \lambda=\delta ; \operatorname{Re} \lambda \geq \lambda^{\prime}\right\}, \gamma^{\prime}=\left\{\lambda: \quad \lambda-\lambda^{\prime}=\right.$ $\delta \exp (i \alpha), \alpha \in(\pi / 2,3 \pi / 2)\}$. For each fixed $x_{k} \in\left[0, d_{k}\right]$, the function $S_{k}\left(x_{k}, \lambda\right)$ is the unique solution of the following linear integral equation

$$
\begin{equation*}
S_{k}\left(x_{k}, \lambda\right)=\tilde{S}_{k}\left(x_{k}, \lambda\right)+\frac{1}{2 \pi i} \int_{\gamma} \tilde{D}_{k}\left(x_{k}, \lambda, \mu\right) S_{k}\left(x_{k}, \mu\right) d \mu \tag{24}
\end{equation*}
$$

where

$$
\tilde{D}_{k}(x, \lambda, \mu)=\int_{0}^{x} \tilde{S}_{k}(t, \lambda) \tilde{S}_{k}(t, \mu) \hat{M}_{k}(\mu) d t, \quad \hat{M}_{k}(\mu):=M_{k}(\mu)-\tilde{M}_{k}(\mu)
$$

The potential q_{k} on the edge e_{k} can be constructed from the solution of the integral equation (24) via the formula

$$
q_{k}\left(x_{k}\right)=\frac{1}{2 \pi i} \int_{\gamma}\left(S_{k}\left(x_{k}, \lambda\right) \tilde{S}_{k}\left(x_{k}, \lambda\right)\right)^{\prime} \hat{M}_{k}(\lambda) d \lambda
$$

or by the formula $q_{k}\left(x_{k}\right)=\lambda+S_{k}^{\prime \prime}\left(x_{k}, \lambda\right) / S_{k}\left(x_{k}, \lambda\right)$. It is also possible to construct the potential from the discrete spectral data. For this purpose one can calculate the contour integral in (24) by the residue theorem and transform the integral equation (24) to the equation in a space of sequences; for details see [5].
3.2. Consider the following auxiliary inverse problem on the edge e_{0}, which is called $\operatorname{IP}(0)$.
$\mathbf{I P}(\mathbf{0})$. Given $d(\lambda), h(\lambda), \Omega$, construct $q_{0}\left(x_{0}\right), x_{0} \in\left[0, d_{0}\right]$.

This inverse problem were studied in $[22,23]$ and other papers. For convenience of the readers we describe here the solution of $\operatorname{IP}(0)$. We recall that

$$
d(\lambda)=C_{0}\left(d_{0}, \lambda\right)+S_{0}^{\prime}\left(d_{0}, \lambda\right), \quad H(\lambda)=C_{0}\left(d_{0}, \lambda\right)-S_{0}^{\prime}\left(d_{0}, \lambda\right), \quad \omega_{n}=\operatorname{sign} H\left(\nu_{n}\right),
$$

where $\left\{\nu_{n}\right\}_{n \geq 1}$ are zeros of $h(\lambda)$. Clearly,

$$
\begin{equation*}
S_{0}^{\prime}\left(d_{0}, \nu_{n}\right)=\left(d\left(\nu_{n}\right)-H\left(\nu_{n}\right)\right) / 2 \tag{25}
\end{equation*}
$$

Since $\left\langle C_{0}\left(d_{0}, \lambda\right), S_{0}\left(d_{0}, \lambda\right)\right\rangle \equiv 1$, it follows that

$$
H^{2}(\lambda)-d^{2}(\lambda)=-4\left(1+C_{0}^{\prime}\left(d_{0}, \lambda\right) h(\lambda)\right)
$$

and consequently,

$$
\begin{equation*}
H\left(\nu_{n}\right)=\omega_{n} \sqrt{d^{2}\left(\nu_{n}\right)-4} \tag{26}
\end{equation*}
$$

Denote

$$
\alpha_{n}:=\int_{0}^{d_{0}} S_{0}^{2}\left(t, \nu_{n}\right) d t
$$

Then (see $[1,4]$)

$$
\begin{equation*}
\alpha_{n}=\dot{h}\left(\nu_{n}\right) S_{0}^{\prime}\left(d_{0}, \nu_{n}\right), \quad \dot{h}(\lambda):=\frac{d h(\lambda)}{d \lambda} . \tag{27}
\end{equation*}
$$

The data $\left\{\nu_{n}, \alpha_{n}\right\}_{n \geq 1}$ are called the spectral data for the potential q_{0}. It is known (see $[1,4])$ that the function q_{0} can be uniquely constructed from the given spectral data $\left\{\nu_{n}, \alpha_{n}\right\}_{n \geq 1}$. Thus, $\operatorname{IP}(0)$ has been solved, and the following theorem is valid.

Theorem 3. The specification of $d(\lambda), h(\lambda), \Omega$ uniquely determines the potential $q_{0}\left(x_{0}\right)$ on $\left[0, d_{0}\right]$. The function q_{0} can be constructed by the following algorithm.

Algorithm 1. Given $d(\lambda), h(\lambda), \Omega$.
(1) Find $\left\{\nu_{n}\right\}_{n \geq 1}$ as the zeros of $h(\lambda)$.
(2) Calculate $H\left(\nu_{n}\right)$ by (26).
(3) Find $S_{0}^{\prime}\left(d_{0}, \nu_{n}\right)$ by (25).
(4) Calculate $\left\{\alpha_{n}\right\}_{n \geq 1}$ using (27).
(5) Construct q_{0} from the given spectral data $\left\{\nu_{n}, \alpha_{n}\right\}_{n \geq 1}$ by solving the classical inverse Sturm-Liouville problem.
3.3. Now we are ready to provide a constructive procedure for the solution of Inverse problem 1 and prove its uniqueness. Let $\Lambda_{k}, k=\overline{0, p}$ and Ω be given. The procedure for the solution of Inverse Problem 1 consists in the realization of the so-called $D_{\mu^{-}}$ procedures successively for $\mu=\sigma, \sigma-1, \ldots, 1,0$ where σ is the height of T. Let us describe $D_{\mu^{-}}$procedures.

$\mathrm{D}_{\sigma^{-}}$procedure.

(1) For each $k=\overline{0, p}$, we construct $\Delta_{k}(\lambda, G)$ by (19) where $\left\{\lambda_{k n}^{01}\right\}$ and A_{k}^{0} are defined by (16) and (18).
(2) For each $k=\overline{1, p}$, we calculate the Weyl function $M_{k}(\lambda)$ via (8).
(3) For each edge $e_{k} \in \mathcal{E}^{(\sigma)}$, we solve the inverse problem $\operatorname{IP}(\mathrm{k})$ and find $q_{k}\left(x_{k}\right), x_{k} \in$ $\left[0, d_{k}\right]$ on the edge e_{k}.
(4) For each $e_{k} \in \mathcal{E}^{(\sigma)}$, we calculate $C_{k}^{(\nu)}\left(d_{k}, \lambda\right), S_{k}^{(\nu)}\left(d_{k}, \lambda\right), \nu=0,1$.
(5) For each fixed $v_{k} \in V^{(\sigma-1)} \backslash \Gamma$ we choose and fix s and j such that $e_{j} \in E \cap T_{k s}$. Solving the linear algebraic system (9)-(10), we find $\Delta_{0}\left(\lambda, G_{k}\right)$ and $\Delta_{k}\left(\lambda, G_{k}\right)$.
(6) For each fixed $v_{k} \in V^{(\sigma-1)} \backslash \Gamma$ we construct the Weyl function $M_{k}(\lambda)$ for G_{k} by the formula

$$
\begin{equation*}
M_{k}(\lambda)=-\frac{\Delta_{k}\left(\lambda, G_{k}\right)}{\Delta_{0}\left(\lambda, G_{k}\right)} \tag{28}
\end{equation*}
$$

Now we carry out $D_{\mu^{-}}$procedures for $\mu=\overline{2, \sigma-1}$ by induction. Fix $\mu=\overline{2, \sigma-1}$, and suppose that $D_{\sigma}, \ldots, D_{\mu+1^{-}}$procedures have been already carried out. Let us carry out $D_{\mu^{-}}$procedure.

$\mathrm{D}_{\mu^{-}}$procedure.

(1) For each edge $e_{k} \in \mathcal{E}^{(\mu)}$, we solve the inverse problem $\operatorname{IP}(\mathrm{k})$ on G_{k} and find $q_{k}\left(x_{k}\right), x_{k} \in$ [$0, d_{k}$] on the edge e_{k}.
(2) For each $e_{k} \in \mathcal{E}^{(\mu)}$, we calculate $C_{k}^{(\nu)}\left(d_{k}, \lambda\right), S_{k}^{(\nu)}\left(d_{k}, \lambda\right), \nu=0,1$
(3) For each fixed $v_{k} \in V^{(\mu-1)} \backslash \Gamma$ we choose and fix s and j such that $e_{j} \in E \cap T_{k s}$. Solving the linear algebraic system (9)-(10), we find $\Delta_{0}\left(\lambda, G_{k}\right)$ and $\Delta_{k}\left(\lambda, G_{k}\right)$.
(4) For each fixed $v_{k} \in V^{(\mu-1)} \backslash \Gamma$ we calculate $M_{k}(\lambda)$ for G_{k} via (28).

D_{1} - procedure.

(1) We solve the inverse problem $\operatorname{IP}(\mathrm{p}+1)$ on G_{p+1} and find $q_{p+1}\left(x_{p+1}\right), x_{p+1} \in\left[0, d_{p+1}\right]$ on the rooted edge e_{p+1}.
(2) We calculate $C_{p+1}^{(\nu)}\left(d_{p+1}, \lambda\right), S_{p+1}^{(\nu)}\left(d_{p+1}, \lambda\right), \nu=0,1$.
(3) Solving the linear algebraic system

$$
\begin{gathered}
\Delta_{0}\left(\lambda, G_{p+1}\right)=S_{p+1}\left(d_{p+1}, \lambda\right) d(\lambda)+S_{p+1}^{\prime}\left(d_{p+1}, \lambda\right) h(\lambda) \\
\Delta_{p+1}\left(\lambda, G_{p+1}\right)=C_{p+1}\left(d_{p+1}, \lambda\right) d(\lambda)+C_{p+1}^{\prime}\left(d_{p+1}, \lambda\right) h(\lambda)
\end{gathered}
$$

we find $d(\lambda)$ and $h(\lambda)$.

\mathbf{D}_{0} - procedure.

Using $d(\lambda), h(\lambda)$ and Ω, we construct $q_{0}\left(x_{0}\right), x_{0} \in\left[0, d_{0}\right]$ on e_{0} by Algorithm 1 .
Thus, executing successively $D_{\sigma}, D_{\sigma-1}, \ldots, D_{0^{-}}$procedures we obtain the solution of Inverse problem 1 and prove its uniqueness.

4. Appendix

Consider the tree T and fix $k=\overline{p+1, r}$. Denote $Q_{k}:=\left\{z \in T: v_{k}<z\right\}, T_{k}:=$ $\overline{T \backslash Q_{k}}$. Then $Q_{k}=\bigcup_{e_{i} \in R\left(v_{k}\right)} T_{k i}$, where $T_{k i}$ is the tree with the root v_{k} and with the rooted edge e_{i}.

Let us define functions $\Delta_{0}(\lambda, T)$ and $\Delta^{1}(\lambda, T)$ recurrently with respect to σ, where σ is the height of T. For $\sigma=1$ the tree T is the segment $e_{1}=\left[0, d_{1}\right]$, and we put

$$
\Delta_{0}(\lambda, T)=S_{1}\left(d_{1}, \lambda\right), \quad \Delta^{1}(\lambda, T)=S_{1}^{\prime}\left(d_{1}, \lambda\right)
$$

For each $\sigma \geq 2$, we put
$\Delta_{0}(\lambda, T)=\prod_{e_{k} \in R\left(v_{p+1}\right)} \Delta_{0}\left(\lambda, T_{p+1, k}\right)\left(\sum_{e_{i} \in R\left(v_{p+1}\right)} \frac{\Delta^{1}\left(\lambda, T_{p+1, i}\right)}{\Delta_{0}\left(\lambda, T_{p+1, i}\right)} S_{p+1}\left(d_{p+1}, \lambda\right)+C_{p+1}\left(d_{p+1}, \lambda\right)\right)$,
$\Delta^{1}(\lambda, T)=\prod_{e_{k} \in R\left(v_{p+1}\right)} \Delta_{0}\left(\lambda, T_{p+1, k}\right)\left(\sum_{e_{i} \in R\left(v_{p+1}\right)} \frac{\Delta^{1}\left(\lambda, T_{p+1, i}\right)}{\Delta_{0}\left(\lambda, T_{p+1, i}\right)} S_{p+1}^{\prime}\left(d_{p+1}, \lambda\right)+C_{p+1}^{\prime}\left(d_{p+1}, \lambda\right)\right)$.

Denote

$$
\Delta_{0}\left(\lambda, Q_{p+1}\right)=\prod_{e_{k} \in R\left(v_{p+1}\right)} \Delta_{0}\left(\lambda, T_{p+1, k}\right) \sum_{e_{i} \in R\left(v_{p+1}\right)} \frac{\Delta^{1}\left(\lambda, T_{p+1, i}\right)}{\Delta_{0}\left(\lambda, T_{p+1, i}\right)}
$$

Then relations (29)-(30) take the form

$$
\begin{gather*}
\Delta_{0}(\lambda, T)=\Delta_{0}\left(\lambda, Q_{p+1}\right) S_{p+1}\left(d_{p+1}, \lambda\right)+\prod_{e_{k} \in R\left(v_{p+1}\right)} \Delta_{0}\left(\lambda, T_{p+1, k}\right) C_{p+1}\left(d_{p+1}, \lambda\right) \tag{31}\\
\Delta^{1}(\lambda, T)=\Delta_{0}\left(\lambda, Q_{p+1}\right) S_{p+1}^{\prime}\left(d_{p+1}, \lambda\right)+\prod_{e_{k} \in R\left(v_{p+1}\right)} \Delta_{0}\left(\lambda, T_{p+1, k}\right) C_{p+1}^{\prime}\left(d_{p+1}, \lambda\right) .
\end{gather*}
$$

The functions $\Delta_{0}(\lambda, T), \Delta^{1}(\lambda, T)$ and $\Delta_{0}\left(\lambda, Q_{p+1}\right)$ are entire in λ of order $1 / 2$. We note that $\Delta^{1}(\lambda, T)$ is obtained from $\Delta_{0}(\lambda, T)$ by the replacement of $S_{p+1}\left(d_{p+1}, \lambda\right)$ and $C_{p+1}\left(d_{p+1}, \lambda\right)$ with $S_{p+1}^{\prime}\left(d_{p+1}, \lambda\right)$ and $C_{p+1}^{\prime}\left(d_{p+1}, \lambda\right)$ respectively.

Example 3. Let $\sigma=2$. Then $r=p+1, T_{p+1, i}=\left\{e_{i}\right\}, i=\overline{1, p}$, hence

$$
\Delta_{0}(\lambda, T)=\prod_{k=1}^{p} S_{k}\left(d_{k}, \lambda\right)\left(\sum_{i=1}^{p} \frac{S_{i}^{\prime}\left(d_{i}, \lambda\right)}{S_{i}\left(d_{i}, \lambda\right)} S_{p+1}\left(d_{p+1}, \lambda\right)+C_{p+1}\left(d_{p+1}, \lambda\right)\right)
$$

In particular, for $p=2$,
$\Delta_{0}(\lambda, T)=\left(S_{1}\left(d_{1}, \lambda\right) S_{2}^{\prime}\left(d_{2}, \lambda\right)+S_{1}^{\prime}\left(d_{1}, \lambda\right) S_{2}\left(d_{2}, \lambda\right)\right) S_{3}\left(d_{3}, \lambda\right)+S_{1}\left(d_{1}, \lambda\right) S_{2}\left(d_{2}, \lambda\right) C_{3}\left(d_{3}, \lambda\right)$.

Figure 2

Example 4. Consider the tree on fig. 2. Then

$$
\begin{gathered}
\Delta_{0}(\lambda, T)=\Delta_{0}\left(\lambda, Q_{4}\right) S_{4}\left(d_{4}, \lambda\right)+S_{1}\left(d_{1}, \lambda\right)\left(S_{2}\left(d_{2}, \lambda\right) S_{3}^{\prime}\left(d_{3}, \lambda\right) S_{5}\left(d_{5}, \lambda\right)\right. \\
\left.+S_{2}^{\prime}\left(d_{2}, \lambda\right) S_{3}\left(d_{3}, \lambda\right) S_{5}\left(d_{5}, \lambda\right)+S_{2}\left(d_{2}, \lambda\right) S_{3}\left(d_{3}, \lambda\right) C_{5}\left(d_{5}, \lambda\right)\right) C_{4}\left(d_{4}, \lambda\right) \\
\Delta_{0}\left(\lambda, Q_{4}\right)=S_{1}^{\prime}\left(d_{1}, \lambda\right)\left(S_{2}\left(d_{2}, \lambda\right) S_{3}^{\prime}\left(d_{3}, \lambda\right) S_{5}\left(d_{5}, \lambda\right)+S_{2}^{\prime}\left(d_{2}, \lambda\right) S_{3}\left(d_{3}, \lambda\right) S_{5}\left(d_{5}, \lambda\right)\right. \\
\left.+S_{2}\left(d_{2}, \lambda\right) S_{3}\left(d_{3}, \lambda\right) C_{5}\left(d_{5}, \lambda\right)\right)+S_{1}\left(d_{1}, \lambda\right)\left(S_{2}\left(d_{2}, \lambda\right) S_{3}^{\prime}\left(d_{3}, \lambda\right) S_{5}^{\prime}\left(d_{5}, \lambda\right)\right. \\
\left.+S_{2}^{\prime}\left(d_{2}, \lambda\right) S_{3}\left(d_{3}, \lambda\right) S_{5}^{\prime}\left(d_{5}, \lambda\right)+S_{2}\left(d_{2}, \lambda\right) S_{3}\left(d_{3}, \lambda\right) C_{5}^{\prime}\left(d_{5}, \lambda\right)\right) .
\end{gathered}
$$

Let $\Delta_{j}(\lambda, T), \Delta_{j}\left(\lambda, T_{k s}\right), \Delta_{j}\left(\lambda, T_{j}\right)$ and $\Delta_{j}\left(\lambda, Q_{k}\right)$ be constructed from $\Delta_{0}(\lambda, T)$, $\Delta_{0}\left(\lambda, T_{k s}\right), \Delta_{0}\left(\lambda, T_{j}\right)$ and $\Delta_{0}\left(\lambda, Q_{k}\right)$ respectively by the replacement $S_{j}^{(\nu)}\left(d_{j}, \lambda\right)$ with $C_{j}^{(\nu)}\left(d_{j}, \lambda\right), \nu=0,1$.

Fix $k=\overline{p+1, r}$. Then regrouping terms in (31) one can get

$$
\Delta_{0}(\lambda, T)=\Delta_{0}\left(\lambda, Q_{k}\right) \Delta_{0}\left(\lambda, T_{k}\right)+\left(\prod_{e_{i} \in R\left(v_{k}\right)} \Delta_{0}\left(\lambda, T_{k i}\right)\right) \Delta_{k}\left(\lambda, T_{k}\right)
$$

Similarly, for $j=\overline{1, p}, e_{j} \in E \cap T_{k s}$,

$$
\Delta_{j}(\lambda, T)=\Delta_{j}\left(\lambda, Q_{k}\right) \Delta_{0}\left(\lambda, T_{k}\right)+\left(\Delta_{j}\left(\lambda, T_{k s}\right) \prod_{e_{i} \in R\left(v_{k}\right), i \neq s} \Delta_{0}\left(\lambda, T_{k i}\right)\right) \Delta_{k}\left(\lambda, T_{k}\right)
$$

Acknowledgement

This research was supported in part by Grants 07-01-00003 and 07-01-92000-NSC-a of Russian Foundation for Basic Research and Taiwan National Science Council.

References

[1] V. A. Marchenko, Sturm-Liouville Operators and their Applications, Naukova Dumka, Kiev, 1977 (Russian); English transl., Birkhauser, 1986.
[2] B. M. Levitan, Inverse Sturm-Liouville Problems, Nauka, Moscow, 1984 (Russian); English transl., VNU Sci.Press, Utrecht, 1987.
[3] J. Pöschel and E. Trubowitz, Inverse Spectral Theory. New York, Academic Press, 1987.
[4] G. Freiling and V. A. Yurko, Inverse Sturm-Liouville Problems and their Applications. NOVA Science Publishers, New York, 2001.
[5] V. A. Yurko, Method of Spectral Mappings in the Inverse Problem Theory, Inverse and Ill-posed Problems Series. VSP, Utrecht, 2002.
[6] K. Chadan, D. Colton, L. Paivarinta and W. Rundell, An introduction to inverse scattering and inverse spectral problems. SIAM Monographs on Mathematical Modeling and Computation. SIAM, Philadelphia, PA, 1997.
[7] R. Beals, P. Deift and C. Tomei, Direct and Inverse Scattering on the Line, Math. Surveys and Monographs, v.28. Amer. Math. Soc. Providence: RI, 1988.
[8] V. A. Yurko, Inverse Spectral Problems for Differential Operators and their Applications. Gordon and Breach, Amsterdam, 2000.
[9] Yu. Pokornyi and A. Borovskikh, Differential equations on networks (geometric graphs), J. Math. Sci. (N.Y.), 119(2004), 691-718.
[10] Yu. Pokornyi and V. Pryadiev, The qualitative Sturm-Liouville theory on spatial networks, J. Math. Sci. (N.Y.), 119(2004), 788-835.
[11] M. I. Belishev, Boundary spectral inverse problem on a class of graphs (trees) by the BC method, Inverse Problems, 20(2004), 647-672.
[12] V. A. Yurko, Inverse spectral problems for Sturm-Liouville operators on graphs, Inverse Problems, 21(2005), 1075-1086.
[13] B. M. Brown and R. Weikard, A Borg-Levinson theorem for trees, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461(2005), 3231-3243.
[14] G. Freiling and V. A. Yurko, Inverse spectral problems for Sturm-Liouville operators on noncompact trees. Results in Math., 50(2007), 195-212.
[15] Yurko V. A. Recovering differential pencils on compact graphs. J. Diff. Equations 244 (2008), 431-443.
[16] V. A. Yurko, Inverse problems for arbitrary order differential operators on trees, Matemat. Zametki, 83(2008), 139-152 (Russian); English transl. in Math. Notes 83 (2008), 125-137.
[17] V. A. Yurko, Recovering Sturm-Liouville operators on trees from spectra. Schriftenreiche des Fachbereichs Mathematik, SM-DU-684, Universitaet Duisburg-Essen, 2009, 8pp.
[18] V. A. Yurko, Inverse problems for Sturm-Liouville operators on graphs with a cycle, Operators and Matrices, 2 (2008), 543-553.
[19] M. A. Naimark Linear Differential Operators, 2nd ed., Nauka, Moscow, 1969; English transl. of 1st ed., Parts I,II, Ungar, New York, 1967, 1968.
[20] R. Bellmann and K. Cooke, Differential-difference Equations, Academic Press, New York, 1963.
[21] J. B. Conway, Functions of One Complex Variable, 2nd ed., vol.I, Springer-Verlag, New York, 1995.
[22] I. V. Stankevich, An inverse problem of spectral analysis for Hill's equations, Doklady Akad. Nauk SSSR, 192 (1970), 34-37 (Russian).
[23] V. A. Marchenko and I. V. Ostrovskii, A characterization of the spectrum of the Hill operator, Mat. Sbornik, $97(1975)$, 540-606 (Russian); English transl. in Math. USSR Sbornik, 26(1975), 493-554.

Department of Mathematics, Saratov State University, Astrakhanskaya 83, Saratov 410026, Russia.
E-mail: yurkova@info.sgu.ru

