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REPRESENTATION OF L-FUZZY BINARY RELATIONS

VIA A GALOIS CONNECTION

NISTALA V. E. S. MURTHY AND PERURU G. PRASAD

Abstract. Our aim in this Paper is to establish Galois connections between various

types of fuzzy binary relations and fuzzy I-ary relations on a crisp set, that take

their truth values in a complete lattice, and same type of crisp binary and I-ary

relations on the associated fuzzy-point-set.

0. Introduction

Fuzzy relations were first introduced by Lotfi Zadeh in his pioneering work Zadeh [6]

on Fuzzy sets. Later on these [0, 1] valued fuzzy relations were extensively studied by

several Mathematicians as well as Computer Scientists.

Our aim in this Paper is to establish Galois connections between various types of fuzzy

binary (I-ary) relations on a crisp set, which take their truth values in a complete lattice,

and similar/same type of crisp binary (I-ary) relations on the associated fuzzy-point-set.

A primitive version of this paper appeared in Nistala and Peruru [4].

We assume the following notions from Lattice Theory: (sub)poset, order preserving

map between posets, (least) upper bound, (greatest) lower bound, least element, greatest

element in a poset, (complete) (semi) lattice, (complete) sub (semi) lattice, (complete)

homomorphism of (semi) lattices, ideal, filter and Galois connection etc.. One can refer

to any standard text book on Lattice Theory for them. Observe that by a complete lat-

tice we mean a poset in which every nonempty subset has both infimum and supremum,

a subset of a complete lattice is a complete sublattice if and only if it is closed under

infimums and supremums for its nonempty subsets and by a complete homomorphism we

mean any map between complete lattices which preserves infimums and supremums for

nonempty sets. With these definitions, the least and the greatest elements of a complete

sub lattice may or may not be the same as the corresponding ones of the parent com-

plete lattice, the empty set is trivially a complete (sub) lattice and the inclusion maps

become complete homomorphisms, which is not the case with the other definition of

complete homomorphism which requires complete homomorphisms to preserve infimums

and supremums for all subsets including the empty set, when the inclusion maps fail to
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be complete homomorphisms as they have to preserve 0 and 1 which may not happen as
in: i = {(α, α), (β, β)} from {α, β} to {0, α, β, 1 | 0 < α < β < 1} -our complete homo-
morphism. We define complete semi lattices and complete semi lattice homomorphisms
in a similar way.

Proofs are omitted for two reasons: 1. to minimize the size of the document and 2.
in most cases, they are either easy or, straight forward and a little involving.

In this section, along with some standard notions of L-fuzzy set theory, a few other
notions and theorems involving these notions were recalled from Nistala [3].

Note. Throughout this Paper L is an arbitrary but fixed complete Brouw-
erian lattice. Henceforwards, we drop the word “fuzzy” in all the phrases
“L-fuzzy . . . . . .”. In other words, we write L-subset, L-point, L-union, L-
intersection, etc. instead of L-fuzzy subset, L-fuzzy point, L-fuzzy union,
L-fuzzy intersection, etc..

An L-subset A of a set X is a mapping A : X −→ L where L is a complete lattice.
The L-subset A is said to be a ∨-1-L-subset iff ∨AX = 1L.

The constant map assuming the value 0 of L, for each x in X is the empty L-subset

of X and is denoted by 0̄. The constant map assuming the value 1 of L, for each x in X
is the whole L-subset of X and is denoted by 1̄.

An L-subset A : X −→ L is an L-point of X , denoted by xα, sometimes also by (x, α),
iff

A(y) =

{

α if y = x

0 otherwise.

The set of all L-points of X is denoted by XL. Thus XL = {xα | x ∈ X,α ∈ L}.
Note that XL is a proper quotient set on X × L and not X × L itself. An L-point is
empty or non-empty according as it is the empty or non-empty L-subset. Further, it is
easy to see that (1) x0 is the empty L-subset 0̄ for each x ∈ X . (2) xα 6= 0̄ iff α 6= 0. (3)
For any pair of L-points xα 6= 0̄ and yβ 6= 0̄, xα = yβ iff x = y and α = β.

For any pair of L-subsets A, B of X , A is L-contained in B, denoted by A ≤ B, iff
for each x ∈ X , Ax ≤ Bx.

For any family (Ai)i∈I of L-subsets of X , the L-union of (Ai)i∈I , denoted by ∨i∈IAi,
is defined by

(∨i∈IAi)x = ∨i∈IAix, for each x ∈ X

and the L-intersection of (Ai)i∈I , denoted by ∧i∈IAi, is defined by

(∧i∈IAi)x = ∧i∈IAix, for each x ∈ X.

For any L-subset A of X , the associated crisp set of A, denoted by A
′

, is defined by

A
′

= {xα | Ax ≥ α}.

For any subset B of XL, the associated L-subset of B, denoted by B̄ : X −→ L, is defined
by

B̄(x) = ∨{α | xα ∈ B}.
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Clearly, for any L-point xα and for any L-subset A,

xα ≤ A⇔ Ax ≥ α⇔ xα ∈ A
′

For any x ∈ X and α ∈ L, the α-stalk on x, denoted by stalkx(α), is defined by

stalkx(α) = {xδ | 0 ≤ δ ≤ α}.

For any subset B of XL, (1) B is closed under stalks iff for each xα ∈ B, stalkx(α) ⊆ B.
(2) B is closed under supremums iff for any subset M of L, if xα ∈ B for each α ∈ M

then x∨M ∈ B. (3) B is s-closed iff it is closed under supremums and stalks.

It ia easy to see that (1) for any subset B of XL, B is s-closed iff for any subset M

of L, for each α ∈ M xα ∈ B ⇔ x∨M ∈ B. (2) For any L-subset A of X , A
′

is always

s-closed. (3) For any subset B of XL, the following are equivalent: (a) B is s-closed.
(b) B = B̄

′

. (c) For each x ∈ X , xB̄x ∈ B and stalkx(B̄x) ⊆ B. (4) For any set X

and for any complete lattice L, the set of all subsets of XL, P (XL), is a complete lattice

(P (XL),∩,∪) where, for any (Ai)i∈I ⊆ P (XL), ∩i∈IAi is the ordinary intersection of
(Ai)i∈I and ∪i∈IAi is the ordinary union of (Ai)i∈I . The least and the greatest elements

of P (XL) are 0XL
= φ1XL

= XL respectively. (5) For any set X and for any complete

lattice L, the set of all L-subsets of X , denoted by LX , is a complete lattice (LX ,∧,∨)
where, for any (Bj)j∈J ⊆ LX , ∧j∈JBj is the L-intersection of (Bj)j∈J and ∨j∈JBj is the

L-union of (Bj)j∈J . The least and the greatest elements of LX are 0LX = 0̄, 1LX = 1̄
respectively.

Representation of L-Subsets via Galois Connection

0.1. Theorem. For any set X and for any complete lattice L, define φ : LX −→ P (XL)
by

φA = A
′

, the associated crisp set of A

and ψ : P (XL) −→ LX by

ψB = B̄, the associated L-subset of B.

Then the following are true:

(1) A1 ≤ A2 ⇒ φA1 ⊆ φA2.

(2) B1 ⊆ B2 ⇒ ψB1 ≤ ψB2.

(3) φ is a ∧-complete homomorphism of the complete lattices.

(4) ψ is a ∨-complete homomorphism of the complete lattices.

(5) ∪i∈Iφ(Ai) ⊆ φ(∨i∈IAi) holds in general.

(6) ψ(∩i∈IBi) ≤ ∧i∈Iψ(Bi) holds in general.

(7) ψ ◦ φ = 1.
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(8) φ ◦ ψ ⊇ 1

(9) A = 0 ⇔ (φA)⋆ = φ.

(10) B⋆ = φ⇔ ψB = 0, where B⋆ = B − {0}.

(11) Image(φ) = {C ∈ P (XL) | C is s-closed.

In connection to the above result, the first author would like to draw the attention of

the reader to the result: Theorem 3.25, Page 89 of Belohlavek [7] and Belohlavek [8].

In what follows we briefly recall some standard notions and results from the theory
of binary relations only to make the document more self contained.

0.2. Definitions and statements. For any pair of sets X and Y , a relation from X
to Y is any subset of X × Y . If R is a relation from a set X to itself, then R is a binary

relation on X . For any set X , the relation {(x, x) | x ∈ X} is the identity relation of
X and is denoted by ∆X . The set of all binary relations on X denoted by R2(X), is a

complete meet semi lattice where the ∧ is given by the usual set intersection. The least
element is φ and the largest element isX×X . In fact, For any set X , R2(X) is a complete
lattice with the infimum and the supremum given by inf A = ∩i∈IAi, supA = ∪i∈IAi,
where A = (Ai)i∈I is any subset of R2(X). The least and the greatest elements of R2(X)
are φ, X ×X respectively.

Let X be a set and R be a binary relation on X . Then (a) R is reflexive iff for each
x ∈ X , (x, x) ∈ R. The set of all reflexive relations on X , denoted by Rr(X) is a sub
poset of R2(X). The least element is ∆X and the largest element is X × X . Clearly,
φ ⊆ X ×X is reflexive iff X = φ. (b) R is irreflexive iff for each x ∈ X , (x, x) /∈ R. The
set of all irreflexive relations on X , denoted by Ri(X), is a sub poset of R2(X). The least
element is φ and the largest element is ∇X = X×X−∆X . (c) R is symmetric iff for each

x, y ∈ X , (x, y) ∈ R implies (y, x) ∈ R. The set of all symmetric relations on X , denoted
by Rs(X), is a sub poset of R2(X). The least element is φ and the largest element is
X ×X . (d) R is antisymmetric iff (x, y) ∈ R and (y, x) ∈ R implies x = y. The set of
all antisymmetric relations on X , denoted by Ra(X), is a sub poset of R2(X). The least
element is φ. (e) R is transitive iff whenever (x, y) ∈ A and (y, z) ∈ A, (x, z) ∈ A. The

set of all transitive relations on X , denoted by Rt(X), is a sub poset of R2(X). The least
element is φ and the largest element is X ×X . (f) R is an equivalence relation iff it is
reflexive, symmetric and transitive. The set of all equivalence relations on X , denoted by
Re(X), is a sub poset of Rr(X), (Rs(X), Rt(X), and R2(X)). The least element is ∆X

and the largest element is X×X . (g) R is a partial order iff it is reflexive, antisymmetric
and transitive. The set of all partial orders on X , denoted by Rp(X), is a sub poset of

Rr(X) (Ra(X), Rt(X) and R2(X)). The least element is φ.

(h) It is easy to see that for any family of binary relations (Ai)i∈I on a set X , the
following are true:

(1) Ai is a reflexive relation, for each i ∈ I =⇒ ∩i∈IAi is a reflexive relation.
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(2) Ai is an irreflexive relation, for each i ∈ I =⇒ ∩i∈IAi is an irreflexive relation

(In fact, more generally, if A is an irreflexive relation and B is any other binary
relation such that B ⊆ A then B is an irreflexive relation. Consequently, if

some Ai0 is an irreflexive relation then ∩i∈IAi is an irreflexive relation).

(3) Ai is symmetric relation, for each i ∈ I =⇒ ∩i∈IAi is a symmetric relation.

(4) Ai is an antisymmetric relation, for each i ∈ I =⇒ ∩i∈IAi is an antisym-
metric relation (In fact, more generally, if A is an antisymmetric relation and

B is any other binary relation such that B ⊆ A then B is an antisymmetric
relation. Consequently, if some Ai0 is an antisymmetric relation then ∩i∈IAi

is an antisymmetric relation.

(5) Ai is a transitive relation, for each i ∈ I =⇒ ∩i∈IAi is a transitive relation.

(6) Ai is an equivalence relation, for each i ∈ I =⇒ ∩i∈IAi is an equivalence
relation.

(7) Ai0 is a poset, for some i0 ∈ I =⇒ ∩i∈IAi is a poset.

(i) Also, it is easy to see that for any family of binary relations (Ai)i∈I on a set X , the

following are true:

(1) if Ai0 is a reflexive relation for some i0 ∈ I then ∪i∈IAi is a reflexive relation.

(2) if Ai is an irreflexive relation for each i ∈ I then ∪i∈IAi is also an irreflexive

relation.

(3) if Ai is an symmetric relation for each i ∈ I then ∪i∈IAi is also a symmetric
relation.

(j) For any set X , the following are true:

(1) Rr(X) is the principal filter generated by ∆X in R2(X) with the least element
∆X and the greatest element X ×X .

(2) Rs(X) is a complete sublattice of R2(X) with the least element φ and the

greatest element X ×X .

(3) Ri(X) is the principal ideal generated by ∇X in R2(X) with the least element
φ and the greatest element ∇X .

(4) Rt(X) is a complete meet sub semi lattice of R2(X) with the least element φ

and the greatest element X ×X .

(5) Ra(X) is a complete meet sub semi lattice of R2(X) with the least element φ.

(6) Rp(X) is a complete meet sub semi lattice of R2(X) with the least element
∆X .

(7) Re(X) is a complete meet sub semi lattice of R2(X) with the least element ∆X

and the greatest element X ×X .

(k) For any set X , the following are true:
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(1) Rt(X) is a complete lattice with the meet extended join.

(2) Re(X) is a complete sublattice of Rt(X).

(l) The union of transitive relations need not be a transitive relation as shown in the

following example:

Example 1. Let X = {x, y, z}, A1 = {(x, x), (y, y), (x, y)} and A2 = {(y, y), (z, z),

(y, z)}. Then A1, A2 are transitive relations on X . But A1 ∪ A2 is not a transitive

relation, because (x, y), (y, z) ∈ A1 ∪A2 and (x, z) 6∈ A1 ∪A2.

Thus Rt(X) is not a complete sub lattice of R2(X).

(m) The union of antisymmetric relations need not be an antisymmetric relation as shown

in the following example:

Example 2. Let X = {x, y}, A1 = {(x, y)} and A2 = {(y, x)}. Then A1, A2 are

antisymmetric relations on X . But A1 ∪A2 is not an antisymmetric relation.

Thus Ra(X) is a not a complete sub lattice of R2(X).

(n) The union of equivalence relations need not be an equivalence relation. Thus Re(X)

is not a complete sub lattice of R2(X).

(o) The union of partial orders need not be a partial order as shown in the following

example:

Example 3. Let X = {x, y}, A1 = {(x, x), (x, y), (y, y)} and A2 = {(x, x), (y, x),

(y, y)}. Then A1, A2 are partial ordering relations on X . But A1 ∪ A2 is not a partial

ordering relation, because x 6= y.

Thus Rp(X) is not a complete sub lattice of R2(X).

Crisp I-ary relations

0.3. Definitions and Statements. For any set X and for any index set I, X power I,

denoted by XI , is defined by

{f : I −→ X | f(i) ∈ X ∀ i ∈ I}

An I-ary relation on X is any subset of XI . It is easy to see that (1) The set of all

I − ary relations on X denoted by RI(X) is a poset with ≤ given by the set inclusion.

The least element is φ and the largest element is XI . In fact,

(2) For any set X and for any index set I, RI(X) is a complete lattice with the infimum

and the supremum given by inf A = ∩i∈IAi, supA = ∪i∈IAi, where A = (Ai)i∈I is

any subset of RI(X). The least and the greatest elements of RI(X) are 0RI (X) = φ,

1RI(X) = XI respectively.
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1. Crisp binary relations on an L-fuzzy-point-set

In this section, on an L-point-set we introduce the notion of (crisp) binary relations
and for these binary relations, we introduce the notions of stalk closedness, strongly

reflexivity, weakly transitivity, equivalence, weak equivalence and study some required

properties involving them. These results will be used later in establishing a Galois
connection between L-fuzzy binary (equivalence) relations on a set and crisp binary

(equivalence) relations on the L-point-set.
Let us recall that XL denotes the set of all L-points on the set X . Then the set of

all binary relations on XL, denoted by R2(XL) is a complete lattice with the infimum

and the supremum given by inf T = ∩i∈ITi, supT = ∪i∈ITi, where T = (Ti)i∈I is any
subset of R2(XL). The least and the greatest elements of R2(XL) are 0R2(XL) = φ,

1R2(XL) = XL ×XL respectively.

1.1. Definitions and Statements. Let R be a binary relation on XL.

(a) The notion of equivalence relation is defined as usual.

(b) R is said to be stalk closed iff (xα, yβ) ∈ R, γ ≤ α, δ ≤ β implies (xγ , yδ) ∈ R.

(c) R is said to be a weakly transitive relation iff (xα, yβ), (yβ , zγ) ∈ R implies (xα∧β∧γ ,

zα∧β∧γ) ∈ R.

It is natural to expect some relation between transitivity and weak transitivity. How-

ever, there is no relation between them as will be seen in Examples 6 and 7 later.

(d) R is said to be a weak equivalence relation iff it is reflexive, symmetric and weak

transitive.

Since there is no relation between weak transitivity and transitivity, there is no rela-
tion between weak equivalence and equivalence.

(e) The set of all weak equivalence relations on XL, denoted by Rwe(XL), is a meet
complete sub semi lattice of R2(XL), where the meet is given by the usual set inter-

section. Also 1Rwe(XL) = XL ×XL.

(f) Rwe(XL) is a complete lattice where ∨ is the meet extended join.

(g) Rwe(XL) is not a complete sublattice of R2(XL) because the union of weak equiva-
lence relations is not necessarily a weak equivalence relation as shown in the following

example:

Example 4. Let X = {x, y, z}, L = {0, α, β, 1 | 0 < α < β < 1}, E1 =
{(xδ, xδ), (yδ, yδ), (zδ, zδ), (xα, yα), (yα, xα), (xα, y1), (y1, xα) | δ = 0, α, β, 1} and E2 =

{(xδ, xδ), (yδ, yδ), (zδ, zδ), (yβ , zβ), (zβ , yβ), (y1, zβ), (zβ , y1) | δ = 0, α, β, 1}. Then E1, E2

are weak equivalence relations. But E1 ∪E2 is not a weak equivalence relation, because

(xα, y1), (y1, zβ) ∈ E1 ∪ E2 and (xα, zα) 6∈ E1 ∪ E2.
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(h) The stalk closure of R, denoted by Clst(R), is defined by Clst(R) = {(xγ , yδ) |
(xα, yβ) ∈ R, γ ≤ α, δ ≤ β}.

(i) A weak equivalence relation which is also stalk closed is called a stalk closed weak

equivalence relation.

The set of all stalk closed weak equivalence relations on XL, denoted by Rwe
s (XL), is

sub poset of Rwe(XL). In fact,

(j) For any set X , Rwe
s (XL) is a complete sub lattice of Rwe(XL).

(k) R is said to be strongly reflexive iff (xα, xβ) ∈ R, whenever α ≤ β or β ≤ α.

(l) Every strongly reflexive relation R on XL is always a reflexive relation.

The converse of the above statement is not true as shown in the following example:

Example 5. Let X = {x, y, z}, L = {0, α, β, 1 | 0 < α < β < 1} and R =
{(φ, φ), (xδ , xδ), (yδ, yδ), (zδ, zδ), (xα, yα), (yα, xα), (y1, z1), (z1, y1) | δ = α, β, 1}. Then R
is a reflexive relation, but not a strongly-reflexive relation, because (xα, x1) 6∈ R and
(x1, xα) 6∈ R though α < 1.

(m) Every stalk closed transitive relation R on XL is a weakly transitive relation.

The converse of the above statement is not true, that is, a weakly transitive relation
need not be a transitive relation, as shown in the following example.

Example 6. Let X = {x, y}, L = {0, 1 | 0 < 1} and T = {(φ, φ), (x0, y1), (y1, x0),
(x1, y1), (y1, x1), (x1, x1), (y1, y1)}. Then T is a weakly transitive relation, but not tran-
sitive relation, because (x0, y1), (y1, x1) ∈ T and (x0, x1) 6∈ T .

In fact, T is a weak equivalence relation, but not an equivalence relation.

(n) A mere transitive relation without being stalk closed need not be a weakly transitive
relation, as shown in the following example:

Example 7. Let X = {x, y, z}, L = {0, α, 1 | 0 < α < 1} and T = {(xδ, xδ), (yδ, yδ),
(zδ, zδ), (xα, yα), (yα, xα), (yα, z1), (z1, yα) | δ = 0, α, 1}. Then T is a transitive relation,
but not weakly transitive relation, because (xα, yα), (yα, z1) ∈ T and (xα, zα) 6∈ T . Note
that T is not stalk closed because (yα, zα) 6∈ T .

In fact, T is an equivalence relation, but not a weak equivalence relation.

(o) For any reflexive, symmetric relation R on XL, Clst(R) is also a reflexive, symmetric
relation.

(p) For an equivalence relation R on XL, Clst(R) need not be an equivalence relation,
as shown in the following example:
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Example 8. Let X = {x, y, z}, L = {0, α, β, 1 | 0 < α, β < 1;α ‖ β}. Then

R = {(φ, φ), (xδ , xδ), (yδ, yδ), (zδ, zδ), (xα, yβ), (yβ , xα), (y1, z1), (z1, y1) | δ = 0, α, β, 1} is

an equivalence relation and Clst(R) = {(φ, φ), (xδ , xδ), (yδ, yδ), (zδ, zδ), (xα, yβ), (yβ , xα),

(x0, yβ), (yβ , x0), (xα, y0), (y0, xα), (yδ, zδ), (zδ, yδ) | δ = 0, α, β, 1}. Further, Clst(R) is

not transitive relation, because (xα, yβ), (yβ , zβ) ∈ Clst(R) and (xα, zβ) 6∈ Clst(R).

Hence Clst(R) is not an equivalence relation.

(q) For any binary relation R on XL, the following are true:

(1) R ⊆ Clst(R).

(2) R ⊆ S ⇒ Clst(R) ⊆ Clst(S).

(3) ClstClst(R) = Clst(R).

(4) R is stalk closed ⇔ R = Clst(R).

Thus (1) for any binary relation R on XL, Clst(R) is a closure operator. (2) for any

binary relation R on XL, Clst(R) is always stalk closed. (3) For any binary relations R,

S on XL such that R ⊆ S and S is stalk closed, Clst(R) ⊆ S.

(r) For any equivalence relation R on XL such that R is strongly reflexive, Clst(R) is

an equivalence relation.

2. L-fuzzy-binary relations

In this section we introduce the notions of L-I-ary relation, the associated (crisp)

I-ary relation for any L-I-ary relation, the associated L-I-ary relation for any (crisp)

I-ary relation on the L-point-set, (crisp) equivalence relation, weak equivalence relation,

L-equivalence relation, the associated (crisp) binary relation for any L-binary relation

on a set and the associated L-binary relation for any (crisp) binary relation on an L-

fuzzy-point-set, and represent the L-I-ary relations (L-equivalence relations) on a crisp

set as a ∧-complete sublattice of the ∧-complete lattice of crisp I-ary relations (weak

equivalence relations) via a Galois connection.

Through out the following, L is assumed to be an arbitrary but fixed complete Brouw-

erian lattice. However, L being mere complete lattice will be enough in most of the cases.

Hence, whenever the proof uses the fact that L is a Brouwerian lattice, in the hypothesis

of its statement we specifically mention that L is a complete Brouwerian lattice.

2.1. Definitions and Statements

(a) An L-binary relation on a set X is any map R : X ×X −→ L.

The set of all L-binary relations on X , denoted by R2
L(X), is a poset with ≤ given

by: for R,S ∈ R2
L(X), R ≤ S iff R(x) ≤ S(x) ∀x ∈ X ×X . In fact,

(b) For any set X and for any complete lattice L, R2
L(X) is a complete lattice with

the infimum and the supremum given by: inf S = ∧j∈JSj , supS = ∨j∈JSj , where
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S = (Sj)j∈J is any subset of R2
L(X), (∧j∈JSj)(x) = ∧j∈JSj(x) ∀x ∈ X × X and

(∨j∈JSj)(x) = ∨j∈JSj(x) ∀x ∈ X×X . The least and the greatest elements ofR2
L(X)

are 0R2

L
(X) = 0̄, 1R2

L
(X) = 1̄ respectively, where 0̄ is the constant map assuming the

value 0 of L on X × X and 1̄ is the constant map assuming the value 1 of L on
X ×X .

Let R be an L-binary relation on a set X . Then

(c) R is said to be an L-reflexive relation iff R 6= 0̄ and R(x, x) ≥ R(y, z), for each

x, y, z ∈ X .

(d) The set of all L-reflexive relations on X , denoted by Rr
L(X), is a sub poset of R2

L(X)

(e) R is said to be an L-irreflexive relation iff for each x ∈ X , R(x, x) = 0L.

(f) The set of all L-irreflexive relations on X , denoted by Ri
L(X), is a sub poset of

R2
L(X).

(g) R is said to be an L-symmetric relation iff R(x, y) = R(y, x), for each x, y ∈ X .

(h) The set of all L-symmetric relations on X , denoted by Rs
L(X), is a sub poset of

R2
L(X).

(i) R is said to be an L-antisymmetric relation iff R(x, y) = R(y, x) implies x = y.

(j) The set of all L-antisymmetric relations on X , denoted by Ra
L(X), is a sub poset of

R2
L(X).

(k) R is said to be an L-transitive relation iff R(x, z) ≥ R(x, y) ∧ R(y, z), for each
x, y, z ∈ X .

(l) The set of all L-transitive relations on X , denoted by Rt
L(X), is a sub poset of

R2
L(X).

(m) R is said to be an L-equivalence relation iff it is an L-reflexive, L-symmetric and
L-transitive.

(n) The set of all L-equivalence relations on X , denoted by Re
L(X), is a sub poset of

R2
L(X).

(o) R is said to be an L-partial order iff it is an L-reflexive, L-antisymmetric and L-
transitive.

(p) The set of all L-partial orders on X , denoted by Rp
L(X), is a sub poset of R2

L(X).

The following is a motivation for the preceeding definitions.

(q) For any set X and for any binary relation A on X , the following are true:
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(1) A is a reflexive relation iff χA is an L-reflexive relation.

(2) A is an irreflexive relation iff χA is an L-irreflexive relation.

(3) A is a symmetric relation iff χA is an L-symmetric relation.

(4) A is a transitive relation iff χA is an L-transitive relation.

(5) χA is an L-antisymmetric relation ⇒ A is an antisymmetric relation.

(r) Whenever A is an antisymmetric relation, χA need not be an L-antisymmetric rela-

tion as shown in the following example:

Example 9. Let X = {x, y} and A = {(x, x), (y, y)}. Then A is an antisymmetric

relation. But χA is not an L-antisymmetric relation, because χA(x, y) = χA(y, x) = 0

and x 6= y.

(s) For any binary relationA onX , A is an equivalence relation iff χA is an L-equivalence

relation.

Now we begin studying some lattice theoretic properties of the above mentioned L-

fuzzy relations.

2.2. Proposition For any family of L-binary relations (Ai)i∈I on a set X and for any

complete lattice L, the following are true:

(1) Ai is an L-reflexive relation, for each i ∈ I =⇒ ∧i∈IAi is an L-reflexive relation,

whenever it is not the L-empty set 0̄ or whenever L is unique atomed.

(2) Ai0 is an L-irreflexive relation, for some i ∈ I ⇒ ∧i∈IAi is an L-irreflexive relation.

(3) Ai is an L-symmetric relation, for each i ∈ I ⇒ ∧i∈IAi is an L-symmetric relation.

(4) Ai is an L-transitive relation, for each i ∈ I ⇒ ∧i∈IAi is an L-transitive relation.

(5) Ai is an L-equivalence relation, for each i ∈ I ⇒ ∧i∈IAi is an L-equivalence

relation, whenever it is not the L-empty set 0̄ or whenever L is unique atomed.

Proof. It is straight forward and follows from (c), (e), (g), (k) and (m) of 2.1.

L-intersection of L-reflexive relations may become L-empty set as shown in the fol-

lowing example:

Example 10. Let X = {x, y}, L = {0, α, β, 1 | 0 < α, β < 1;α ‖ β} A = {((x, x), α),

((y, y), α), ((x, y), 0), ((y, x), 0)} and B = {((x, x), β), ((y, y), β), ((x, y), 0), ((y, x), 0)}.

Then A and B are L-reflexive relations but A ∧B is not an L-reflexive relation because

it is the L-empty set.

L-intersection of L-antisymmetric relations is not necessarily an L-antisymmetric re-

lation even when L is the two element lattice, as shown in the following example:
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Example 11. Let X = {x, y}, L = {0, 1 | 0 < 1}. Define A1 = {((x, x), 1),

((y, y), 1), ((x, y), 0), ((y, x), 1)} and A2 = {((x, x), 1), ((y, y), 1), ((x, y), 1), ((y, x), 0)}.
Then A1, A2 are L-antisymmetric relations. But the L-intersection A1 ∧ A2 is not an
L-antisymmetric relation, because (A1 ∧A2)(x, y) = 0 = (A1 ∧A2)(y, x) and x 6= y.

Also, the same example shows that (1) the L-intersection A1 ∧ A2 of L-posets A1,
A2 is not necessarily an L-poset (2) the L-union (A1 ∨A2) of L-antisymmetric relations

is not necessarily an L-antisymmetric relation (3) L-union (A1 ∨ A2) of L-posets is not

necessarily an L-poset.

Thus, the posets Ra
L(X) and Rp

L(X) are at best sub posets of R2
L(X) ! (Please

refer to the discussion after Corollary 2.5)

2.3. Proposition For any set X, for any complete lattice L and for any family of

L-binary relations (Ai)i∈I on X, the following are true:

(1) Ai is an L-reflexive relation, for each i ∈ I =⇒ the L-union ∨i∈IAi is an L-

reflexive relation.

(2) Ai is an L-irreflexive relation, for each i ∈ I =⇒ the L-union ∨i∈IAi is an

L-irreflexive relation.

(3) Ai is an L-symmetric relation, for each i ∈ I =⇒ the L-union ∨i∈IAi is an

L-symmetric relation.

Proof. It is straight forward and follows from (c), (e) and (g) of 2.1.

2.4. Corollary. For any set X and for any complete lattice L, the following are true:

(1) Rr
L(X) is always a ∨-complete sublattice of R2

L(X). However, it is also a ∧-complete

whenever L is uniquely atomed. Thus Rr
L(X) is a complete sub lattice of R2

L(X)
whenever L is unique atomed.

(2) Ri
L(X) is a complete sublattice of R2

L(X).

(3) Rs
L(X) is a complete sublattice of R2

L(X).

(4) Rt
L(X) is a complete sub semi lattice of R2

L(X).

(5) Re
L(X) is a complete sub semi lattice of R2

L(X).

Proof. (1) follows from the Propositions 2.2(1) and 2.3(1), (2) follows from the
Propositions 2.2(2) and 2.3(2), (3) follows from the Propositions 2.2(3) and 2.3(3), (4)

follows from the Proposition 2.2(4) and (5) follows from the Proposition 2.2(5).

2.5. Corollary. For any set X and for any complete lattice L, the following are true:

(1) Rt
L(X) is a complete lattice with the meet extended join.

(2) Re
L(X) is a complete sublattice of Rt

L(X), whenever L is unique atomed.
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Proof. (1) follows from the Corollary 2.4(4)and (2) follows from the Corollary 2.4(1).

L-union of L-antisymmetric relations is not necessarily an L-antisymmetric relation,
as mentioned earlier with a counter example.

L-union of an L-posets is not necessarily an L-poset as mentioned earlier with a

counter example.
L-union of L-transitive relations is not necessarily an L-transitive relation, as shown

in the following example:

Example 12. Let X = {x, y, z}, L = {0, 1 | 0 < 1}. Define A1 = {((x, x), 1), ((y, y),
1), ((z, z), 0), ((x, y), 1), ((y, x), 0), ((x, z), 0), ((y, z), 0), ((z, x), 0), ((z, y), 0)} and A2 =

{((x, x), 0), ((y, y), 1), ((z, z), 1), ((x, y), 0), ((x, z), 0), ((y, x), 0), ((y, z), 1), ((z, x), 0),
((z, y), 0)}. Then A1, A2 are L-transitive relations. But A1 ∨ A2 is not an L-transitive

relation, because (A1 ∨A2)(x, z) = 0 6= (A1 ∨A2)(x, y) ∧ (A1 ∨A2)(y, z) = 1 ∧ 1 = 1.

Thus Rt
L(X) is not a complete sub lattice of R2

L(X).

L-union of L-equivalence relations is not necessarily an L-equivalence relation.
Thus Re

L(X) is not a complete sub lattice of R2
L(X).

2.6. Definitions

(a) For any L-binary relation S onX , the associated binary relation for S on XL, denoted
by S

′

, is defined by:

S
′

= {(xα, yβ) | S(x, y) ≥ α ∧ β}.

(b) For any binary relation R on XL, the associated L-binary relation for R on X ,
denoted by R̄, is defined by:

R̄(x, y) = ∨{α ∧ β | (xα, yβ) ∈ R}.

2.7. Proposition. For any L-binary relation S on X, S′ = S.

Proof. It is straight forward and follows from (a) and (b) of 2.6.

2.8. Lemma. For any L-binary relation S on X, S
′

is always stalk closed.

Proof. It is straight forward and follows from 2.6(a) and 1.1(b).

In general the above S
′

is not an equivalence relation on XL, even if L is a two element

chain and S is an L-equivalence relation on X as shown in the following example:

Example 13. Let X = {x, y, z}, L = {0, 1 | 0 < 1} and A = {(x, x), (y, y), (z, z),
(x, y), (y, x)}. Then A is an equivalence relation. Since A is an equivalence relation

iff χA is an L-equivalence relation, S = χA is an L-equivalence relation. However,
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S
′

= {(xα, yβ) | S(x, y) ≥ α ∧ β} is not an equivalence relation on XL, because

(y1, x0), (x0, z1) ∈ S
′

but (y1, z1) 6∈ S
′

.

2.9. Proposition. For any L-equivalence relation S on X, S
′

is always a weak-

equivalence relation on XL.

Proof. It is straight forward and follows from 2.6(a) and 1.1(d).

2.10. Proposition. For any stalk closed equivalence relation R on XL, the associated

L-binary relation R̄ on X is always an L-equivalence relation.

Proof. It is straight forward and follows from 2.6(b) and 2.1(m).

In the above Proposition, R being stalk closed is necessary as shown in the following

example:

Example 14. Let X = {x, y, z}, L = {0, α, β, 1 | 0 < α < β < 1}, XL =

{x0 = yo = z0, xα, yα, zα, xβ , yβ, zβ, x1, y1, z1} and R = {(φ, φ), (xδ , xδ), (yδ, yδ), (zδ, zδ),

(xα, yα), (yα, xα), (y1, z1), (z1, y1) | δ = α, β, 1}. Then R is an equivalence relation on

XL. Note that R is not stalk closed, because (x0, yα) 6∈ R. Also R̄(x, x) = R̄(y, y) =

R̄(z, z) = 1, R̄(x, y) = R̄(y, x) = α, R̄(y, z) = R̄(z, y) = 1 and R̄(z, x) = R̄(x, z) = 0,

because (x, z) /∈ R. If R̄(x, z) ≥ R̄(x, y) ∧ R̄(y, z) then 0 ≥ α ∧ 1 = α, which is a con-

tradiction. Therefore R̄ is not an L-transitive relation. Hence R̄ is not an L-equivalence

relation on X .

2.11. Proposition. For any stalk closed weak-equivalence relation T on XL, the asso-

ciated L-binary relation T̄ on X is an L-equivalence relation.

Proof. It is straight forward and follows from (b), (i) of 1.1, 2.1(m) and 2.6(b).

It appears as if a strongly reflexive, symmetric and transitive binary relation is all of

XL ×XL. But this is not the case as shown in the following example:

Example 15. Let X = {x, y, z}, L = {0, α, β, 1 | 0 < α, β < 1, α ‖ β} and R =

{(aγ , aδ) | γ ≤ δ or δ ≤ γ, a = x, y, z}. Then R is strongly-reflexive, symmetric and

transitive relation. But R 6= XL ×XL, because (xα, yβ) ∈ XL ×XL and (xα, yβ) 6∈ R.

3. L-fuzzy I-ary relations

In this section, we recall the notion of L-I-ary relation and introduce the notions of

stalk closedness of an I-ary relation on an L-fuzzy-point-set, the associated L-subset for

a (crisp) I-ary relation on an L-fuzzy-point-set and the associated (crisp) subset for an

L-fuzzy I-ary relation on a set, and prove some properties involving these notions.
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3.1. Definitions and Statements. (a) For any set X and for any complete Brouwerian

lattice L, an L-I-ary relation on X is any map A : XI −→ L. The set of all L-I-ary

relations on X , denoted by RI
L(X).

(b) An I-ary relation R on XL is said to be stalk closed iff for each i ∈ I, (xi, βi) ∈ R

and αi ≤ βi implies (xi, αi) ∈ R.

(c) For any L-I-ary relation S on X , the associated crisp subset for S denoted by S
′

, is

defined by S
′

= {(xi, αi)i∈I ∈ XL
I | S(xi)i∈I ≥ ∧i∈Iαi}.

(d) For any subset T of XL
I , the associated L-subset for T , denoted by T̄ : XI −→ L, is

defined by T̄ (xi)i∈I = ∨{∧i∈Iαi | (xi, αi)i∈I ∈ T }.

3.2. Proposition. For any L-I-ary relation S on X, S
′

is always stalk closed.

Proof. It follows from (a) and (b) of 3.1.

3.3. Proposition. For any L-I-ary relation S on X, S′ = S.

Proof. It follows from (c) and (d) of 3.1.

3.4. Proposition. For any set X and for any complete lattice L, RI(XL) is a complete

lattice with the infimum and the supremum given by inf T = ∩j∈JTj, supT = ∪j∈JTj,

where T = (Tj)j∈J is any subset of RI(XL). The least and the greatest elements of

RI(XL) are 0RI(XL) = φ, 1RI(XL) = XL
I respectively.

3.5. Proposition. For any set X and for any complete lattice L, RI
L(X) is a complete

lattice with the infimum and the supremum given by: inf S = ∧j∈JSj, supS = ∨j∈JSj,

where S = (Sj)j∈J is any subset of RI
L(X), (∧j∈JSj)(x) = ∧j∈JSj(x) ∀x ∈ XI and

(∨j∈JSj)(x) = ∨j∈JSj(x) ∀x ∈ XI . The least and the greatest elements of RI
L(X) are

0RI

L
(X) = 0̄ and 1RI

L

(X) = 1̄ respectively, where 0̄ is the constant map assuming the value

0 of L on XI and 1̄ is the constant map assuming the value 1 of L on XI .

4. A Galois connection between L-fuzzy binary relations and (crisp) binary

relations

In this section we establish a Galois connection between the complete lattice of all

L-fuzzy binary relations on a (crisp) set X and the (crisp) binary relations on the L-

fuzzy-point-set of the given set, XL.

4.1. Proposition. For any set X and for any complete lattice L, let φ : R2
L(X) −→

R2(XL) be defined by φS = S
′

where S
′

is the associated crisp set of S and ψ :
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R2(XL) −→ R2
L(X) be defined by ψT = T̄ where T̄ is the associated L-binary relation of

T. Then the following are true:

(1) S1 ≤ S2 ⇒ φS1 ⊆ φS2.

(2) T1 ⊆ T2 ⇒ ψT1 ≤ ψT2.

(3) φ is a ∧-complete homomorphism of the complete lattices.

(4) ψ is a ∨-complete homomorphism of the complete lattices.

(5) ∪i∈IφSi ⊆ φ(∨i∈ISi) holds in general.

(6) ψ(∩i∈ITi) ≤ ∧i∈Iψ(Ti) hold in general.

(7) ψ ◦ φ = 1.

(8) φ ◦ ψ ⊇ 1.

Proof. It is tedious but straight forward and similar to that of 0.1.

The above map φ : R2
L(X) −→ R2(XL) is not a ∨-complete homomorphism as shown

in the following example:

Example 16. Let X = {x}, L = {0, α, β, 1 | 0 < α, β, 1;α ‖ β} and S1 = {((x, x),

α)}, S2 = {((x, x), β)}. Then S
′

1 = {(x0, x0), (x0, xα), (xα, x0), (xα, xα)}, S
′

2 = {(x0, x0),

(x0, xβ), (xβ , x0), (xβ , xβ)} and (S1∨S2)
′

= {(x0, x0), (x0, xα), (xα, x0), (x0, xβ), (xβ , x0),

(x0, x1), (x1, x0), (xα, xβ), (xβ , xα), (xα, xα), (xβ , xβ), (xα, x1), (x1, xα), (xβ , x1), (x1, xβ),

(x1, x1)}. Hence φS1 ∪ φS2 ⊂ φ(S1 ∨ S2).

The above map ψ : R2(XL) −→ R2
L(X) is not a ∧-complete homomorphism, as shown

in the following example:

Example 17. Let X = {x}, L = {0, α, β, 1 | 0 < α < β < 1} and T1 = {(xα, xα)},

T2 = {(xβ , xβ)}. Then T̄1 = {((x, x), α)}, T̄2 = {((x, x), β)} and T1 ∩ T2 = {((x, x), 0)}.

Hence ψ(T1 ∩ T2) < ψT1 ∧ ψT2.

In general for an arbitrary T ∈ R2
L(X), it may happen that T ⊂ φ ◦ ψ(T ) as shown

in the following example:

Example 18. Let X = {x}, L = {0, 1 | 0 < 1} and T = {(x0, x0)}. Then T̄ =

{((x, x), 0)} and T̄
′

= {(x0, x0), (x0, x1), (x1, x0)}. Therefore T ⊂ T̄
′

. Hence T ⊂ φ ◦

ψ(T ).

Representation of L-fuzzy binary relations

4.2. Corollary. For any set X and for any complete lattice L, the complete semi lattice

of all L-binary relations on X is isomorphic to a complete sub semi lattice of the complete

semi lattice of crisp binary relations on the L-point-set XL.

Proof. It follows from the Proposition 4.1.
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5. Galois connection between L-equivalence relations and (crisp) weak-equi-

valence relations

In this section we establish a Galois connection between the complete lattice of all

L-fuzzy equivalence relations on a (crisp) set X and the s-closed (crisp) weak-equivalence

relations on the L-fuzzy-point-set of the given set, XL.

5.1. Proposition. For any set X and for any complete lattice L, let φ̄ : Re
L(X) −→

Rwe
s (XL) be defined by φ̄S = S

′

where S
′

is the associated crisp set of S and ψ̄ :

Rwe
s (XL) −→ Re

L(X) be defined by ψ̄T = T̄ where T̄ is the associated L-binary rela-

tion of T , φ̄ = φ | Re
L(X), ψ̄ = ψ | Rwe

s (XL). Then the following are true:

(1) S1 ≤ S2 ⇒ φ̄S1 ⊆ φ̄S2.

(2) T1 ⊆ T2 ⇒ ψ̄T1 ≤ ψ̄T2.

(3) φ̄ is a ∧-complete homomorphism of the complete lattices.

(4) ψ̄ is a ∨-complete homomorphism of the complete lattices.

(5) ∪i∈I φ̄Si ⊆ φ̄(∨i∈ISi) holds in general.

(6) ψ̄(∩i∈ITi) ≤ ∧i∈I ψ̄(Ti) holds in general.

(7) ψ̄ ◦ φ̄ = 1.

(8) φ̄ ◦ ψ̄ ⊇ 1.

Proof. It is tedious but straight forward.

The above map φ̄ : Re
L(X) −→ Rwe

s (XL) is not a ∨-complete homomorphism, as

shown in the following example:

Example 19. Let X = {x}, L = {0, α, β, 1 | 0 < α, β < 1;α ‖ β} and S1 =

{((x, x), α)}, S2 = {((x, x), β)}. Then S
′

1 = {(x0, x0), (x0, xα), (xα, x0), (xα, xα)}, S
′

2 =

{(x0, x0), (x0, xβ), (xβ , x0), (xβ , xβ)} and (S1 ∨ S2)
′

= {(x0, x0), (x0, xα), (xα, x0), (x0,

xβ), (xβ , x0), (x0, x1), (x1, x0), (xα, xβ), (xβ , xα), (xα, xα), (xβ , xβ), (xα, x1), (x1, xα),

(xβ , x1), (x1, xβ), (x1, x1)}. Hence φ̄S1 ∪ φ̄S2 ⊂ φ̄(S1 ∨ S2).

The above map ψ̄ : Rwe
s (XL) −→ Re

L(X) is not a ∧-complete homomorphism, as

shown in the following example:

Example 20. Let X = {x}, L = {0, α, β, 1 | 0 < α < β < 1} and T1 =

{(x0, x0), (x0, xα), (xα, x0), (xα, xα)}, T2 = {(x0, x0), (x0, xβ), (xβ , x0), (xβ , xβ)}. Then

T̄1 = {((x, x), α)}, T̄2 = {((x, x), β)} and T1 ∩ T2 = {((x, x), 0)}. Hence ψ̄(T1 ∩ T2) <

ψ̄T1 ∧ ψ̄T2.

In general for an arbitrary T ∈ Re
L(X), it may happen that T ⊂ φ̄ ◦ ψ̄(T ), as shown

in the following example:
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Example 21. Let X = {x}, L = {0, 1 | 0 < 1} and T = {(x0, x0)}. Then T̄ =

{((x, x), 0)} and T̄
′

= {(x0, x0), (x0, x1), (x1, x0)}. Therefore T ⊂ T̄
′

. Hence T ⊂ φ̄ ◦

ψ̄(T ).

Representation of L-equivalence relations

5.2. Corollary. For any set X and for any complete lattice L, the complete semi lattice

of all L-equivalence relations on X is isomorphic to a complete sub semi lattice of the

complete semi lattice of crisp weak equivalence relations on the L-point-set XL.

Proof. It follows from the Proposition 5.1.

6. Galois connection between L-I-ary relations and crisp I-ary relations

valence relations

In this section we establish a Galois connection between the complete lattice of all

L-fuzzy I-ary relations on a (crisp) set X and the (crisp) I-ary relations on the L-fuzzy-

point-set of the given set, XL.

6.1. Proposition. For any set X and for any complete Brouwerian lattice L, let

φI : RL
I(X) −→ RI(XL) be defined by

φIS = S
′

the associated crisp set for S

and ψI : RI(XL) −→ RL
I(X) be defined by

ψIT = T̄ the associated L− subsetfor T.

Then the following are true:

(1) S1 ≤ S2 ⇒ φI(S1) ⊆ φI(S2).

(2) T1 ⊆ T2 ⇒ ψI(T1) ≤ ψI(T2).

(3) φI is a ∧-complete homomorphism of the complete lattices.

(4) ψI is a ∨-complete homomorphism of the complete lattices.

(5) ∪j∈JφI(Sj) ⊆ φI(∨j∈JSj) holds in general.

(6) ψI(∩j∈JTj) ≤ ∧j∈JψI(Tj) holds in general.

(7) ψI ◦ φI = 1.

(8) φI ◦ ψI ⊇ 1.

Proof. It is tedious but straight forward and similar to that of 4.1.
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Representation of L-I-ary relations

6.2. Corollary. For any set X and for any complete lattice L, the complete semilattice

of all L-I-ary relations on X is isomorphic to a complete sub semilattice of the complete

semilattice of crisp I-ary relations on the L-point-set XL.

Proof. It follows from the Proposition 6.1.
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