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Fixed point theorems with PPF dependence in
strong partial b-metric spaces

Savita Rathee, Monika Swami and Neelam Kumari

Abstract. In this study, PPF dependent fixed point theorems are proved for a
nonlinear operator, where the domain space C[[a, b], E] is distinct from the range
space, E, which is a Strong Partial b-metric space (SPbMS). We obtain existence
and uniqueness of PPF dependent fixed point results for the defined mappings under
SPbMS. Our results are the extension of fixed point results in SPbMS. Examples
are provided in the support of results.

Keywords: PPF dependent fixed point; uniqueness; strong partial b-metric space.

1 Introduction

Fixed point theory has emerged as a highly useful tool in the study of nonlinear processes
during the last few decades. Fixed point concepts and findings in pure and applied
analysis, topology, and geometry have been developed in particular. The well-known
Banach contraction principle [21] is a key of this theory. The works of Bourbaki [14]
and Bakhtin [7] influenced the concept of b-metric. In 1993, Czerwik [22] provided a
weaker assumption than the triangle inequality and explicitly defined a b-metric space
in order to generalise the Banach contraction mapping theorem. Matthews [23], in 1994
proposed the concept of partial metric space as part of the research of denotational
semantics of dataflow networks and demonstrated how the Banach contraction principle
may be adapted to the partial metric context for programme verification applications.
In [24], the notion of SPbMSs was introduced. They also discussed the relationship
between strong b-metric and SPbMSs.

While referring to a fixed point for mappings with different domains and
ranges, Bernfeld et al. [25] originally used the terms ”PPF dependent fixed point”
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or ”fixed point with PPF dependence” in 1977. Additionally, they created the concept
of Banach type contraction and showed some important outcomes under this. For
various contraction mappings, recent research has shown the existence and uniqueness of
PPF dependent fixed points [20],[8],[15],[2],[9], and those interested in the applications
can find PPF dependent solutions to periodic boundary value problems and functional
differential equations that may depend on past, present, and future considerations
[3],[4],[26]]. Wardowski [5] first discussed the F-contraction, a new contraction, in 2012.
Under this contraction, he developed more fixed point observations and created a fixed
point theorem. Following that, Abbas et al. [10] provided an extension of the idea
of F-contraction to reach specific fixed point findings. A striking generalisation of
F -contraction on graphs was described by Batra et al. [18], [19]. Acar et al. [16],[17]
revealed the development of a generalised multi-valued F -contraction mapping to explore
fixed point theory findings in a complete metric space. Wardowski [6] investigated an
extension of the Banach fixed point theorem in a new class of contraction mappings on
metric spaces known as (ϕ, F )-contraction (nonlinear F-contraction) in 2018. In [24], the
notion of Strong Partial b-Metric Spaces (SPbMSs) was introduced. They also discussed
the relationship between strong b-metric and SPbMSs.

Inspired by the outcomes of Kari et al. [1], Wardowski [5] and Bernfeld et.al.
[25] we establish some results of PPF dependent fixed point for nonlinear F-contraction
type mappings in the case of SPbMSs.

2 Preliminaries

Here, we provide the relevant definitions and findings for different spaces and different
type of contractions that will be helpful for further explanation.

Definition 1. [25] “A function ψ ∈ E0 is said to be a PPF dependent fixed point or a
fixed point with PPF dependence of a nonself mapping S if Sψ = ψ(c) for some c ∈ I.”

Definition 2. [24] “A map d : E×E → R+
0 is a strong partial b-metric on a non empty

set E if for all a, b, c ∈ E and α ≥ 1 the following conditions hold:

(SPbM1) a = b ⇔ d(a, a) = d(b, b) = d(a, b);

(SPbM2) d(a, a) ≤ d(a, b);

(SPbM3) d(a, b) = d(b, a);

(SPbM4) d(a, b) ≤ d(a, c) + αd(c, b)− d(c, c).
The triple (E, d, α) is called a Strong Partial b-Metric Space (SPbM).”
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Definition 3. [24] “ Let (E, d, α) be a SPbMS. Then

1. A sequence {an} in (E, d, α) converges to a point a ∈ E if
d(a, a) = limn d(an, a) = limn d(an, an).

2. A sequence {an} in (E, d, α) is Cauchy if the limn,m d(an, am) exists and finite.”

Definition 4. [5] “Let F be the family of all continuous functions F : R+ → R such that

(F1) F is strictly increasing;

(F2) For each sequence {an} ∈ N of positive numbers
lim
n→∞

an = 0 if and only if lim
n→∞

F (an) = −∞; (2.1)

(F3) There exists k ∈ (0, 1) such that limα→0+ α
kF (α) = 0.

A mapping S : E × E is said to be an F -contraction if there exists τ > 0 such that for
all ψ, ξ ∈ E0

(d(Sψ, Sξ)) > 0 =⇒ τ + F (d(Sψ, Sξ)) ≤ F (d(ψ(c), ξ(c))).” (2.2)

Turinici [13] observed that the condition (F2) can be relaxed to the form
(F2’) limn→∞ F (an) = −∞.

Definition 5. [6] “A mapping S : E → E is said to be a (ϕ, F )-contraction (or nonlinear
F -contraction) if there exist the functions F : (0,∞) → R and ϕ : (0,∞) → (0,∞) satisfy
the following

(H1) F satisfies (F1) and (F2’);

(H2) lim infs→t+ ϕ(s) > 0 for all t ≥ 0;

(H3) ϕ(d
′
(ψ, ξ)) + F (d(Sψ, Sξ)) ≤ F (d

′
(ψ, ξ)) for all ψ, ξ ∈ E such that Sψ ̸= Sξ.”

Theorem 2.1. [6] “Let (E, d) be a complete metric space and S : E0 → E be a
(ϕ, F )-contraction. Then S has a unique fixed point.”

3 Main Results

Through the paper,(E, d) is the complete SPbMS. S is an operator from E0 to E, where
E0 = C[[a, b], E], is the collection of all continuos fuctions from [a, b] to E. F is a family
of all functions F : R+ → R which satisfies (F1), (F2), (F2’), (F3). R represents the set
of real numbers and N is the set of natural numbers. Φ is the family of all functions
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ϕ : (0,∞) → (0,∞) with the condition lim infs→t+ ϕ(s) > 0 for all t ≥ 0.

Let F be the class of functions which satisfy
F = f : (0,∞) → [0,

1

2
) : f(zn) →

1

2
=⇒ zn → 0 as n→ ∞.

Theorem 3.1. Let (E, d, α) be a complete SPbMS and S : E0 → E be a non-self map.
Suppose, ∃ f ∈ F such that for all ψ, ξ ∈ E0 and for some c ∈ I, with ψ(c) ̸= ξ(c),

d(Sψ, Sξ) ≤ f(d
′
(ψ, ξ)){d(ψ(c), Sψ) + d(ξ(c), Sξ)}. (3.1)

Then, S has a unique PPF dependent fixed point in E0.

Proof. Let ψ0 ∈ E0 be any arbitrary fuction, so as Sψ0 = y1 for any y1 ∈ E. We choose
ψ1 ∈ E0 such as y1 = ψ1(c) and d

′
(ψ0, ψ1) = d(ψ0(c), ψ1(c). Similary, suppose ψ1 ∈ E0,

we choose ψ2 ∈ E0 such as y2 = ψ2(c) = Sψ1. On the same step, we obtain a sequence
{ψn} in E0,

ψn+1(c) = Sψn = yn+1 for c ∈ I and ∀ n ≥ 0.

Suppose, there exists n ≥ 0 such that ψn+1(c) = Sψn, then obviously ψn is a PPF
dependent fixed point of S. So, assume ψn+1(c) ̸= Sψn ∀ n ≥ 0 and c ∈ I.
Now, define Dn = d

′
(ψn+1, ψn) = d(ψn+1(c), ψn(c)) ∀ n ≥ 0. By inequality (3.1), we

get
Dn+1 = d

′
(ψn+2, ψn+1)

= d(ψn+2(c), ψn+1(c))

= d(Sψn+1, Sψn)

≤ f(d
′
(ψn+1, ψn)){d(ψn+1(c), Sψn+1) + d(ψn(c), Sψn}

<
1

2
{d(ψn+1(c), Sψn+1) + d(ψn(c), Sψn}

=
1

2
{d(ψn+1(c), ψn+2(c)) + d(ψn(c), ψn+1(c)}

=
1

2
{Dn +Dn+1}.

Clearly, Dn+1 < Dn ∀ n ≥ 0. Hence, {Dn} is a monotonically decreasing and bounded
below sequence. So, ∃ β ≥ 0 so as

lim
n→∞

Dn = β.

Now, assume β > 0. Then, by inequality (3.1), we get
d
′
(ψn+2, ψn+1) ≤ f(d

′
(ψn+1, ψn)){d

′
(ψn+1, ψn+2) + d

′
(ψn, ψn+1)};

that is
Dn+1 ≤ f(Dn){Dn+1 +Dn}.
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That implies
Dn+1

Dn+1 +Dn
≤ f(Dn) ∀ n ≥ 0.

Applying n → ∞, we get 1
2 ≤ limn→∞ f(Dn), but 1

2 > limn→∞ f(Dn), because f ∈ F .
Which is a contradiction. So, limn→∞(Dn) = β = 0.
We demonstrate that {Sψn} is a Cauchy sequence in E. Let m < n. So, by inequality
(3.1), we get

d(Sψm+1, Sψn+1) ≤ f(d
′
(ψm, ψn)){d(ψm(c), Sψm) + d(ψn(c), Sψn)}

≤ 1

2
{d(ψm(c), ψm+1(c)) + d(ψn(c), ψn+1(c))}.

As m,n→ ∞, d(ψm(c), ψm+1(c)) and d(ψn(c), ψn+1(c)) → 0. So,
d(Sψm+1, Sψn+1) → 0 as n→ ∞.

So, {Sψn} is a cauchy sequence. Now, {Sψn} is a Cauchy sequence and by hypothesis
E is complete. So, ∃ ψ∗ ∈ E0 such that

lim
n→∞

Sψn = ψ∗(c).

Now, by (SPbM4)
d(Sψ∗, ψ∗(c)) ≤ d(Sψ∗, Sψn) + αd(Sψn, ψ

∗(c))− d(Sψn, Sψn)

≤ f(d
′
(ψ∗, ψn)){d(ψ∗(c), Sψ∗) + d(ψn(c), Sψn)}+ αd(Sψn, ψ

∗(c))− d
′
(ψn+1, ψn+1)

≤ f(d
′
(ψ∗, ψn)){d(ψ∗(c), Sψ∗) + d(ψn(c), Sψn)}+ αd(Sψn, ψ

∗(c)).

So,
d(Sψ∗, ψ∗(c))(1− f(d

′
(ψ∗, ψn))) ≤ f(d

′
(ψ∗, ψn))d(ψn(c), Sψn) + αd(ψn+1(c), ψ

∗(c)),

which implies

d(Sψ∗, ψ∗(c)) ≤ f(d
′
(ψ∗, ψn))

1− f(d′(ψ∗, ψn))
Dn +

α

1− f(d′(ψ∗, ψn))
d(ψn+1(c), ψ

∗(c)) (3.2)

As n→ ∞ right hand side of (3.2) is zero. So,
d(Sψ∗, ψ∗(c)) = 0. (3.3)

Now, by (SPbM2) d(Sψ∗, Sψ∗) ≤ d(Sψ∗, ψ∗(c)).
Since, S : E × E → [0,∞) and d(Sψ∗, ψ∗(c)) = 0.
So, d(Sψ∗, Sψ∗) = 0.
Similarly, we can show that d(ψ∗(c), ψ∗(c)) = 0. Thus, we get
d(ψ∗(c), ψ∗(c)) = d(Sψ∗, ψ∗(c)) = d(Sψ∗, Sψ∗). So, by (SPbMS1) Sψ∗ = ψ∗(c). Hence
ψ∗ ∈ E0 is a PPF dependent fixed point of S.
Uniqueness: If possible, let ξ∗ be any other PPF dependent fixed point of S. So,
Sξ∗ = ξ∗(c).
Using inequality (3.1), we get

d
′
(ψ∗, ξ∗) = d(Sψ∗, Sξ∗)

≤ f(d
′
(ψ∗, ξ∗)){d(ψ∗(c), Sψ∗) + d(ξ,∗ (c), Sξ∗)}.
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By using equation (3.3), we have d′
(ψ∗, ξ∗) = 0.

Now, d′
(ψ∗, ψ∗) = d

′
(ξ,∗ , ξ∗) = 0. [∵ d

′
(ψ∗, ψ∗) ≤ d

′
(ψ∗, ξ∗) and d′

(ξ,∗ , ξ∗) ≤ d
′
(ψ∗, ξ∗).]

So, d′
(ψ∗, ψ∗) = d

′
(ψ∗, ξ∗) = d

′
(ξ,∗ , ξ∗). Hence ψ∗ = ξ∗. Thus, S has unique PPF

dependent fixed point ψ∗ ∈ E0.

Corollary 3.2. “Let (E, d, α) be a complete strong b-metric space and S : E0 → E be
a non-self map. Suppose, ∃ f ∈ F such that for all ψ, ξ ∈ E0 with ψ(c) ̸= ξ(c), where
c ∈ I,

d(Sψ(c), Sξ) ≤ f(d
′
(ψ, ξ)){d(ψ(c), Sψ) + d(ξ(c), , Sξ)}.

Then, S has a unique PPF dependent fixed point in E0.”

Corollary 3.3. “Let (E, d, α) be a complete metric space and S : E0 → E be a non-self
map. Suppose, ∃ f ∈ F such that for all ψ, ξ ∈ E0 with ψ(c) ̸= ξ(c), where c ∈ I,

d(Sψ(c), Sξ) ≤ f(d
′
(ψ, ξ)){d(ψ(c), Sψ) + d(ξ(c), Sξ)}.

Then, S has a unique PPF dependent fixed point in E0.”

Example 1. Consider

S(h) =
5

9
h

(
1

3

)
+

1

81
, for every h ∈ E0

ψ(x) =

1
2 − x2 if x ∈ [0, 12 ]

1
4 if x ∈ [12 , 1]

ξ(x) =

x if x ∈ [0, 13 ]

1
3 if x ∈ [13 , 1]

Clearly, ψ
(
1
3

)
= 7

18 and ξ
(
1
3

)
= 1

3 , i.e. ψ
(
1
3

)
̸= ξ

(
1
3

)
.

Now, define d(x, y) = |x−y|, d′(ψ, ξ) = |ψ− ξ| and f(zn) = 1
2 − zn, where zn = 1

n , n ∈ N.
We find

Sψ =
5

9
ψ

(
1

3

)
+

1

81
=

37

162
,

Sξ =
5

9
ξ

(
1

3

)
+

1

81
=

16

81
.

From condition (3.1), we calculated

d(Sψ, Sξ) = |Sψ − Sξ| = 5

162
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and

f(d
′
(ψ, ξ)){d(ψ(c), Sψ) + d(ξ(c), Sξ)} =

1

2

{∣∣∣∣ 43162
− 7

18

∣∣∣∣+ ∣∣∣∣1981 − 1

3

∣∣∣∣}
=

18

162

which satisfies the condition (3.1). Thus, S has ξ as unique PPF dependent fixed point,
as Sξ = ξ(c) for c = 19

81 ∈ I.

Now, we consider G is the class of functions which satisfy
G = g : (0,∞) → [0,

1

3
) : g(zn) →

1

3
=⇒ zn → 0 as n→ ∞.

Theorem 3.4. Let (E, d, α) be a complete SPbMS and S : E0 → E be a self map.
Assume, ∃ g ∈ G such that ∀ ψ, ξ ∈ E0, with ψ(c) ̸= ξ(c), for each c ∈ I,

d(Sψ, Sξ) ≤ g(d
′
(ψ, ξ)){d(ψ(c), Sψ) + d(ξ(c), Sξ) + d

′
(ψ, ξ)}. (3.4)

Then, S has a unique PPF dependent fixed point in E0.

Proof. Let ψ0 ∈ E0 be any arbitrary fuction, so as Sψ0 = y1 for any y1 ∈ E. We choose
ψ1 ∈ E0 such as y1 = ψ1(c) and d

′
(ψ0, ψ1) = d(ψ0(c), ψ1(c). Similary, suppose ψ1 ∈ E0,

we choose ψ2 ∈ E0 such as y2 = ψ2(c) = Sψ1. On the same step, we obtain a sequence
{ψn} in E0,

ψn+1(c) = Sψn = yn+1 for c ∈ I and ∀ n ≥ 0.

Suppose, there exists n ≥ 0 such that ψn+1(c) = Sψn, then obviously ψn is a PPF
dependent fixed point of S. So, assume ψn+1(c) ̸= Sψn ∀ n ≥ 0 and c ∈ I.
Now, define Dn = d

′
(ψn+1, ψn) = d(ψn+1(c), ψn(c)) ∀ n ≥ 0. By inequality (3.4), we

get
Dn+1 = d

′
(ψn+2, ψn+1)

= d(ψn+2(c), ψn+1(c))

= d(Sψn+1, Sψn)

≤ g(d
′
(ψn+1, ψn)){d(ψn+1(c), Sψn+1) + d(ψn(c), Sψn) + d

′
(ψn+1, ψn)}

<
1

3
{d(ψn+1(c), ψn+2(c)) + d(ψn(c), ψn+1(c)) + d

′
(ψn, ψn+1)}

=
1

3
{2Dn +Dn+1}.

Clearly, Dn+1 < Dn ∀ n ≥ 0. Hence, {Dn} is a monotonically decreasing and bounded
below sequence. So, ∃ β ≥ 0 so as

lim
n→∞

Dn = β.
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Now, suppose β > 0. Then, by inequality (3.4), we have
d(Sψn+1, Sψn) ≤ g(d

′
(ψn+1, ψn)){d(ψn+1(c), Sψn+1) + d(ψn(c), Sψn) + d

′
(ψn+1, ψn)};

that is
Dn+1 ≤ g(Dn){Dn+1 + 2Dn}.

That implies
Dn+1

Dn+1 + 2Dn
≤ g(Dn) ∀ n ≥ 0.

Applying n → ∞, we get 1
3 ≤ limn→∞ g(Dn), but 1

3 > limn→∞ g(Dn), because g ∈ G.
Which is a contradiction. So, limn→∞(Dn) = β = 0.
We demonstrate that {Sψn} is a Cauchy sequence in E. Let m < n. So, by (SpBM4)
and inequality (3.4), we have
d(Sψm, Sψn) ≤ g(d

′
(ψm, ψn)){d(ψm(c), Sψm) + d(ψn(c), Sψn) + d(ψm(c), ψn(c))}

≤ 1

3
{d(ψm(c), Sψm) + d(ψn(c), Sψn) + d(ψm(c), ψn+1(c)) + αd(ψn+1(c), ψn(c))

− d(ψn+1(c), ψn+1(c))}

≤ 1

3
{d(ψm(c), ψm+1(c)) + d(ψn(c), ψn+1(c)) + d(ψm(c), ψn+1(c)) + αd(ψn+1(c), ψn(c))}

≤ 1

3
{d(ψm(c), ψm+1(c)) + αd(ψm(c), ψm+1(c)) + d(ψm+1(c), ψn+1(c))

− d(ψm+1(c), ψm+1(c)) + (1 + α)d(ψn+1(c), ψn(c))}

≤ 1

3
{d(ψm(c), ψm+1(c)) + αd(ψm(c), ψm+1(c)) + d(ψm+1(c), ψn+1(c))

+ (1 + α)d(ψn+1(c), ψn(c))},
which means

d(ψm+1(c), ψn+1(c)) ≤
α+ 1

2
{Dm +Dn}.

As m,n→ ∞, d(ψm(c), ψm+1(c)) and d(ψn, ψn+1) → 0.
So, d(ψm+1(c), ψn+1(c)) → 0 as n→ ∞.
Hence, {ψn(c)} is a Cauchy sequence. We can say that {Sψn} is a Cauchy sequence.
Now, by hypothesis, E is complete. So, ∃ ξ∗ ∈ E so that

lim
n→∞

Snψ0 = ξ∗(c).

Now, by (SPbMS4) and inequation (3.4),
d(Sξ∗, ξ∗(c)) ≤ d(Sξ∗, Sψn) + αd(Sψn, ξ

∗(c))− d(Sψn, Sψn)

≤ g(d
′
(ξ∗, ψn)){d(ξ∗(c), Sξ∗) + d(ψn(c), Sψn) + d(ξ∗(c), ψn(c))}+ αd(ψn+1(c), ξ

∗(c))

− d(ψn+1(c), ψn+1(c))

≤ g(d
′
(ξ∗, ψn)){d(ξ∗(c), Sξ∗) + d(ψn(c), Sψn) + d(ξ∗(c), ψn(c))}+ αd(ψn+1(c), ξ

∗(c)).

So,
d(Sξ∗, ξ∗(c))(1− g(d

′
(ξ∗, ψn))) ≤ g(d

′
(ξ∗, ψn))d(ψn(c), Sψn) + g(d

′
(ξ∗, ψn))d(ψn(c), ξ

∗(c))
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+ αd(ψn+1(c), ξ
∗(c)).

That is

d(Sξ∗, ξ∗(c)) ≤ g(d
′
(ξ∗, ψn))

1− g(d′(ξ∗, ψn))
d(ψn(c), ψn+1(c)) +

g(d
′
(ξ∗, ψn))

1− g(d′(ξ∗, ψn))
d(ψn(c), ξ

∗(c))

+
α

1− g(d′(ξ∗, ψn))
d(ψn+1(c), ξ

∗(c)).

This implies

d(Sξ∗, ξ∗(c)) ≤ g(d
′
(ξ∗, ψn))

1− g(d′(ξ∗, ψn))
Dn +

g(d
′
(ξ∗, ψn))

1− g(d′(ξ∗, ψn))
d(ψn(c), ξ

∗(c)) (3.5)

+
α

1− g(d′(ξ∗, ψn))
d(ψn+1(c), ξ

∗(c)). (3.6)

As n→ ∞, right hand side of (3.5) is zero. So,
d(Sξ∗, ξ∗(c)) = 0. (3.7)

Now, by (SPbMS2) d(Sξ∗, Sξ∗) ≤ d(Sξ∗, ξ∗(c)).
Since, S : E × E → [0,∞) and d(Sξ∗, ξ∗(c)) = 0. So, d(Sξ∗, Sξ∗) = 0. Similarly, we can
show that d(ξ∗(c), ξ∗(c)) = 0. Thus, we get d(ξ∗(c), ξ∗(c)) = d(Sξ∗, ξ∗(c)) = d(Sξ∗, Sξ∗).
So, by (SPbMS1) Sξ∗ = ξ∗(c). Hence ξ∗ ∈ E is a PPF dependent fixed point of S.
Uniqueness: Let if possible ψ∗ is another fixed point of S. So, Sψ∗ = ψ∗(c).
Using inequality (3.4), we get

d
′
(ξ∗, ψ∗) = d(ξ∗(c), ψ∗(c)) = d(Sξ∗, Sψ∗)

≤ g(d
′
(ξ∗, ψ∗)){d(ξ∗(c), Sξ∗) + d(ψ∗(c), Sψ∗) + d

′
(ξ∗, ψ∗)}

≤ 1

3
{d(ξ∗(c), Sξ∗) + d(ψ∗(c), Sψ∗) + d

′
(ξ∗, ψ∗)}.

and
2

3
d
′
(ξ∗, ψ∗) ≤ 1

3
{d(ξ∗(c), Sξ∗) + d(ψ∗(c), Sψ∗).

By using equation (3.7), we have d′
(ξ∗, ψ∗) = 0.

Now, d′
(ξ∗, ξ∗) = d

′
(ψ∗, ψ∗) = 0. [∵ d

′
(ξ∗, ξ∗) ≤ d

′
(ξ∗, ψ∗) and d

′
(ψ∗, ψ∗) ≤ d

′
(ξ∗, ψ∗).]

So, d′(ξ∗, ξ∗) = d′(ξ∗, ψ∗) = d′(ψ∗, ψ∗). Hence ξ∗ = ψ∗. Thus, S has exactly one PPF
depenent fixed point ξ∗ ∈ E.

Corollary 3.5. “Let (E, d, α) be a complete strong b-metric space and S : E0 → E be
a non-self map. Suppose, ∃ g ∈ G such that for all ψ, ξ ∈ E with ψ(c) ̸= ξ(c), for each
c ∈ I,

d(Sψ, Sξ) ≤ g(d
′
(ψ, ξ)){d(ψ(c), Sψ) + d(ξ(c), Sξ) + d

′
(ψ, ξ)}.

Then, S has a unique PPF dependent fixed point in E0.”

Corollary 3.6. “Let (E, d, α) be a complete metric space and S : E0 → E be a non-self
map. Suppose, ∃ g ∈ G such that for all ψ, ξ ∈ E0 with ψ(c) ̸= ξ(c) for each c ∈ I,

d(Sψ, Sξ) ≤ g(d
′
(ψ, ξ)){d(ψ(c), Sψ) + d(ξ(c), Sξ) + d

′
(ψ, ξ)}.
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Then, S has a unique PPF dependent fixed point in E0.”

Example 2. Consider

S(h) =
5

9
h

(
1

3

)
+

1

81
, for every h ∈ E0

ψ(x) =

1
2 − x2 if x ∈ [0, 12 ]

1
4 if x ∈ [12 , 1]

ξ(x) =

x if x ∈ [0, 13 ]

1
3 if x ∈ [13 , 1]

Clearly, ψ
(
1
3

)
= 7

18 and ξ
(
1
3

)
= 1

3 , i.e. ψ
(
1
3

)
̸= ξ

(
1
3

)
.

Now, define d(x, y) = |x− y|, d′(ψ, ξ) = |ψ− ξ| and g(zn) = 1
3 − zn, where zn = 1

n , n ∈ N.
We proceed in a similar manner as we prove in example (1), we find ξ as unique PPF
dependent fixed point of S for c = 19

81 ∈ I.

Theorem 3.7. Let (E, d, α) be a complete SPbMS with parameter α and S : E0 → E

be a continuous map. Suppose

1. there exists F ∈ F and ϕ ∈ Φ such that for any ψ, ξ ∈ E0 with Sψ ̸= Sξ,
F [αd(Sψ, Sξ)] + ϕ(d

′
(ψ, ξ)) ≤ F [d

′
(ψ, ξ)], (3.8)

2. for each sequence {an} ∈ R+ such that ϕ(an)+F (αan+1) ≤ F (αan) for each n ∈ N,
then

ϕ(an) + F (αnan+1) ≤ F (αn−1an). (3.9)

Then S has exactly one PPF dependent fixed point.

Proof. Define a sequence {ψn(c)} ∀ n ∈ N, as follow, by using the point ψ0 in E0 as an
arbitrarily chosen point

Sψn = ψn+1(c) = sn+1ψ0.

Assume that there is p0 ∈ N such that d(ψp0(c), Sψp0+1(c)) = 0. Then by (SPbM2)
d(ψp0(c), ψp0(c)) ≤ d(ψp0(c), ψp0+1(c)) and d(ψp0+1(c), ψp0+1(c)) ≤ d(ψp0(c), ψp0+1(c)).
So, d(ψp0(c), ψp0(c)) = d(ψp0(c), ψp0+1(c)) = d(ψp0+1(c), ψp0+1(c)). Thus, by (SPbM1)
ψp0(c) = ψp0+1(c), that means ψp0(c) = Sψp0 , the proof is completed.
So, we assume that d(ψn(c), ψn+1(c)) > 0 ∀ n ∈ N.
From inequality (3.8), for all n ∈ N, we get

F (d(Sψn−1, Sψn)) < F (αd(ψn(c), ψn+1(c))) + ϕ(d
′
(ψn−1, ψn) ≤ F (d

′
(ψn−1, ψn),
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that is
F (d(ψn(c), ψn+1(c))) < F (d

′
(ψn−1, ψn)). (3.10)

From inequality (3.8) and (3.9), we have
F (αnd(ψn(c), ψn+1(c))) ≤ F (αn−1d(ψn−1(c), ψn(c)))− ϕ(d

′
(ψn−1, ψn)). (3.11)

Repeating the same process, we get
F (αnd(ψn(c), ψn+1(c))) ≤ F (αn−1d(ψn−1(c), ψn(c)))− ϕ(d

′
(ψn−1, ψn))

≤ F (αn−2d(ψn−2(c), ψn−1(c)))− ϕ(d
′
(ψn−2, ψn−1))− ϕ(d

′
(ψn−1, ψn))

≤ ...

≤ F (d(ψ0(c), ψ1(c)))−
n∑

j=0

ϕ(d
′
(xj , xj+1)).

Since according to our assumption lim infα→t+ ϕ(α) > 0, so
lim inf

n→∞
ϕ(d

′
(ψn−1, ψn)) > 0.

Using the definition of limit, ∃ n1 ∈ N and c1 > 0, so that for each n ≥ n1

ϕ(d
′
(ψn−1, ψn)) ≥ c1.

Thus

F (αnd(ψn(c), ψn+1(c))) ≤ Fd(ψ0(c), ψ1(c))−
n1∑
j=0

ϕd
′
(ψj , ψj+1)−

n∑
j=n1+1

ϕ(d
′
(ψj , ψj+1))

≤ Fd(ψ0(c), ψ1(c))−
n∑

n1+1

c1

≤ Fd(ψ0(c), ψ1(c))− (n− n1)c1.

Applying limn→ ∞, we have
lim
n→∞

F (αnd(ψn(c), ψn+1(c))) ≤ lim
n→∞

[Fd(ψ0(c), ψ1(c))− (n− n1)c1]. (3.12)
Thus, limn→∞ F (αnd(ψn(c), ψn+1(c))) = −∞. From condition (F2) of function F , we

conclude
lim
n→∞

αnd(ψn(c), ψn+1(c)) = 0. (3.13)
Now, we prove limn→∞ αnd(ψn(c), ψn+2(c)) = 0. Supppose, ψn ̸= ψp for each n, p ∈ N

with n ̸= p.
If poosible, let ψn = ψp for some n = p + k, where k > 0. Using inequation (3.10), we
have

d(ψp(c), ψp+1(c)) = d(ψn(c), ψn+1(c)) < d(ψn−1(c), ψn(c)). (3.14)
Applying this step again and again, we have
d(ψp(c), ψp+1(c)) = d(ψn(c), ψn+1(c)) < d(ψp(c), ψp+1(c)).
From this contradiction, ψn(c) ̸= ψp(c),so ∀ n, p ∈ N , ψn ̸= ψp

Now, we prove d(ψn(c), ψp(c)) > 0 ∀ n, p ∈ N, where n ̸= p. If d(ψn(c), ψp(c)) = 0, by
(SPbM2)
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d(ψn(c), ψn(c)) ≤ d(ψn(c), ψp(c)) and d(ψp(c), ψp(c)) ≤ d(ψn(c), ψp(c)).
So, d(ψn(c), ψn(c)) = d(ψp(c), ψp(c)) = d(ψn(c), ψp(c)) = 0.
Using (SPbM1), ψn(c) = ψp(c). Again a contradiction. So, d(ψn(c), ψp(c)) > 0 ∀ n, p ∈ N
and n ̸= p. Again, using inequality (3.8) and (3.9), we have

F (αnd(ψn(c), ψn+2(c))) ≤ F (αn−1d(ψn−1(c), ψn+1(c)))− ϕ(d
′
(ψn−1, ψn+1)). (3.15)

Repeating the same process, we get,
F (αnd(ψn(c), ψn+2(c))) ≤ F (αn−1d(ψn−1(c), ψn+1(c)))− ϕ(d

′
(ψn−1, ψn+1))

≤ F (αn−2d(ψn−2(c), ψn(c)))− ϕ(d′(ψn−1, ψn+1))− ϕ(d
′
(ψn−2, ψn))

≤ ...

≤ F (d(ψ0(c), ψ2(c)))−
n∑

j=0

ϕ(d
′
(ψj , ψj+2)).

According to our assumption lim infα→t+ ϕ(α) > 0, so
lim inf

n→∞
ϕ(d

′
(ψn−1, ψn+1)) > 0.

Using the definition of limit, ∃ n2 ∈ N and c2 > 0, so that for each n ≥ n2

ϕ(d
′
(ψn−1, ψn+1)) ≥ c2.

Thus

F (αnd(ψn(c), ψn+2(c))) ≤ Fd(ψ0(c), ψ2(c))−
n2∑
j=0

ϕd
′
(ψj , ψj+2)−

n∑
j=n2+1

ϕ(d
′
(ψj , ψj+2))

≤ Fd(ψ0(c), ψ2(c))−
n∑

n2+1

c2

≤ Fd(ψ0(c), ψ2(c))− (n− n2)c2.

Applying limn→ ∞, we have
lim
n→∞

F (αnd(ψn(c), ψn+2(c))) ≤ lim
n→∞

[Fd(ψ0(c), ψ2(c))− (n− n2)c2]. (3.16)
Thus, limn→∞ F (αnd(ψn(c), ψn+2(c))) = −∞. From condition (F2) of function F , we

conclude
lim
n→∞

αnd(ψn(c), ψn+2(c)) = 0. (3.17)
Next, by demonstrating that limp,q→∞ d(ϕp(c), ψq(c)) = 0, we demonstrate that {ψn(c)}
is a Cauchy sequence. Using (F2), there exists k ∈ (0, 1), so that

lim
p→∞

[αpd(ψp(c), ψp+1(c))]
kF (αpd(ψp(c), ψp+1(c))).

Because
F [αpd(ψp(c), ψp+1(c))] ≤ F [d(ψ0(c), ψ1(c))]− (p− p1)c1

so,
[αpd(ψp(c), ψp+1(c))]

kF [αpd(ψp(c), ψp+1(c))] ≤ [αpd(ψp(c), ψp+1(c))]
k[Fd(ψ0(c), ψ1(c))− (p− p1)c1],

that implies
[αpd(ψp(c), ψp+1(c))]

kF [αpd(ψp(c), ψp+1(c))] ≤ [αpd(ψp(c), ψp+1(c))]
k[Fd(ψ0(c), ψ1(c))]
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− [(p− p1)c1][α
pd(ψp(c), ψp+1(c))]

k.

Thus,
[αpd(ψp(c), ψp+1(c))]

kF [αpd(ψp(c), ψp+1(c))]−αpd(ψp(c), ψp+1(c))]
kF [d(ψ0(c), ψ1(c))]

≤ −(p− p1)c1[α
pd(ψp(c), ψp+1(c))]

k ≤ 0.

As n→ ∞, we conclude
lim
p→∞

(p− p1)c1[α
pd(ψp(c), ψp+1(c))]

k = 0.

So, ∃ h1 ∈ N, such that for all p > h1

αpd(ψp(c), ψp+1(c)) ≤
1

[(p− p1)c1]k
. (3.18)

Again using (F2), there exists k ∈ (0, 1), so that
lim
p→∞

[αpd(ψp(c), ψp+2(c))]
kF (αpd(ψp(c), ψp+2(c))).

Because
F [αpd(ψp(c), ψp+2(c))] ≤ F [d(ψ0(c), ψ2(c))]− (p− p2)c2,

so,
[αpd(ψp(c), ψp+2(c))]

kF [αpd(ψp(c), ψp+2(c))] ≤ [αpd(ψp(c), ψp+2(c))]
k[Fd(ψ0(c), ψ2(c))− (p− p2)c2],

that implies
[αpd(ψp(c), ψp+2(c))]

kF [αpd(ψp(c), ψp+2(c))] ≤ [αpd(ψp(c), ψp+2(c))]
k[Fd(ψ0(c), ψ2(c))]

− [(p− p2)c2][α
pd(ψp(c), ψp+2(c))]

k.

Thus,
[αpd(ψp(c), ψp+2(c))]

kF [αpd(ψp(c), ψp+2(c))]−αpd(ψp(c), ψp+2(c))]
kF [d(ψ0(c), ψ2(c))]

≤ −(p− p2)c2[α
pd(ψp(c), ψp+2(c))]

k ≤ 0.

As n→ ∞, we conclude
lim
p→∞

(p− p2)c2[α
pd(ψp(c), ψp+2(c))]

k = 0.

So, ∃ h2 ∈ N, such that for all p > h2

αpd(ψp(c), ψp+2(c)) ≤
1

[(p− p2)c2]k
. (3.19)

We demonstrate that limp→∞ d(ψp, ψp+q) = 0 for each q ∈ N.
The proofs for situations r = 1 and r = 2 are given in equation (3.13) and (3.17).
Now taking q ≥ 3. Examining only two cases will enough.

Case I): Assume q = 2m+ 1, where m ≥ 1. By using (SPbM4),
d(ψp(c), ψp+q(c)) = d(ψp(c), ψp+2m+1(c))

≤ d(ψp(c), ψp+1(c)) + α(d(ψp+1(c), ψp+2m+1(c)))− d(ψp+1(c), ψp+1(c))

≤ d(ψp(c), ψp+1(c)) + α(d(ψp+1(c), ψp+2m+1(c)))

≤ d(ψp(c), ψp+1(c)) + α[d(ψp+1(c), ψp+2(c)) + αd(ψp+2(c), ψp+2m+1(c))



142 S. Rathee, M. Swami and N. Kumari

− d(ψp+2(c), ψp+2(c))]

≤ d(ψp(c), ψp+1(c)) + αd(ψp+1(c), ψp+2(c)) + α2d(ψp+2(c), ψp+2m+1(c)) ≤ ...

≤ d(ψp(c), ψp+1(c)) + αd(ψp+1(c), ψp+2(c)) + α2d(ψp+2(c), ψp+3(c))

+ ...+ α2md(ψp+2m(c), ψp+2m+1(c))

=
1

αp

{
αpd(ψp(c), ψp+1(c)) + αp+1d(ψp+1(c), ψp+2(c)) + ...

+ αp+2md(ψp+2m(c), ψp+2m+1(c))

}
=

1

αp

p+2m∑
j=p

αjd(ψj(c), ψj+1(c))

=
1

αp

p+q−1∑
j=p

αjd(ψj(c), ψj+1(c)).

Thus, for each p ≥ max{p1, ph1} and q ∈ N, inequality (3.18) implies

d(ψp(c), ψp+q(c)) ≤
1

αp

p+q−1∑
j=p

αjd(ψj(c), ψj+1(c)) ≤
1

αp

∞∑
j=p

αjd(ψj(c), ψj+1(c))

≤ 1

αp

∞∑
j=p

1

[(j − p1)c1]k
→ 0.

Case II): Assume q = 2m, where m ≥ 1. By using (SPbM4),

d
′
(ψp, ψp+q) = d(ψp(c), ψp+2m(c))

≤ d(ψp(c), ψp+2(c)) + α(d(ψp+2(c), ψp+2m(c)))− d(ψp+2(c), ψp+2(c))

≤ d(ψp(c), ψp+2(c)) + α(d(ψp+2(c), ψp+2m(c)))

≤ d(ψp(c), ψp+2(c)) + α[d(ψp+2(c), ψp+3(c)) + αd(ψp+3(c), ψp+2m(c))

− d(ψp+3(c), ψp+3(c))]

≤ d(ψp(c), ψp+2(c)) + αd(ψp+2(c), ψp+3(c)) + α2d(ψp+3(c), ψp+2m(c)) ≤ ...

≤ d(ψp(c), ψp+2(c)) + αd(ψp+2(c), ψp+3(c)) + α2d(ψp+3(c), ψp+4(c)) + ...

+ α2m−2d(ψp+2m−1(c), ψp+2m(c))

=
1

αp

{
αpd(ψp(c), ψp+2(c)) + αp+1d(ψp+2(c), ψp+3(c)) + ...

+ αp+2m−2d(ψp+2m−1(c), ψp+2m(c))

}
=

1

αp
αpd(ψp(c), ψp+2(c)) +

1

αp+1

p+2m−1∑
j=p+2

αjd(ψj(c), ψj+1(c))
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=
1

αp
αpd(ψp(c), ψp+2(c)) +

1

αp+1

p+q−1∑
j=p+2

αjd(ψj(c), ψj+1(c)).

Thus, for each p ≥ max{p1, p2, ph2} and q ∈ N, inequality (3.18) and (3.19) implies

d(ψp(c), ψp+q(c)) ≤
1

αp
αpd(ψp(c), ψp+2(c)) +

1

αp+1

p+q−1∑
j=p+2

αjd(ψj(c), ψj+1(c))

≤ 1

αp
αpd(ψp(c), ψp+2(c)) +

1

αp+1

∞∑
j=p+2

αjd(ψj(c), ψj+1(c))

≤ 1

αp

{
1

[(p− p2)c2]k
+

1

α

∞∑
j=p

1

[(p− p1)c1]k

}
→ 0.

Thus limn→∞ d(ψn(c), ψp+q(c)) = 0.
Hereof, {ψn} is a Cauchy sequence in E. Because of completeness of (E0, d), ∃ ψ∗ ∈ E0

such that
lim
n→∞

d
′
(ψn, ψ

∗) = 0.

We now demonstrate that d(Sψ∗, ψ∗(c)) = 0.
By using contradiction as our method of argument d(Sψ∗, ψ∗(c)) > 0.
On the other side, F is incresing and F (d(Sψ, Sξ) ≤ ϕ(d(ψ, ξ)) + F (d(Sψ, Sξ) ≤
F (d(ψ(c), ξ(c))) for all ψ, ξ ∈ E0 and d(Sψ, Sξ) > 0. We have d(Sψ, Sξ) ≤ d(ψ(c), ξ(c))

for each ψ, ξ ∈ E0. This indicates
d(Sψn, Sψ

∗) ≤ d(ψn(c), ψ
∗(c)).

As n→ ∞, ψn → ψ∗, then we conclude,
1

α
d(ψ∗(c), Sψ∗) ≤ lim

n→∞
sup d(Sψn, Sψ

∗) ≤ αd(ψ∗(c), Sψ∗).

So,
1

α
d(ψ∗(c), Sψ∗) ≤ lim

n→∞
sup d(Sψn, Sψ

∗) ≤ lim
n→∞

sup d′(ψn, ψ
∗) = 0.

Using (SPbM2), d(Sψ∗, Sψ∗), d(ψ∗(c), ψ∗(c)) ≤ d(Sψ∗, ψ∗(c)). Thus Sψ∗ = ψ∗(c).
To demonstrate uniqueness, assume ψ∗, ξ∗ ∈ E0 are different PPF dependent fixed points
of E0. So,

d
′
(ψ∗, ξ∗) = d(Sψ∗, Sξ∗) > 0.

Using inequation (3.8), we get
F (d(ψ∗(c), ξ∗(c))) = F (d(Sψ∗, Sξ∗))

≤ F (αd(Sψ∗, Sξ∗))

≤ F (d(ψ∗(c), ξ∗(c)))− ϕ(d(ψ∗(c), ξ∗(c)))

< F (d(ψ∗(c), ξ∗(c)))
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Here, we have a contradiction. Hence ψ∗(c) = ξ∗(c) ∀ c ∈ [a, b]. So, ψ∗ = ξ∗. This
completes the proof.

Corollary 3.8. If we replace codition (i) of Theorem (3.7) by

αd(Sψ, Sξ) ≤ e
−1

d
′
(ψ,ξ)+1 ,

for each ψ, ξ ∈ E0 such that Sψ ̸= Sξ. Then S has only one PPF dependent fixed point.

Proof. By applying logrithm on both sides, we get

log(αd(Sψ, Sξ)) ≤ log

[
−1

d′(u, ξ) + 1

]
= log(d

′
(ψ, ξ)) +

−1

d′(ψ, ξ) + 1

With ϕ(z) = 1
z+1 and F (z) = log(z), we find the same inequality (3.8). Hence the

proof.

Example 3. Consider the function S, ψ, ξ, d, d′, f defined in example (1). Define
F (t) = ln(t) + t with ϕ(s) = 1

2 + s and α = 26
25 . We have

d(Sψ, Sξ) =
5

162
, (d

′
(ψ, ξ) =

1

18

From condition (3.8), we calculated

F [αd(Sψ, Sξ)] + ϕ(d
′
(ψ, ξ)) = F

[
26

25

5

162

]
+

(
1

2
+

1

18

)
=

10

18
+ F [0.032]

=
10

18
+ ln(0.032) + 0.032

= −2.854

and

F [d
′
(ψ, ξ)] = ln

(
1

18

)
+

1

18

= −2.834

Thus, the conditions of Theorem (3.7) are satisfied and ξ is PPF dependent fixed point
of S for c = 10

81 ∈ I.
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