ON RELAXATION NORMALITY IN THE FUGLEDE-PUTNAM THEOREM FOR A QUASI-CLASS A OPERATORS

M. H. M. RASHID AND M. S. M. NOORANI

Abstract. Let *T* be a bounded linear operator acting on a complex Hilbert space \mathcal{H} . In this paper, we show that if *A* is quasi-class *A*, *B*^{*} is invertible quasi-class *A*, *X* is a Hilbert-Schmidt operator, AX = XB and $|||A^*||| ||B|^{-1}|| \leq 1$, then $A^*X = XB^*$.

1. Introduction

Let \mathcal{H} be a complex Hilbert space, and let $\mathbf{B}(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H} . If $T \in \mathbf{B}(\mathcal{H})$, we shall write ker(T), ran(T) for the null space and range of T, respectively. An operator T is said to be *positive* (denoted by $T \ge 0$) if $\langle Tx, x \rangle \ge 0$ for all $x \in \mathcal{H}$ and also T is said to be *strictly positive* (denoted by T > 0) if T is positive and invertible.

Recall ([1, 10, 12]) that an operator T is called *p*-quasihyponormal if $T^*((T^*T)^p - (TT^*)^p T) \ge 0$ for $p \in (0, 1]$, and T is called *paranormal* if $||T^2x|| \ge ||Tx||^2$ for all unit vector $x \in \mathcal{H}$. Following [7, 9, 13] we say that $T \in \mathbf{B}(\mathcal{H})$ belongs to class A if $|T^2| \ge |T|^2$ and T is called normaloid if $||T^n|| = ||T||^n$, for $n \in \mathbb{N}$ (equivalently, ||T|| = r(T), the spectral radius of T). Recall [2], an operator $T \in \mathbf{B}(\mathcal{H})$ is said to be ω -hyponormal if $||\widetilde{T}|| \ge |T| \ge |\widetilde{T}^*|$. We remark that ω -hyponormal operator is defined by using Aluthge transformation $\widetilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$. An operator T is said to be quasi-class A if

$$T^* |T^2| T \ge T^* |T|^2 T.$$

The quasi-class A operators were introduced, and their properties were studied in [11]. (see also [6]). In particular, it was shown in [11] that the class of quasi-class A operators contains properly classes of class A and p-quasihyponormal operators. quasiclass A operators were independently introduced by Jeon and Kim [11]. They gave an example of a quasi-class A operator which is not paranormal nor normaloid. Jeon and Kim example show that neither the class paranormal operators nor the class of quasiclass A contains the other. We shall denote classes of ω -hyponormal, p-quasihyponormal operators, paranormal operators, normaloid operators, class A operators, and quasi-class A operators by $\omega \mathcal{H}, \mathcal{QH}(p), \mathcal{PN}, \mathcal{N}, \mathcal{A}$, and \mathcal{QA} , respectively. It is well known that

$$\omega \mathcal{H} \subset \mathcal{A} \subset \mathcal{PN} \subset \mathcal{N} \quad \text{and} \quad \mathcal{QH}(p) \subset \mathcal{PN} \subset \mathcal{N},$$

Received May 20, 2008; revised December 8, 2008.

²⁰⁰⁰ Mathematics Subject Classification. 47A10, 47B20.

Key words and phrases. Fuglede-Putnam theorem, quasi-class A.

also, the following inclusions holds;

$$\mathcal{A} \subset \mathcal{Q}\mathcal{A}$$
 and $\mathcal{Q}\mathcal{H}(p) \subset \mathcal{Q}\mathcal{A}$.

2. Properties of quasi-class A operators

We begin this section by the following famous lemma.

Lemma 2.1.([11]) Let $T \in \mathbf{B}(\mathcal{H})$. Suppose that T is quasi-class A with not have dense range. Then

$$T = \begin{pmatrix} B & S \\ 0 & 0 \end{pmatrix}$$
 on $\mathcal{H} = \overline{ran(T)} \oplus \ker(T^*),$

where $B = T|_{\overline{ran(T)}}$ is the restriction of T to $\overline{ran(T)}$, and B is belongs to class A. Moreover, $\sigma(T) = \sigma(B) \cup \{0\}$.

It is a slight generalization of [1, Corollary 3] we have

Theorem 2.2. If $T \in \mathbf{B}(\mathcal{H})$ is a quasi-class A and T^* is ω -hyponormal, then T is normal.

Proof. Since T^* is ω -hyponormal, it follows from [1, Theorem 4] that $|T^{*2}| \ge |T^*|^2$ and $|T^2| \le |T|^2$. Hence $T^*|T^2|T = T^*|T|^2T$ because T is quasi-class A. Now $T^*|T|^2T = T^{*2}T^2 = |T|^4 = (T^*T)^2$ and $P(T^*T - TT^*)P = 0$, where P is the orthogonal projection onto $\overline{ran(T)}$. Let

$$T = \begin{pmatrix} B & S \\ 0 & 0 \end{pmatrix}$$
 on $\mathcal{H} = \overline{ran(T)} \oplus \ker(T^*)$

be the matrix representation of T. Then $P(T^*T - TT^*)P = 0$ implies that $B^*B = BB^* + SS^*$. Since T^* is ω -hyponormal, then T^* belongs to class A, so we have

$$B^*B = BB^* + SS^* = PTT^*P \le P|T^{*2}|P = (B^2B^{*2} + BSS^*B^*)^{\frac{1}{2}}$$
$$= [B(BB^* + SS^*)B^*]^{\frac{1}{2}}$$
$$= BB^*$$

Hence S = 0 and B is normal. Therefore T is normal.

3. Generalized Fuglede-Putnam Theorem

Let C_2 denote the Hilbert-Schmidt class. Let $T \in C_2$. Suppose $\{e_n\}$ is an orthonormal basis for \mathcal{H} . We define the Hilbert-Schmidt norm of T to be

$$||T||_2 = \left(\sum_{n=1}^{\infty} ||Te_n||^2\right)^{\frac{1}{2}}.$$

308

This definition is independent of the choice of basis (see[5]). If $||T||_2 < \infty$, T is said to be a Hilbert-Schmidt operator.

Let C_1 be the set $\{C = AB | A, B \in C_2\}$. Then operators belonging to C_1 are called trace class operators.

We define a linear functional

$$tr: \mathcal{C}_1 \to \mathbb{C}$$
 by $tr(T) = \sum_{n=1}^{\infty} \langle Ce_n, e_n \rangle$

for an orthonormal basis $\{e_n\}$ for \mathcal{H} .

In this case, the definition of tr(C) does not depend on the choice of an orthonormal basis and tr(C) is called the trace of C.

Theorem 3.1.([5]) We have the following properties. (a) The set C_2 is self adjoint ideal of $\mathbf{B}(\mathcal{H})$.

(b) If ⟨A, B⟩ = ∑[∞]_{n=1} ⟨Ae_n, Be_n⟩ = tr(B*A) = tr(AB*) for A and B in C₂ and for any orthonormal basis {e_n} for H, then ⟨.,.⟩ is an inner product on C₂ and C₂ is a Hilbert-Schmidt space with respect to this inner product.

Theorem 3.2.([5]) If $T \in \mathbf{B}(\mathcal{H})$ and $A \in \mathcal{C}_2$, then

- (i) $||A|| \le ||A||_2$,
- (ii) $||TA||_2 \le ||T|| ||A||_2$,
- (iii) $||AT||_2 \le ||A||_2 ||T||.$

For each pair of operators $A, B \in \mathbf{B}(\mathcal{H})$, there is an operator Γ defined on \mathcal{C}_2 via the formula $\Gamma X = AXB$, which due to [3]. Evidently, by Theorem 3.1 and Theorem 3.2, $\|\Gamma\| \leq \|A\| \|B\|$ and the adjoint of Γ is given by the formula $\Gamma^* X = A^* X B^*$, its easily to see that from the calculation $\langle \Gamma^* X, Y \rangle = \langle X, \Gamma Y \rangle = \langle X, AYB \rangle = tr((AYB)^*X) = tr(XB^*Y^*A^*) = tr(A^*XB^*Y^*) = \langle A^*XB^*, Y \rangle$. If $A \geq 0$ and $B \geq 0$, then also $\Gamma \geq 0$ and $\Gamma^{\frac{1}{2}}X = A^{\frac{1}{2}}XB^{\frac{1}{2}}$ because of

$$\langle AX, X \rangle = tr(AXBX^*) = tr(A^{\frac{1}{2}}XBX^*A^{\frac{1}{2}})$$

= $tr((A^{\frac{1}{2}}XB^{\frac{1}{2}})(A^{\frac{1}{2}}XB^{\frac{1}{2}})^*) \ge 0.$

The classical Fuglede-Putnam theorem asserts that if $A, B, X \in \mathbf{B}(\mathcal{H})$ such that AX = XB, and if A and B are normal, then also $A^*X = XB^*$ (see [8, Problem 192]).

Theorem 3.3. Let $A, B^*, X \in \mathbf{B}(\mathcal{H})$. Suppose that A is quasi-class A, B^* is invertible quasi-class A and X is a Hilbert-Schmidt operator. Assume that AX = XB, then the operator Γ defined by $\Gamma X = AXB$ is a quasi-class A operator. **Proof.** Since A and B^* are quasi-class A, we have

$$(\Gamma^* |\Gamma^2| \Gamma - \Gamma^* |\Gamma|^2 \Gamma) X = A^* |A^2| A X B |B^{*2}| B^* - A^* |A|^2 A X B |B^*|^2 B^*$$

= $A^* (|A^2| - |A|^2) A X B |B^{*2}| B^*$
+ $A^* |A|^2 A X (B |B^{*2}| B^* - B |B^*|^2 B^*)$
 ≥ 0

this show that Γ is quasi-class A.

Lemma 3.4.(Hölder-McCarthy Inequality) Let B be a positive operator. Then the following inequalities hold for all $x \in \mathcal{H}$;

- (1) $\langle B^{\alpha}x,x\rangle \leq \langle Bx,x\rangle^{\alpha} \|x\|^{2(1-\alpha)}, \text{ for } 0<\alpha\leq 1.$
- (2) $\langle B^{\alpha}x, x \rangle \geq \langle Bx, x \rangle ||x||^{2(1-\alpha)}$ for $\alpha \geq 1$.

Lemma 3.5. Let $B \in \mathbf{B}(\mathcal{H})$. If B^* is quasi-class A and invertible, then $(B^*)^{-1}$ is quasi-class A.

Proof. We cite the following obvious result (see [9]): Let S be an invertible operator. Then

$$(S^*S)^{\lambda} = S^*(SS^*)^{\lambda-1}S$$
 holds for any real number λ . (3.1)

Suppose that B^* is quasi-class A and invertible. Then

$$BBB^*B^* = B|B^*|^2B^* \le B|B^{*2}|B^* \qquad (B^* \text{ is quasi-class } A)$$
$$= B(B^2B^{*2})^{\frac{1}{2}}B^*$$
$$= B^3(B^{*2}B^2)^{\frac{-1}{2}}B^{*3} \qquad (\text{by Equation } 3.1) \qquad (3.2)$$

(3.2) holds if and only if

$$B^{-1}B^{*-1} \le (B^{*2}B^2)^{\frac{-1}{2}} = (B^{-2}B^{*-2})^{\frac{1}{2}} = |B^{*-2}|.$$

Hence,

 $|B^{*-1}|^2 \leq |B^{*-2}|$ and so $B^{-1}|B^{*-1}|^2B^{*-1} \leq B^{-1}|B^{*-2}|B^{*-1}$. This end the proof.

Theorem 3.6. Let $A, B, X \in \mathbf{B}(\mathcal{H})$. If A is quasi-class A, B^* is invertible quasi-class A and X is a Hilbert-Schmidt operator. Suppose that AX = XB and $|||A^*||| |||B|^{-1}|| \leq 1$, then $A^*X = XB^*$.

Proof. Let Γ be a Hilbert-Schmidt operator defined by $\Gamma X = AXB^{-1}$ for all $X \in C_2$. Since $(B^*)^{-1} = (B^{-1})^*$ is quasi-class A then Theorem 3.3 implies Γ is quasi-class A. Since $\Gamma X = X$ and since Γ is quasi-class A, we have

$$\left\langle |\Gamma^2|X,X\right\rangle \ge \left\langle |\Gamma|^2 X,X\right\rangle,$$
(3.3)

310

by Hölder-McCarthy inequality, we have

$$\begin{split} \||\Gamma|X\|^{2} &= \left\langle |\Gamma|^{2} X, X \right\rangle \\ &\leq \left\langle (\Gamma^{*2}\Gamma^{2})^{\frac{1}{2}}X, X \right\rangle \qquad \text{(by Equation 3.3)} \\ &\leq \|X\| \left\langle \Gamma^{*2}\Gamma^{2}X, X \right\rangle^{\frac{1}{2}} \qquad \text{(by Hölder McCarthy inequality)} \\ &= \|X\| \left\langle \Gamma^{2}X, \Gamma^{2}X \right\rangle^{\frac{1}{2}} \\ &= \|X\|^{2}, \end{split}$$

and hence

$$\|\Gamma^* X\| = \||\Gamma^*|X\|$$

$$\leq \||A^*|\| \, \||B|^{-1}\| \, \|X\|$$

$$\leq \|X\|.$$

Thus $\|\Gamma^* X - X\|^2 \le \|\Gamma^* X\|^2 - 2\|X\|^2 + \|X\|^2 \le 0$. So, $A^* X(B^*)^{-1} = X$ which ends the proof.

Acknowledgements

The authors would like to thank the referee for his valuable suggestions for improving the original manuscript.

References

- A. Aluthge and D. Wang, An operator inequality which implies paranormality, Math. Ineq. Appl., 2(1999), 113–119.
- [2] A. Aluthge and D. Wang, ω-hyponormal operators, Integral Equations Operator Theory, 36(2000), 1–10.
- [3] S. K. Berberian, An extension of a theorem of Fuglede-Putnam, Proc. Amer. Math. Soc., 71(1978), 113–114.
- [4] M. Chō and T. Yamazaki, An operator transform from class A to the class of hyponormal operators and its application, Integral Equations Operator Theory, 53(2005), 497–508.
- [5] J. B. Conway, A Course in Functional Analysis, Second Edition, Springer-Verlag, New york, 1990.
- B. P. Duggal, I. H. Jeon and I. H. Kim, On Weyl's theorem for quasi-class A operators, J. Korean Math. Soc., 43(2006), 899–909.
- [7] T. Furuta, M. Ito and T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes, Sci. Math., 1(1998), 389–403.
- [8] Halmos P. R., A Hilbert Space Problem Book, Second Edition, Springer-Verlag, New York , 1982.

M. H. M. RASHID AND M. S. M. NOORANI

- M. Ito, Several properties on class A including p-hyponormal and log-hyponormal operators, Math. Ineq. Appl., 2(1999), 569–578.
- [10] I. H. Jeon, J. I. Lee and A. Uchiyama, On p-quasihyponormal operators and quasisimilarity, Math. Ineq. App., 6(2003) 309–315.
- [11] I. H. Jeon and I. H. Kim, On operators satisfying $T^*|T^2|T \ge T^*|T|^2T^*$, Linear alg. Appl., **418**(2006), 854–862.
- [12] I. H. Kim, On(p,k)-quasihyponormal operators, Math. Ineq. Appl., 4(2004), 169–178.
- [13] A. Uchiyama, Weyl's theorem for class A operators, Math. Ineq. App., 4(2001), 143-150.

Department of Mathematics and Statistics, Faculty of Science P.O. $\mathrm{Box}(7),$ Mu'tah University, Mu'tah-Jordan.

E-mail: malik_okasha@yahoo.com

School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Selangor Darul Ehsan, Malsysia.

E-mail: msn@pkrisc.cc.ukm.my

312