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ON RELAXATION NORMALITY IN THE FUGLEDE-PUTNAM
THEOREM FOR A QUASI-CLASS A OPERATORS

M. H. M. RASHID AND M. S. M. NOORANI

Abstract. Let T be a bounded linear operator acting on a complex Hilbert space . In this
paper, we show that if A is quasi-class A, B* is invertible quasi-class A, X is a Hilbert-Schmidt
operator, AX = XB and [[|[A*||||||B|"'|] £ 1, then A*X = XB*.

1. Introduction

Let H be a complex Hilbert space, and let B(H) denote the algebra of all bounded
linear operators on H. If T' € B(H) , we shall write ker(T"), ran(T) for the null space
and range of T, respectively. An operator T is said to be positive (denoted by T > 0) if
(Tx,z) >0 for all x € H and also T is said to be strictly positive (denoted by T > 0) if
T is positive and invertible.

Recall ([1, 10, 12]) that an operator T is called p-quasihyponormal if T*((T*T)? —
(TT*)PT) > 0 for p € (0,1], and T is called paranormal if HTQ:CH > || Tz||* for all unit
vector x € H. Following [7, 9, 13] we say that T € B(H) belongs to class A if |T?| > |T|?
and T is called normaloid if |T™|| = ||T||", for n € N (equivalently, ||| = r(T), the
spectral radius of T'). Recall [2], an operator T' € B(H) is said to be w-hyponormal if
IT| > |T| > |T;L We r?marklthat w-hyponormal operator is defined by using Aluthge
transformation T' = |T'|2U|T'|2. An operator T is said to be quasi-class A if

T |T?| T >T*|TPT.

The quasi-class A operators were introduced , and their properties were studied in
[11]. (see also [6]). In particular, it was shown in [11] that the class of quasi-class A
operators contains properly classes of class A and p-quasihyponormal operators. quasi-
class A operators were independently introduced by Jeon and Kim [11]. They gave an
example of a quasi-class A operator which is not paranormal nor normaloid. Jeon and
Kim example show that neither the class paranormal operators nor the class of quasi-
class A contains the other. We shall denote classes of w-hyponormal, p-quasihyponormal
operators, paranormal operators, normaloid operators, class A operators, and quasi-class
A operators by wH, QH(p), PN, N, A, and QA, respectively. It is well known that

wHCACPNCN and QH(p) C PN C N,
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also, the following inclusions holds;

AcC QA and QH(p) C QA.

2. Properties of quasi-class A operators
We begin this section by the following famous lemma.

Lemma 2.1.([11]) Let T € B(H). Suppose that T is quasi-class A with not have
dense range. Then

T = (g g’) on H=ran(T)® ker(T"),

where B = T|W is the restriction of T to ran(T), and B is belongs to class A.

Moreover, o(T) = o(B) U{0}.
It is a slight generalization of [1, Corollary 3] we have

Theorem 2.2. If T € B(H) is a quasi-class A and T* is w-hyponormal, then T is
normal.

Proof. Since T* is w-hyponormal, it follows from [1, Theorem 4] that |T*2| > |T*|?
and |T?| < |T|?. Hence T*|T?|T = T*|T|?T because T is quasi-class A. Now T*|T|*T =
T*27? = |T|* = (T*T)* and P(T*T —TT*)P = 0, where P is the orthogonal projection

onto ran(T). Let

T = ( g § ) on H=ran(T) @ ker(T™)

be the matrix representation of 7. Then P(T*T — TT*)P = 0 implies that B*B =
BB* + S§S*. Since T* is w-hyponormal, then T belongs to class A, so we have

B*B = BB* + 55" = PTT*P < P|T**|P = (BB**> + BSS*B*)?
— [B(BB* + S5*)B*|?
= BB*.

Hence S = 0 and B is normal. Therefore T is normal.

3. Generalized Fuglede-Putnam Theorem

Let Cy denote the Hilbert-Schmidt class. Let T € Co. Suppose {e,} is an orthonormal
basis for H. We define the Hilbert-Schmidt norm of 7" to be

1Tz = <Z ||Ten|2)
n=1

1
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This definition is independent of the choice of basis (see[5]). If ||T||2 < oo, T is said to
be a Hilbert-Schmidt operator.

Let Cy1 be the set {C = AB|A, B € C2}. Then operators belonging to C; are called trace
class operators.

We define a linear functional

tr:Cy, —C by tr(T)= Z (Cen,en)

n=1

for an orthonormal basis {e,} for H.
In this case, the definition of ¢r(C') does not depend on the choice of an orthonormal
basis and tr(C) is called the trace of C.

Theorem 3.1.([5]) We have the following properties.
(a) The set Cy is self adjoint ideal of B(H).
o0
(b) If (A, B) = Z (Aey,, Be,) = tr(B*A) = tr(AB*) for A and B in Cy and for any

n=1
orthonormal basis {e,} for H, then {(.,.) is an inner product on Cy and Cy is a

Hilbert-Schmidt space with respect to this inner product.

Theorem 3.2.([5))If T € B(H) and A € Cq, then
Q) 141 < 4]z,
(i) (1T All2 < ITI[All2,
(i) IAT> < AL,

For each pair of operators A, B € B(H), there is an operator I' defined on Cs via the
formula TX = AX B, which due to [3]. Evidently, by Theorem 3.1 and Theorem 3.2,
[IT] < ||AJl||B|| and the adjoint of T' is given by the formula I'*X = A*X B*, its easily
to see that from the calculation (I X,Y) = (X, TY) = (X, AYB) = tr((AYB)*X) =
tr(XB*Y*A*) = tr(A*XB*Y*) = (A*XB*)Y). If A> 0 and B > 0, then alsoT" > 0
and 'z X = A2 X B2 because of

(AX,X) = tr(AXBX*) = tr(A XBX*A?)
= tr((A*XB?)(A*XB?)*) > 0.

The classical Fuglede-Putnam theorem asserts that if A, B, X € B(H) such that AX =
X B, and if A and B are normal, then also A*X = X B* (see [8, Problem 192]).

Theorem 3.3. Let A, B*, X € B(H). Suppose that A is quasi-class A, B* is invert-
ible quasi-class A and X is a Hilbert-Schmidt operator. Assume that AX = X B, then
the operator I' defined by I'X = AX B is a quasi-class A operator.
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Proof. Since A and B* are quasi-class A, we have

(0

I?|0 - T T]’T)X = A*|A*|AX B|B*?|B* — A*|A]?AX B|B*|*B*
= A*(|A?| - |AP)AX B|B*|B"
+ A*|A|?AX (B|B**|B* — B|B*|*B*)
>0

this show that I' is quasi-class A.

Lemma 3.4.(Holder-McCarthy Inequality) Let B be a positive operator. Then the
following inequalities hold for all x € H;
(1) (B®z,z) < (Bx,z)||z|>0=), for 0 < a < 1.

(2) (B%z,z) > (Bx,z)||z|>*~) for a > 1.

Lemma 3.5. Let B € B(H). If B* is quasi-class A and invertible, then (B*)™1 is
quasi-class A.

Proof. We cite the following obvious result (see [9]): Let .S be an invertible operator.
Then
(§*S)N = §*(SS*)* 1S holds for any real numberA. (3.1)

Suppose that B* is quasi-class A and invertible. Then

BBB*B* = B|B*|°’B* < B|B**|B*  (B" is quasi-class A)
= B3(B*2B?) > B*  (by Equation 3.1) (3.2)

(3.2) holds if and only if

1

B-lp*1 < (B*QBQ)% (B72B*72)% _ |B*72|.

Hence,
|B*~1|2 < |B*72| and so B~} B*~1|2B*~! < B~!|B*~2|B*~!. This end the proof.

Theorem 3.6. Let A, B, X € B(H). If A is quasi-class A, B* is invertible quasi-class
A and X is a Hilbert-Schmidt operator. Suppose that AX = X B and ||| A*|]| H|B|*1 || <1,
then A*X = X B*.

Proof. Let I be a Hilbert-Schmidt operator defined by X = AXB~! for all X € Cs.
Since (B*)~! = (B~!)* is quasi-class A then Theorem 3.3 implies I is quasi-class A. Since
I'’X = X and since I is quasi-class A, we have

(T?[X,X) > (IT[2X, X), (3:3)
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by Holder-McCarthy inequality, we have

IITIX )7 = (TP x, )
< <(r*2r2)%X,X> (by Equation 3.3)
< x| (r2r2x, X)? (by Hélder McCarthy inequality)
= IX] (12X, T2x)*
= | x?,

and hence

T X]| = ||| X||
< A*HBI=H Xl
<X

Thus |T*X — X||* < [[T*X||> = 2| X|* + | X < 0. So, A*X(B*)~! = X which ends
the proof.
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