On a class of Kirchhoff type problems with singular exponential nonlinearity

Mebarka Sattaf and Brahim Khaldi

Abstract

We study the following singular Kirchhoff type problem $$
(P)\left\{\begin{array}{lc} -m\left(\int_{\Omega}|\nabla u|^{2} d x\right) \Delta u=h(u) \frac{e^{\alpha u^{2}}}{|x|^{\beta}} & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega \end{array}\right.
$$

where $\Omega \subset \mathbb{R}^{2}$ is a bounded domain with smooth boundary and $0 \in \Omega, \beta \in[0,2)$, $\alpha>0$ and m is a continuous function on \mathbb{R}^{+}. Here, h is a suitable preturbation of $e^{\alpha u^{2}}$ as $u \rightarrow \infty$. In this paper, we prove the existence of solutions of (P). Our tools are Trudinger-Moser inequality with a singular weight and the mountain pass theorem.

Keywords. Trudinger-Moser inequality, exponential critical growth, mountain pass theorem

1 Introduction

Let Ω be a smooth bounded domain in \mathbb{R}^{2} containing the origin. In this article, we study the existence of solutions to the following singular Kirchhoff problems with exponential nonlinearities

$$
\begin{cases}-m\left(\int_{\Omega}|\nabla u|^{2} d x\right) \Delta u=h(u) \frac{e^{\alpha u^{2}}}{|x|^{\beta}} & \text { in } \Omega \tag{1.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\beta \in[0,2), \alpha>0$ and $m: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$, is a continuous function that satisfies some conditions which will be stated later on, and h satisfies the following conditions:
$(H 1) h \in C(\mathbb{R}), h(t) \geq 0$ for all $t \in \mathbb{R}, h(t)=0$ if $t<0 ;$
(H2) $\lim _{t \rightarrow 0^{+}} \frac{h(t)}{t}=0$ and $\lim _{t \rightarrow+\infty} h(t)=0$.
Received date: March 27, 2023; Published online: April 26, 2023.
2010 Mathematics Subject Classification. 35N05, 35R10, 35A01, 35A15, 35J88.
Corresponding author: Brahim Khaldi.
(H3) The map $t \mapsto \frac{h(t) e^{\alpha t^{2}}}{t^{3}}$ is increasing for $t>0$.
(H4) There exists $\gamma>\frac{(2-\beta)^{2}}{2 \alpha d^{2-\beta}} m\left(\frac{4 \pi}{\alpha}\left(1-\frac{\beta}{2}\right)\right)$ such that $0<\underset{t \rightarrow+\infty}{\gamma=\lim _{t \rightarrow \infty} \inf t h}(t)<\infty$,
where d is the radius of the largest open ball contained in Ω. As examples of a function satisfying the above assumptions, we have
Example 1. For $\alpha \geq 1$;

$$
h(t)= \begin{cases}\frac{\gamma t^{3}}{1+t^{4}} & \text { if } t \geq 0 \\ 0 & \text { if } t<0\end{cases}
$$

Example 2. For $0<\alpha<1$;

$$
h(t)= \begin{cases}\frac{\gamma t^{3}}{1+4^{4}} & \text { if } t \geq \sqrt{\frac{2}{\alpha}} \\ \frac{\gamma \alpha^{2}}{\alpha^{2}+4} t^{3} & \text { if } 0 \leq t<\sqrt{\frac{2}{\alpha}} \\ 0 & \text { if } t<0\end{cases}
$$

The hypotheses on the function $m: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$are the following.
$\left(M_{1}\right)$ There exist real numbers $m_{0}, m_{1}, m_{2}>0$ such that for some $\kappa \in \mathbb{R}$

$$
m_{0} \leq m(t) \leq m_{1} t^{\kappa}+m_{2}, \text { for all } t \geq 0
$$

$\left(M_{2}\right) \quad M(s)+M(t) \leq M(s+t) \quad \forall s, t \geq 0$ where $M(t)=\int_{0}^{t} m(x) d x$
$\left(M_{3}\right) \frac{m(t)}{t}$ is noninreasing for $t>0$.

A typical example of a function satisfying the conditions $\left(M_{1}\right)-\left(M_{3}\right)$ is given by $m(t)=$ $m_{0}+b t$ with $b>0$ and for all $t \geq 0$. As a consequence of $\left(M_{3}\right)$, a straightforward computation shows that $\frac{1}{2} M(t)-\frac{1}{4} m(t) t$ is nondecreasing for $t \geq 0$, which implies that

$$
\begin{equation*}
\frac{1}{2} M(t)-\frac{1}{4} m(t) t \geq 0 \tag{1.2}
\end{equation*}
$$

Problem (1.1) is related to the stationary version of a model established by Kirchhoff [10]. More precisely, Kirchhoff proposed the following model

$$
\rho \frac{\partial^{2} u}{\partial t^{2}}-\left(\frac{P_{0}}{h}+\frac{E}{2 L} \int_{0}^{L}\left|\frac{\partial u}{\partial x}\right|^{2} d x\right) \frac{\partial^{2} u}{\partial x^{2}}=0
$$

which extends D'Alembert's wave equation with free vibrations of elastic strings, where ρ denotes the mass density, P_{0} denotes the initial tension, h denotes the area of the cross section, E denotes the Young modulus of the material, and L denotes the length of the string.

Many interesting results for the problem of Kirchhoff type were obtained, see for example [5], [6], [9], [16], [8] and the references therein. The authors have used the variational method and
the topological method to get the existence of solutions. In [8], by a direct variational approach, the authors establish the existence of a positive ground state solution for a nonlocal Kirchhoff of the type

$$
\begin{cases}-m\left(\int_{\Omega}|\nabla u|^{2} d x\right) \Delta u=f(x, u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{2}$ and $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function that satisfies some appropriate conditions. Our paper is closely related to the works of de Figueiredo et al. [8]. Indeed, we extend the results in [8] from $\beta=0$ to $\beta \in[0,2)$. This limitation on β is due to Lemma 2.1.

Now, we are ready to state our main result
Theorem 1.1. Under assumptions $\left(M_{1}\right)-\left(M_{3}\right)$ and $\left(H_{1}\right)-\left(H_{4}\right)$, problem (1.1) admits a nontirivial solution $u \in H_{0}^{1}(\Omega)$.

This work is organised as follows: In Section 2, we present the variational setting in which our problem will be treated, and some preliminary results. Section 3 is devoted to show that the energy functional has the mountain pass geometry and in section 4 we obtain an estimate for the minimax level associated to our functional. Finally, we prove our main result in section 5 .

2 Preliminary results

It is natural to find solution of our problem by looking for critical points of the corresponding functional of problem (1.1) which we define next.
Let $g(u)=h(u) e^{\alpha u^{2}}$ and $G(u)=\int_{0}^{u} g(s) d s$, the functional associated to (1.1) is given by

$$
I(u)=\frac{1}{2} M\left(\|u\|^{2}\right)-\int_{\Omega} \frac{G(u)}{|x|^{\beta}} d x
$$

where $\|u\|=\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{\frac{1}{2}}$. Under our assumptions this functional is well defined on $H_{0}^{1}(\Omega)$. Moreover, by standard arguments, $I \in C^{1}\left(H_{0}^{1}(\Omega), \mathbb{R}\right)$ with

$$
\left\langle I^{\prime}(u), \varphi\right\rangle=m\left(\|u\|^{2}\right) \int_{\Omega} \nabla u \nabla \varphi d x-\int_{\Omega} \frac{g(u)}{|x|^{\beta}} \varphi d x, \quad \text { for all } \varphi \in H_{0}^{1}(\Omega)
$$

Let consider the following eigenvalue problem:

$$
\left\{\begin{array}{c}
-\Delta u=\lambda \frac{u}{|x|^{\beta}} \quad \text { in } \Omega \tag{2.1}\\
u=0
\end{array} \quad \text { on } \partial \Omega\right.
$$

From classical theory of Hilbert Spaces we get the next classical result (see [7])

Proposition 2.1. There exists an eigenvalue sequence $\left\{\lambda_{k}(\beta)\right\} \subset \mathbb{R}^{+}$, with $\lambda_{k}(\beta) \rightarrow \infty$ as $k \rightarrow \infty$ for which problem (2.1) has nontrivial solution. Furthermore, the first eigenvalue $\lambda_{1}(\beta)$
is simple and isolated and the corresponding eigenfunctions don't change sign in Ω. The first eigenvalue is variationally characterized as

$$
\begin{equation*}
\lambda_{1}(\beta)=\inf _{u \in H_{0}^{1}(\Omega) \backslash\{0\}} \frac{\int_{\Omega}|\nabla u|^{2} d x}{\int_{\Omega} \frac{u^{2}}{|x|^{\beta}} d x} . \tag{2.2}
\end{equation*}
$$

The exponential nature of the nonlinearity $g(u)$ is motivated by the following version of Trudinger-Moser inequality with a singular weight due to Adimurthi-Sandeep [3].

Lemma 2.1. Let Ω be a bounded domain in \mathbb{R}^{2} containing 0 and $u \in H_{0}^{1}(\Omega)$. Then for every $\alpha>0$ and $\beta \in[0,2)$

$$
\int_{\Omega} \frac{e^{\alpha u^{2}}}{|x|^{\beta}} d x<\infty
$$

Moreover,

$$
\begin{equation*}
\sup _{\|u\| \leq 1} \int_{\Omega} \frac{e^{\alpha u^{2}}}{|x|^{\beta}} d x<\infty \tag{2.3}
\end{equation*}
$$

if and only if $\frac{\alpha}{4 \pi}+\frac{\beta}{2} \leq 1$.
We end this section with a singular version of the following theorem of P. L. Lions [3]
Lemma 2.2. Let $\left(u_{n}\right)$ be a sequence in $H_{0}^{1}(\Omega)$ such that $\left\|u_{n}\right\|=1$, for all $n \in \mathbb{N}^{*}$ and $u_{n} \rightharpoonup u$ in $H_{0}^{1}(\Omega)$ for some $u \neq 0$. Then, for $p<4 \pi\left(1-\frac{\beta}{2}\right)\left(1-\|u\|^{2}\right)^{-1}$,

$$
\sup _{n \geq 1} \int_{\Omega} \frac{e^{p u_{n}^{2}}}{|x|^{\beta}} d x<\infty .
$$

3 The Mountain Pass Geometry

In the sequel, we prove that the functional I has the Mountain Pass Geometry. This fact is proved in the next lemmas:

Lemma 3.1. Assume $\left(M_{1}\right),\left(H_{1}\right)$ and $\left(H_{2}\right)$, then there exist positive constants τ and ρ such that

$$
I(u) \geq \tau>0, \forall u \in H_{0}^{1}(\Omega):\|u\|=\rho .
$$

Proof. It follows from $\left(H_{2}\right)$ that, for each $\varepsilon>0$, there exists a positive constant C such that

$$
|G(u)| \leq \varepsilon u^{2}+C u^{3} e^{\alpha u^{2}}
$$

Let $2<q<\frac{4}{\beta}$. By (2.2) and generalized Hölder's inequality, we have

$$
\begin{aligned}
\int_{\Omega} \frac{|G(u)|}{|x|^{\beta}} d x & =\varepsilon \int_{\Omega} \frac{|u|^{2}}{|x|^{\beta}} d x+C \int_{\Omega} \frac{|u|^{3} e^{\alpha u^{2}}}{|x|^{\beta}} d x \\
& \leq \frac{\varepsilon}{\lambda_{1}(\beta)} \int_{\Omega}|\nabla u|^{2} d x+C \int_{\Omega}|u|^{3} \frac{1}{|x|^{\frac{\beta}{2}}} \frac{e^{\alpha u^{2}}}{|x|^{\frac{\beta}{2}}} d x
\end{aligned}
$$

$$
\leq \frac{\varepsilon}{\lambda_{1}(\beta)}\|u\|^{2}+C\left(\int_{\Omega}|u|^{3 p} d x+\right)^{\frac{1}{p}}\left(\int_{\Omega} \frac{1}{|x|^{\frac{q \beta}{2}}} d x\right)^{\frac{1}{q}}\left(\int_{\Omega} \frac{e^{2 \alpha u^{2}}}{|x|^{\beta}} d x\right)^{\frac{1}{2}}
$$

where $\frac{1}{p}+\frac{1}{q}=\frac{1}{2}$. So, Using the Sobolev embedding theorem, there is a positive constant C such that

$$
\begin{aligned}
\int_{\Omega} \frac{|G(u)|}{|x|^{\beta}} d x & \leq \frac{\varepsilon}{\lambda_{1}(\beta)}\|u\|^{2}+C\|u\|^{3}\left(\int_{\Omega} \frac{1}{|x|^{\frac{q \beta}{2}}} d x\right)^{\frac{1}{q}}\left(\int_{\Omega} \frac{e^{2 \alpha u^{2}}}{|x|^{\beta}} d x\right)^{\frac{1}{2}} \\
& \leq \frac{\varepsilon}{\lambda_{1}(\beta)}\|u\|^{2}+C\|u\|^{3}\left(\int_{\Omega} \frac{1}{|x|^{\frac{q \beta}{2}}} d x\right)^{\frac{1}{q}}\left(\int_{\Omega} \frac{e^{2 \alpha \rho^{2}\left(\frac{u}{\pi u \|)^{2}}\right.}}{|x|^{\beta}} d x\right)^{\frac{1}{2}} .
\end{aligned}
$$

The first integral on the right-hand side is finite since $q \beta<4$. If $\rho \leq \sqrt{\frac{2 \pi\left(1-\frac{\beta}{2}\right)}{\alpha}}$, the second integral is bounded by lemma 2.1. Thus, using the condition $\left(M_{1}\right)$ one has

$$
I(u) \geq\left(\frac{m_{0}}{2}-\frac{\varepsilon}{\lambda_{1}(\beta)}\right)\|u\|^{2}-C_{1}\|u\|^{3} .
$$

Consequently

$$
I(u) \geq\left(\frac{m_{0}}{2}-\frac{\varepsilon}{\lambda_{1}(\beta)}\right) \rho^{2}-C_{1} \rho^{3} .
$$

Now, we may fix $\varepsilon>0$ such that $\frac{m_{0}}{2}-\frac{\varepsilon}{\lambda_{1}(\beta)}>0$. Thus, for $\rho>0$ sufficiently small there exists $\tau:=\left(\frac{m_{0}}{2}-\frac{\varepsilon}{\lambda_{1}(\beta)}\right) \rho^{2}-C_{1} \rho^{3}>0$ such that

$$
I(u) \geq \tau>0, \forall u \in H_{0}^{1}(\Omega) \text { with }\|u\|=\rho
$$

The proof of Lemma is complete.
Lemma 3.2. Assume that conditions $\left(M_{1}\right),\left(H_{1}\right)$ and $\left(H_{4}\right)$ hold. Then, there exists $e_{1} \in H_{0}^{1}(\Omega)$ with $\left\|e_{1}\right\|>\rho$ such that $I\left(e_{1}\right)<0$.

Proof. First, by assumption $\left(M_{1}\right)$, we obtain

$$
\begin{equation*}
M(t) \leq \frac{m_{1}}{\kappa+1} t^{\kappa+1}+m_{2} t \tag{3.1}
\end{equation*}
$$

On the other hand, fix $\varepsilon>0$ and by $\left(H_{4}\right)$, we get

$$
\operatorname{th}(t) e^{\alpha t^{2}} \geq(\gamma-\varepsilon) e^{\alpha t^{2}}, \text { for } t>A_{\varepsilon} \text { with } A_{\varepsilon}>0
$$

Since $e^{\alpha t^{2}} \geq \frac{1}{\theta!} \alpha^{\theta} t^{2 \theta}$ for all t and $\theta \in \mathbb{N}$, then there exists a constant $C_{\varepsilon}>0$ such that

$$
t h(t) e^{\alpha t^{2}} \geq \frac{1}{\theta!}(\gamma-\varepsilon) \alpha^{\theta} t^{2 \theta}-C_{\varepsilon} t, \quad \text { for } t>0
$$

and consequently

$$
\begin{equation*}
G(u) \geq \frac{1}{2 \theta \theta!}(\gamma-\varepsilon) \alpha^{\theta} t^{2 \theta}-C_{\varepsilon} t \text { for } t>0 . \tag{3.2}
\end{equation*}
$$

Let $u_{0} \in H_{0}^{1}(\Omega)$ with $u_{0}>0$ in Ω and $\left\|u_{0}\right\|=1$. Thus, from (3.1) and (3.2), we obtain

$$
I\left(t u_{0}\right) \leq \frac{m_{2}}{2} t^{2}+\frac{m_{1}}{2 \kappa+2} t^{2(\kappa+1)}-\frac{1}{2 \theta \theta!}(\gamma-\varepsilon) \alpha^{\theta} t^{2 \theta} \int_{\Omega} \frac{u_{0}^{2 \theta}}{|x|^{\beta}} d x-C_{\varepsilon} t \int_{\Omega} \frac{u_{0}}{|x|^{\beta}} d x
$$

for all $t>0$, which yields $I\left(t u_{0}\right) \rightarrow-\infty$ as $t \rightarrow+\infty$, provided that $\theta>\max \{2,2 \kappa+2\}$. Setting $e_{1}=\bar{t} u_{0}$ with $\bar{t}>0$ large enough, the proof is complete.

4 On the mini-max level

In view of Lemmas 3.1 and 3.2, we may apply a version of the Mountain Pass theorem without Palais-Smale condition to obtain a sequence $u_{n} \in H_{0}^{1}(\Omega)$ such that

$$
I\left(u_{n}\right) \rightarrow c_{*} \text { and } \quad I^{\prime}\left(u_{n}\right) \rightarrow 0
$$

where

$$
\begin{equation*}
c_{*}=\inf _{\gamma \in \Gamma \in[\in[0,1]} \max _{1} I(\gamma(t)) \tag{4.1}
\end{equation*}
$$

with

$$
\Gamma=\left\{\gamma \in C\left([0,1], H_{0}^{1}(\Omega)\right): \gamma(0)=0, \quad \gamma(1)<0\right\}
$$

Let $B_{d}\left(x_{0}\right) \subset \Omega$ be an open ball where d was given in $\left(H_{4}\right)$. We may assume that $x_{0}=0$. In order to get more information about the minimax level, it was crucial in our argument to consider the following concentrating functions $\psi_{n}(x)=\tilde{\psi}_{n}\left(\frac{x}{d}\right), n \in \mathbb{N}$ where

$$
\tilde{\psi}_{n}(x)=\left\{\begin{array}{cc}
\frac{1}{\sqrt{2 \pi}}(\log n)^{1 / 2} & \text { for } 0 \leq|x| \leq \frac{1}{n} \\
\frac{1}{\sqrt{2 \pi}} \frac{\log \frac{1}{x x}}{(\log n)^{1 / 2}} & \text { for } \frac{1}{n} \leq|x| \leq 1 \\
0 & \text { for }|x| \geq 1
\end{array}\right.
$$

Then, ψ_{n} has support in $B_{d}(0)$ and $\left\|\psi_{n}\right\|=1 \forall n \in \mathbb{N}$.
To show that the desired estimate for the level c_{*}, we will use the following inequality
Lemma 4.1. The following inequality holds:

$$
\liminf _{n \rightarrow+\infty} \int_{B_{d}(0)} \frac{\exp \left(4 \pi\left(1-\frac{\beta}{2}\right) \psi_{n}^{2}\right)}{|x|^{\beta}} d x \geq \frac{6 \pi d^{(2-\beta)}}{(2-\beta)} .
$$

Proof. Using the definition of $\tilde{\psi}_{n}$ and by change of variable, we have

$$
\begin{aligned}
\int_{B_{d}(0)} \frac{\exp \left(4 \pi\left(1-\frac{\beta}{2}\right) \psi_{n}^{2}\right)}{|x|^{\beta}} d x= & d^{(2-\beta)} \int_{B_{\frac{1}{n}}(0)} \frac{\exp \left(4 \pi\left(1-\frac{\beta}{2}\right) \widetilde{\psi}_{n}^{2}\right)}{|x|^{\beta}} d x \\
& +d^{(2-\beta)} \int_{\frac{1}{n} \leq|x| \leq 1} \frac{\exp \left(4 \pi\left(1-\frac{\beta}{2}\right) \widetilde{\psi}_{n}^{2}\right)}{|x|^{\beta}} d x \\
= & \frac{2 \pi d^{(2-\beta)}}{(2-\beta)}+2 \pi d^{(2-\beta)} \int_{\frac{1}{n}}^{1} r^{1-\beta} \exp \left(\frac{(2-\beta)\left(\log \left(\frac{1}{r}\right)\right)^{2}}{\log (n)}\right) d r .
\end{aligned}
$$

Next, by using the change of variable $t=\frac{\log \left(\frac{1}{r}\right)}{\log (n)}$, we obtain

$$
\int_{B_{d}(0)} \frac{\exp \left(4 \pi\left(1-\frac{\beta}{2}\right) \psi_{n}^{2}\right)}{|x|^{\beta}} d x=\frac{2 \pi d^{(2-\beta)}}{(2-\beta)}+2 \pi d^{(2-\beta)} \log (n) \int_{0}^{1} n^{(2-\beta)\left(t^{2}-t\right)} d t .
$$

On the other hand, since

$$
\left\{\begin{array}{c}
t^{2}-t \geq-t \text { for } t \in\left[0, \frac{1}{2}\right], \\
t^{2}-t \geq t-1 \text { for } t \in\left[\frac{1}{2}, 1\right],
\end{array}\right.
$$

we get

$$
\begin{align*}
\int_{B_{d}(0)} \frac{\exp \left(4 \pi\left(1-\frac{\beta}{2}\right) \psi_{n}^{2}\right)}{|x|^{\beta}} d x \geq & \frac{2 \pi d^{(2-\beta)}}{(2-\beta)}+2 \pi d^{(2-\beta)} \log (n) \int_{0}^{\frac{1}{2}} n^{-(2-\beta) t} d t \\
& +2 \pi d^{(2-\beta)} \log (n) \int_{\frac{1}{2}}^{1} n^{(2-\beta)(t-1)} d t \tag{4.2}\\
\geq & \frac{2 \pi d^{(2-\beta)}}{(2-\beta)}+\frac{2 \pi d^{(2-\beta)}}{(2-\beta)}\left(2-\frac{2}{n^{\frac{2-\beta}{2}}}\right) .
\end{align*}
$$

Passing to limit in (4.2), then the proof of lemma 4.1 is complete.

We can now prove the following upper bounded for c_{*}.
Lemma 4.2. With c_{*} defined as in (4.1), we have $c_{*}<\frac{1}{2} M\left(\frac{4 \pi}{\alpha}\left(1-\frac{\beta}{2}\right)\right)$.
Proof. Since $\psi_{n} \geq 0$ and $\left\|\psi_{n}\right\|=1$, we can deduce that $I\left(t \psi_{n}\right) \rightarrow-\infty$ as $t \rightarrow+\infty$. From (4.1), we have

$$
c_{*} \leq \max _{t>0} I\left(t \psi_{n}\right), \quad \forall n \in \mathbb{N} .
$$

For the sake of contraduction, Suppose that for all $\forall n \in \mathbb{N}$, we have

$$
\max _{t>0} I\left(t \psi_{n}\right) \geq \frac{1}{2} M\left(\frac{4 \pi}{\alpha}\left(1-\frac{\beta}{2}\right)\right) .
$$

Since I possesses the mountain pass geometry, for each $n, \max _{t>0} I\left(t \psi_{n}\right)$ is attained at some $t_{n}>0$, that is $I\left(t_{n} \psi_{n}\right)=\max _{t>0} I\left(t \psi_{n}\right)$. Thus,

$$
I\left(t_{n} \psi_{n}\right)=\frac{1}{2} M\left(t_{n}^{2}\right)-\int_{\Omega} \frac{G\left(t_{n} \psi_{n}\right)}{|x|^{\beta}} d x .
$$

Using $G(t) \geq 0$ for all $\forall t \in \mathbb{R}$, one can deduce that

$$
\frac{1}{2} M\left(t_{n}^{2}\right) \geq \frac{1}{2} M\left(\frac{4 \pi}{\alpha}\left(1-\frac{\beta}{2}\right)\right) .
$$

Since $M:[0,+\infty) \rightarrow[0,+\infty)$ is a nondecreasing bijection function by $\left(M_{1}\right)$ so

$$
t_{n}^{2} \geq \frac{4 \pi}{\alpha}\left(1-\frac{\beta}{2}\right)
$$

On the other hand, by using $\left.\frac{d}{d t} I\left(t_{n} \psi_{n}\right)\right|_{t=t_{n}}=0$, we reach

$$
\begin{align*}
m\left(t_{n}^{2}\right) t_{n}^{2} & =\int_{\Omega} t_{n} \psi_{n} h\left(t_{n} \psi_{n}\right) \frac{e^{\alpha t_{n}^{2} \psi_{n}^{2}}}{|x|^{\beta}} d x \\
& \geq \int_{B_{d}(0)} t_{n} \psi_{n} h\left(t_{n} \psi_{n}\right) \frac{e^{\alpha t_{n}^{2} \psi_{n}^{2}}}{|x|^{\beta}} d x \tag{4.3}\\
& \geq \int_{B_{\frac{d}{n}}(0)} t_{n} \psi_{n} h\left(t_{n} \psi_{n}\right) \frac{e^{t_{n}^{2} \psi_{n}^{2}}}{|x|^{\beta}} d x,
\end{align*}
$$

From $\left(H_{4}\right)$, we get

$$
\begin{equation*}
t_{n} \psi_{n} h\left(t_{n} \psi_{n}\right) \frac{e^{t_{n}^{2} \psi_{n}^{2}}}{|x|^{\beta}} \geq(\gamma-\varepsilon) \frac{e^{\alpha t_{n}^{2} \log n / 2 \pi}}{|x|^{\beta}} \tag{4.4}
\end{equation*}
$$

and

$$
\int_{B_{\frac{d}{n}}(0)} \frac{e^{\alpha t_{n}^{2} \log n / 2 \pi}}{|x|^{\beta}} d x=\frac{2 \pi d^{2-\beta}}{2-\beta} e^{\frac{\alpha t_{n}^{2} \log n}{2 \pi}-(2-\beta) \log n} \geq \frac{2 \pi d^{2-\beta}}{2-\beta} e^{2 \log n\left(\frac{\alpha t_{n}^{2}}{4 \pi}-\left(1-\frac{\beta}{2}\right)\right)}
$$

Hence

$$
\begin{equation*}
m\left(t_{n}^{2}\right) t_{n}^{2} \geq \frac{2 \pi d^{2-\beta}}{2-\beta}(\gamma-\varepsilon) e^{2 \log n\left(\frac{\alpha t_{n}^{2}}{4 \pi}-\left(1-\frac{\beta}{2}\right)\right)} \tag{4.5}
\end{equation*}
$$

Note that, by $\left(M_{1}\right)$, we can see that

$$
\frac{m\left(t_{n}^{2}\right) t_{n}^{2}}{e^{2 \log n\left(\frac{\alpha t_{n}^{2}}{4 \pi}-\left(1-\frac{\beta}{2}\right)\right)}} \rightarrow 0 \text { if } t_{n} \rightarrow+\infty .
$$

It follows from this and (4.5), we infer that

$$
\begin{equation*}
t_{n}^{2} \rightarrow \frac{4 \pi}{\alpha}\left(1-\frac{\beta}{2}\right) . \tag{4.6}
\end{equation*}
$$

Now, we are going to estimate (4.3) more exactly. For $0<\varepsilon<\gamma$ and $n \in \mathbb{N}$ we set

$$
U_{n, \varepsilon}=\left\{x \in B_{d}(0): t_{n} \psi_{n}>A_{\varepsilon}\right\} \text { and } V_{n, \varepsilon}=B_{d}(0) \backslash U_{n, \varepsilon} .
$$

So, by using (4.3) and (4.4) we obtain

$$
\begin{gather*}
m\left(t_{n}^{2}\right) t_{n}^{2} \geq(\gamma-\varepsilon) \int_{B_{d}(0)} \frac{e^{\alpha t_{n}^{2} \psi_{n}^{2}}}{|x|^{\beta}} d x-(\gamma-\varepsilon) \int_{V_{n, \varepsilon}} \frac{e^{\alpha t_{n}^{2} \psi_{n}^{2}}}{|x|^{\beta}} d x \\
+\int_{V_{n, \varepsilon}} t_{n} \psi_{n} h\left(t_{n} \psi_{n}\right) \frac{e^{\alpha t_{n}^{2} \psi_{n}^{2}}}{|x|^{\beta}} d x . \tag{4.7}
\end{gather*}
$$

Since $t h(t) e^{\alpha t^{2}} \geq-C_{\varepsilon} t$ for all $t \geq 0$ and $\psi_{n} \rightarrow 0$ almost everywhere in $B_{d}(0)$, by using the Lebesgue dominated convergence theorem, we have

$$
\int_{V_{n, \varepsilon}} t_{n} \psi_{n} h\left(t_{n} \psi_{n}\right) \frac{e^{\alpha t_{n}^{2} \psi_{n}^{2}}}{|x|^{\beta}} d x \geq-C_{\varepsilon} t_{n} \int_{V_{n, \varepsilon}} \frac{\psi_{n}}{|x|^{\beta}} d x \rightarrow 0 \text { as } n \rightarrow+\infty
$$

$$
\int_{V_{n, \varepsilon}} \frac{e^{\alpha t_{n}^{2} \psi_{n}^{2}}}{|x|^{\beta}} d x \rightarrow \int_{|x| \leq d} \frac{1}{|x|^{\beta}} d x=\frac{2 \pi d^{2-\beta}}{(2-\beta)} .
$$

Then, from (4.6) and lemma4.1, passing to the limit in (4.7) we reach

$$
m\left(\frac{4 \pi}{\alpha}\left(1-\frac{\beta}{2}\right)\right) \frac{4 \pi}{\alpha}\left(1-\frac{\beta}{2}\right) \geq(\gamma-\varepsilon) \liminf _{n \rightarrow+\infty} \int_{B_{d}(0)} \frac{\exp \left(4 \pi\left(1-\frac{\beta}{2}\right) \psi_{n}^{2}\right)}{|x|^{\beta}} d x-(\gamma-\varepsilon) \frac{2 \pi d^{2-\beta}}{(2-\beta)},
$$

and taking $\varepsilon \rightarrow 0$ we get $\frac{(2-\beta)^{2}}{2 \alpha d^{2-\beta}} m\left(\frac{4 \pi}{\alpha}\left(1-\frac{\beta}{2}\right)\right) \geq \gamma$, which contradicts $\left(H_{4}\right)$. Thus, the lemma is proved.

Now, we consider the Nehari manifold associated to the functional I, namely

$$
\mathcal{N}=\left\{u \in H_{0}^{1}(\Omega):\left\langle I^{\prime}(u), u\right\rangle=0 \text { and } u \neq 0\right\}
$$

and let $b=\inf _{u \in \mathcal{N}} I(u)$. From the fact that $\frac{g(t)}{t^{3}}$ increasing, we deduce the following result (see [8])
Lemma 4.3. If condition $\left(H_{3}\right)$ holds, then for each $x \in \Omega, s g(s)-4 G(s)$ is increasing for $s>0$. In particular

$$
s g(s)-4 G(s) \geq 0 . \text { for all } s \in[0,+\infty)
$$

The next result gives a comparison between the minimax level c_{*} and b.
Lemma 4.4. Assume that $\left(M_{3}\right)$ and $\left(H_{3}\right)$ are satisfied. Then $c_{*} \leq b$.

Proof. Given $u \in \mathcal{N}$, let us define $h(t):=I(t u)$ with $t \in(0,+\infty)$. The function h is differentiable and

$$
h^{\prime}(t)=\left\langle I^{\prime}(t u), u\right\rangle=m\left(t^{2}\|u\|^{2}\right) t\|u\|^{2}-\int_{\Omega} g(t u) u d x, \quad \forall t>0 .
$$

Since $\left\langle I^{\prime}(u), u\right\rangle=0$, for all $u \in \mathcal{N}$, we get

$$
h^{\prime}(t)=t^{3}\|u\|^{4}\left(\frac{m\left(t^{2}\|u\|_{1,2}^{2}\right)}{t^{2}\|u\|^{2}}-\frac{m\left(\|u\|^{2}\right)}{\|u\|^{2}}\right)+t^{3} \int_{\Omega}\left(\frac{g(u)}{|x|^{\beta} u^{3}}-\frac{g(t u)}{|x|^{\beta}(t u)^{3}}\right) u^{4} d x .
$$

Then $h^{\prime}(1)=0$ and from $\left(M_{3}\right)$ and $\left(H_{3}\right)$, we conclude that $h^{\prime}(t) \geq 0$ for $0<t<1$ and $h^{\prime}(t) \leq 0$ for $t>1$. Hence

$$
I(u)=\max _{t \geq 0} I(t u) .
$$

Now, defining $\gamma:[0,1] \rightarrow H_{0}^{1}(\Omega), \gamma(t)=t t_{0} u$ we have $\gamma \in \Gamma$ and therfore

$$
c_{*} \leq \max _{t \in[0,1]} I(\gamma(t)) \leq \max _{t \geq 0} I(t u)=I(u),
$$

which implies $c_{*} \leq b$.

5 Proof of main result

In this section we will give the proof of theorem 1.1. Thus we assume that the conditions $\left(M_{1}\right)-\left(M_{3}\right)$ and $\left(H_{1}\right)-\left(H_{4}\right)$ hold. First, we prove that I satisfies Palais-Smale condition. For this purpose, we will use the following convergence result due to M. de Souza and J. Marcos do Ò [17].

Lemma 5.1. Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain, $a \in[0,2)$ and $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Then for any sequence $\left(u_{n}\right)$ in $L^{1}(\Omega)$ such that

$$
u_{n} \rightarrow u \text { in } L^{1}(\Omega), \quad \frac{f\left(x, u_{n}\right)}{|x|^{a}} \in L^{1}(\Omega) \text { and } \int_{\Omega} \frac{\left|f\left(x, u_{n}\right) u_{n}\right|}{|x|^{a}} d x \leq C
$$

up to a subsequence we have

$$
\frac{f\left(x, u_{n}\right)}{|x|^{a}} \rightarrow \frac{f(x, u)}{|x|^{a}} \text { in } L^{1}(\Omega) .
$$

Proposition 5.1. Assume that $\alpha>0$ and $0 \leq \beta<2$ satisfy $\frac{\alpha}{4 \pi}+\frac{\beta}{2} \leq 1$. Then the functional E satisfies Palais-Smale condition for all $c_{*}<\frac{1}{2} M\left(\frac{4 \pi}{\alpha}\right)$.

Proof. Let $\left(u_{n}\right) \subset H_{0}^{1}(\Omega)$ be a sequence such that $I\left(u_{n}\right) \rightarrow c_{*}$ and $I^{\prime}\left(u_{n}\right) \rightarrow 0$, that is, for any $\varphi \in H_{0}^{1}(\Omega)$

$$
\begin{gather*}
\frac{1}{2} M\left(\left\|u_{n}\right\|^{2}\right)-\int_{\Omega} \frac{G\left(u_{n}\right)}{|x|^{\beta}} d x=c_{*}+o(1), \tag{5.1}\\
m\left(\left\|u_{n}\right\|^{2}\right) \int_{\Omega} \nabla u_{n} \nabla \varphi d x-\int_{\Omega} h\left(u_{n}\right) \frac{e^{\alpha u_{n}^{2}}}{|x|^{\beta}} \varphi d x=o(\|\varphi\|) . \tag{5.2}
\end{gather*}
$$

It follows from $\left(M_{1}\right)$ and (1.2), we obtian

$$
\begin{align*}
C+\left\|u_{n}\right\| & \geq 8 I\left(u_{n}\right)-\left\langle I^{\prime}\left(u_{n}\right), u_{n}\right\rangle \\
& \geq m_{0}\left\|u_{n}\right\|^{2}+\int_{\Omega}\left(u_{n} h\left(u_{n}\right) e^{\alpha u_{n}^{2}}-8 G\left(u_{n}\right)\right) \frac{1}{|x|^{\beta}} d x . \tag{5.3}
\end{align*}
$$

So it suffices to prove that $t h(t) e^{\alpha t^{2}}-8 G(t)$ is bounded from below. Here let us consider $0<\varepsilon \leq \frac{\gamma}{9}$. From (H_{4}), for some constants $C_{\varepsilon}>0$ and for all $t>0$ we get

$$
\operatorname{th}(t) e^{\alpha t^{2}} \geq(\gamma-\varepsilon) e^{\alpha t^{2}}-C_{\varepsilon}
$$

and

$$
\begin{equation*}
G(t) \leq \varepsilon e^{\alpha t^{2}}+C_{\varepsilon} . \tag{5.4}
\end{equation*}
$$

Then, there exists a constant $C_{\varepsilon}(\Omega)$ such that

$$
\int_{\Omega}\left(u_{n} h\left(u_{n}\right) e^{\alpha u_{n}^{2}}-8 G\left(u_{n}\right)\right) \frac{1}{|x|^{\beta}} \geq-C_{\varepsilon}(\Omega) .
$$

and therfore using (5.3), we obtain

$$
\begin{equation*}
C+\left\|u_{n}\right\| \geq m_{0}\left\|u_{n}\right\|^{2}-C_{\varepsilon}(\Omega) . \tag{5.5}
\end{equation*}
$$

Hence $\left(u_{n}\right)$ is bounded in $H_{0}^{1}(\Omega)$. Now we take a subsequence denoted again by u_{n} such that, for some $u \in H_{0}^{1}(\Omega)$, we have

$$
\begin{aligned}
u_{n} & \rightharpoonup u \text { weakly in } H_{0}^{1}(\Omega) \\
u_{n} & \rightarrow u \text { strongly in } L^{q}(\Omega) \text { for } 1 \leq q<+\infty \\
u_{n}(x) & \rightarrow u(x) \text { for almost every } x \in \Omega
\end{aligned}
$$

In particular, $u_{n} \rightarrow u$ in $L^{1}(\Omega)$ and by (5.2), $\left(H_{2}\right)$ and the Trudinger-Moser inequality, it also follows that $\int_{\Omega} \frac{u_{n} h\left(u_{n}\right) e^{\alpha u_{n}^{2}}}{|x|^{\beta}} d x$ is bounded and $\frac{h(u) e^{\alpha u^{2}}}{|x|^{\beta}} \in L^{1}(\Omega)$. Then, we can apply Lemma 5.1 to conclude that

$$
\int_{\Omega} \frac{h\left(u_{n}\right) e^{\alpha u_{n}^{2}}}{|x|^{\beta}} d x \rightarrow \int_{\Omega} \frac{h(u) e^{\alpha u^{2}}}{|x|^{\beta}} d x \in L^{1}(\Omega) .
$$

It follows from (5.4) and (2.3), using the generalized Lebesgue dominated convergence, that

$$
\begin{equation*}
\int_{\Omega} \frac{G\left(u_{n}\right)}{|x|^{\beta}} d x \rightarrow \int_{\Omega} \frac{G(u)}{|x|^{\beta}} d x \tag{5.6}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\frac{1}{2} M\left(\left\|u_{n}\right\|^{2}\right) \rightarrow c_{*}+\int_{\Omega} \frac{G(u)}{|x|^{\beta}} d x \tag{5.7}
\end{equation*}
$$

Next, we will make some assertions
Assertion 1. $m\left(\|u\|^{2}\right)\|u\|^{2} \geq \int_{\Omega} \frac{g(u) u}{|x|^{\beta}} d x$
Proof: Suppose by contradiction $m\left(\|u\|^{2}\right)\|u\|^{2}<\int_{\Omega} \frac{g(u) u}{|x|^{3}} d x$, so $\left\langle I^{\prime}(u), u\right\rangle<0$. Using $\left(H_{2}\right)$ and (2.2), we can see that $\left\langle I^{\prime}(t u), u\right\rangle>0$ for t sufficiently small. Thus, there exists $\sigma \in(0,1)$ such that $\left\langle I^{\prime}(\sigma u), u\right\rangle=0$. That is, $\sigma u \in \mathcal{N}$.
Thus, according to lemma 4.3

$$
\begin{aligned}
c_{*} & \leq b \leq I(\sigma u)=I(\sigma u)-\frac{1}{4}\left\langle I^{\prime}(\sigma u), u\right\rangle \\
& \leq \frac{1}{2} M\left(\|\sigma u\|^{2}\right)-\frac{1}{4} m\left(\|\sigma u\|^{2}\right)\|\sigma u\|^{2}+\frac{1}{4} \int_{\Omega} \frac{g(\sigma u) \sigma u-4 G(\sigma u)}{|x|^{\beta}} d x \\
& <\frac{1}{2} M\left(\|u\|^{2}\right)-\frac{1}{4} m\left(\|u\|^{2}\right)\|u\|^{2}+\frac{1}{4} \int_{\Omega} \frac{g(u) u-4 G(u)}{|x|^{\beta}} d x .
\end{aligned}
$$

By semicontinuity of norm and Fatou Lemma, we obtain

$$
\begin{aligned}
c_{*} & <\liminf _{n \rightarrow \infty}\left(\frac{1}{2} M\left(\|u\|^{2}\right)-\frac{1}{4} m\left(\|u\|^{2}\right)\|u\|^{2}\right)+\liminf \frac{1}{4} \int_{\Omega} \frac{g(u) u-4 G(u)}{|x|^{\beta}} d x . \\
& \leq \lim _{n \rightarrow \infty}\left(I\left(u_{n}\right)-\frac{1}{4} I^{\prime}\left\langle u_{n}, u_{n}\right\rangle\right)=c_{*},
\end{aligned}
$$

which is a contradiction and the assertion is proved.
Assertion 2. $I(u) \geq 0$.

Proof: By Assertion 1, we have $I(u) \geq I(u)-\frac{1}{4}\left\langle I^{\prime}(u), u\right\rangle$ which implies that

$$
I(u) \geq \frac{1}{2} M\left(\|u\|^{2}\right)-\frac{1}{4} m\left(\|u\|^{2}\right)\|u\|^{2}+\frac{1}{4} \int_{\Omega} \frac{g(u) u-4 G(u)}{|x|^{\beta}} d x .
$$

Hence, using (1.2) and Lemma 4.3, we obtain

$$
I(u) \geq 0 .
$$

Now we separate the proof into three cases.
Case 1. $c_{*}=0$. If this is the case, we use (5.6) and (5.7)

$$
0 \leq I(u) \leq \liminf _{n \rightarrow+\infty} I\left(u_{n}\right)=\int_{\Omega} \frac{G(u)}{|x|^{\beta}} d x-\int_{\Omega} \frac{G(u)}{|x|^{\beta}} d x=0 .
$$

So $M\left(\left\|u_{n}\right\|^{2}\right) \rightarrow M\left(\|u\|^{2}\right)$ and then $\left\|u_{n}\right\| \rightarrow\|u\|$ which implies that $u_{n} \rightarrow u$ in $H_{0}^{1}(\Omega)$.
Case 2. $c_{*} \neq 0, u=0$. We show that this cannot hapen for a Palais-Smale sequence. First we claim that

$$
\int_{\Omega} \frac{\left|u_{n} h\left(u_{n}\right) e^{\alpha u_{n}^{2}}\right|}{|x|^{\beta}} d x \rightarrow 0 \text { as } n \rightarrow \infty
$$

Since $u=0$, we have $\int_{\Omega} \frac{G\left(u_{n}\right)}{|x|^{\beta}} d x \rightarrow 0$ and so

$$
\frac{1}{2} M\left(\left\|u_{n}\right\|^{2}\right) \rightarrow c_{*}<\frac{1}{2} M\left(\frac{4 \pi}{\alpha_{0}}\left(1-\frac{\beta}{2}\right)\right) .
$$

Let $M^{-1}\left(2 \rho_{0}\right)<\eta<\frac{4 \pi}{\alpha_{0}}\left(1-\frac{\beta}{2}\right)$. Then, $\left\|u_{n}\right\|<\sqrt{\eta}$ for all $n \geq n_{0}$ and for some $n_{0} \in \mathbb{N}$. Now, choose $q=\frac{4 \pi}{\eta \alpha}\left(1-\frac{\beta}{2}\right)>1$ and $\frac{1}{1-\frac{1}{q}}<r<\frac{2}{\beta\left(1-\frac{1}{q}\right)}$. By the Hölder inequality,

$$
\int_{\Omega} \frac{\left|u_{n} h\left(u_{n}\right) e^{\alpha u_{n}^{2}}\right|}{|x|^{\beta}} d x \leq\left(\int_{\Omega}\left|u_{n} h\left(u_{n}\right)\right|^{p} d x\right)^{\frac{1}{p}}\left(\int_{\Omega} \frac{e^{q \alpha u_{n}^{2}}}{|x|^{\beta}} d x\right)^{\frac{1}{q}}\left(\int_{\Omega} \frac{1}{|x|^{\beta r\left(1-\frac{1}{q}\right)}} d x\right)^{\frac{1}{r}},
$$

where $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=1$. Since the function $t h(t)$ is bounded and $u=0$, the first integral on the right-hand side converges to zero , the second integral is bounded for $n \geq n_{0}$ by lemma 2.1 since $q \alpha u_{n}^{2}=4 \pi\left(1-\frac{\beta}{2}\right) U_{n}^{2}$, where $U_{n}=\frac{u_{n}}{\sqrt{\eta}}$ satisfies $\left\|U_{n}\right\| \leq 1$, and the last integral is finite because $\beta r\left(1-\frac{1}{q}\right)<2$. So

$$
\int_{\Omega} \frac{\left|u_{n} h\left(u_{n}\right) e^{\alpha u_{n}^{2}}\right|}{|x|^{\beta}} d x \rightarrow 0
$$

Then $m\left(\left\|u_{n}\right\|^{2}\right)\left\|u_{n}\right\|^{2} \rightarrow 0$ by (5.2) and consequently by $\left(M_{1}\right),\left\|u_{n}\right\| \rightarrow 0$. This contradicts (5.7), which says in this case that $\left\|u_{n}\right\|^{2} \rightarrow 2 c_{*} \neq 0$.

Case 3. $c_{*} \neq 0, u \neq 0$. In this case we claim that

$$
\begin{equation*}
I(u)=c_{*} . \tag{5.8}
\end{equation*}
$$

As u_{n} is bounded, up to a subsequence, $\left\|u_{n}\right\| \rightarrow r>0$. By using (5.6) and semicontinuity of norm, we have $I(u) \leq c_{*}$. So it remains to prove (5.8), we assume by contradiction that $I(u)<c_{*}$. Then,

$$
\|u\|<r .
$$

Next, defining $w_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}$ and $w=\frac{u}{r}$, we have

$$
w_{n} \rightharpoonup w \text { in } H_{0}^{1}(\Omega) \text { and }\|w\|<1 .
$$

Thus, by lemma 2.2

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \int_{\Omega} \frac{e^{p w_{n}^{2}}}{|x|^{\beta}} d x<\infty, \quad \forall p<\frac{4 \pi\left(1-\frac{\beta}{2}\right)}{1-\|w\|^{2}} . \tag{5.9}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
2 c_{*}-2 I(u)=M\left(r^{2}\right)-M\left(\|u\|^{2}\right) . \tag{5.10}
\end{equation*}
$$

Using this equality, lemma 4.2 and the fact that $I(u) \geq 0$, we get

$$
M\left(r^{2}\right)<M\left(\frac{4 \pi}{\alpha}\left(1-\frac{\beta}{2}\right)\right)+M\left(\|u\|^{2}\right) .
$$

From $\left(M_{1}\right)$ and $\left(M_{2}\right)$, it follows that

$$
\begin{equation*}
r^{2}<M^{-1}\left(M\left(\frac{4 \pi}{\alpha}\left(1-\frac{\beta}{2}\right)\right)+M\left(\|u\|^{2}\right)\right) \leq \frac{4 \pi}{\alpha}\left(1-\frac{\beta}{2}\right)+\|u\|^{2} . \tag{5.11}
\end{equation*}
$$

Now, we observe that

$$
r^{2}=\frac{r^{2}-\|u\|^{2}}{1-\|w\|^{2}},
$$

and from (5.11), it follows that

$$
r^{2}<\frac{\frac{4 \pi}{\alpha}\left(1-\frac{\beta}{2}\right)}{1-\|w\|^{2}} .
$$

Then, there exists $\rho>0$ such that $\alpha \|\left(u_{n} \|^{2}<\rho<\frac{4 \pi\left(1-\frac{\beta}{2}\right)}{1-\|w\|^{2}}\right.$ for n sufficiently large. Now, taking $q>1$ close to 1 such that

$$
q \alpha\left\|u_{n}\right\|^{2}<\rho<\frac{4 \pi\left(1-\frac{\beta}{2}\right)}{1-\|w\|^{2}}, \text { for } n \text { large enough }
$$

and invoking (5.9), for some $C>0$, we conclude that

$$
\int_{\Omega} \frac{e^{q \alpha u_{n}^{2}}}{|x|^{\beta}} d x \leq \int_{\Omega} \frac{e^{\rho w_{n}^{2}}}{|x|^{\beta}} d x \leq C .
$$

Hence, using (H2) and Hölder inequality, for some $p>1$, we reach

$$
\left|\int_{\Omega} \frac{h\left(u_{n}\right) e^{\alpha u_{n}^{2}}\left(u_{n}-u\right)}{|x|^{\beta}} d x d x\right| \leq C_{1} \int_{\Omega} \frac{e^{\alpha u_{n}^{2}}\left|u_{n}-u\right|}{|x|^{\beta}} d x
$$

$$
\leq C_{2}\left\|u_{n}-u\right\|_{L^{p}(\Omega)} \rightarrow 0 \text { as } n \rightarrow \infty,
$$

Since $\left\langle I\left(u_{n}\right),\left(u_{n}-u\right)\right\rangle=o(1)$, we get

$$
m\left(\left\|u_{n}\right\|^{2}\right) \int_{\Omega} \nabla u_{n}\left(\nabla u_{n}-\nabla u\right) d x \rightarrow 0
$$

On the other hand,

$$
\begin{aligned}
m\left(\left\|u_{n}\right\|^{2}\right) \int_{\Omega} \nabla u_{n}\left(\nabla u_{n}-\nabla u_{0}\right) d x & =m\left(\left\|u_{n}\right\|^{2}\right)\left\|u_{n}\right\|^{2}-m\left(\left\|u_{n}\right\|^{2}\right) \int_{\Omega} \nabla u_{n} \nabla u d x \\
& \rightarrow m\left(r^{2}\right) r^{2}-m\left(r^{2}\right)\|u\|^{2} .
\end{aligned}
$$

which implies that $\|u\|=r$ and so $u_{n} \rightarrow u$ in $H_{0}^{1}(\Omega)$. In view of the continuity of I, we must have $I(u)=c_{*}$ that is an absurde. Thus, the proof of Proposition 1 is complete.

Proof of Theorem 1.1. It follows the assumptions that the functiona I satisfies the Plais-Smale condition at any level $c_{*}<\frac{1}{2} M\left(\frac{4 \pi}{\alpha_{0}}\left(1-\frac{\beta}{2}\right)\right)$, see Proposition 5.1. To finish the proof of theorem 1.1, we use Lemma 3.1 and 3.2 and apply the mountain Pass Theorem.

References

[1] Adimurthi, Existence of Positive Solutions of the Semilinear Dirichlet Problem with Critical Growth for the n-Laplacian, Ann. Della. Scuola. Norm. Sup. di Pisa, Serie IV, Vol.XVII, Fasc. 3 (1990), 393-413 .
[2] C. O. Alves, F. Correa and G. M. Figueiredo, On a class of nonlocal elliptic problmes with critical growth, Differential equations and applications, 2 (2010), 409-417.
[3] Adimurthi and K. Sandeep, A singular Moser-Trudinger embedding and its applications, Nonlinear Differential Equations and Applications, 13 (2007), 585-603.
[4] A. Benaissa and B. Khaldi, On a Singular Class of Hamiltonian Systems in Dimension Two, J. of Analysis and its Applications, 33 (2014), 199-215.
[5] N. T. Chung, Multiplicity results for a class of $p(x)$-Kirchhoff type equations with combined nonlinearities, E. J. Qualit. Theory Diff. Equ., 42 (2012), 1-13.
[6] N. T. Chung, An existence result for a class of Kirchhoff type systems via sub and supersolutions method, Appl. Math. Lett., 35 (2014), 95-101.
[7] E. Colorado and I Peral, Eigenvalues and bifurcation for elliptic equations with mixed Dirichlet-Neumann boundary conditions related to Caffarelli-Kohn-Nirenberg inequalities, Topol. Methods Nonlinear Anal., 23 (2004) 239-273.
[8] G. M. Figueiredo, U. B. Severo, Ground state solution for a Kirchhoff problem with exponential critical growth, Milan J. Math, 84 (2015), 23-39.
[9] X. Han and G. Dai, On the sub-supersolution method for $\mathrm{p}(\mathrm{x})$-Kirchhoff type equations, J. Inequal. Appl., 283 (2012), 1-11.
[10] G. Kirchhoff; Mechanik, Teubner, Leipzig, Germany, 1883.
[11] P. L. Lions, The concentration compactness principle in the calculus of variations part-I, Revista Matem atica Iberoamerican, 1 (1985), 145-201.
[12] C. S. Lin and J. V. Prajapat, Vortex Condensates for Relativistic Abelian Chern-Simons Model with Two Higgs Scalar Fields and Two Gauge Fields on a Torus, Commun. Math. Phys. 288 (2009), 311-347.
[13] C. S. Lin and S. Yan, Bubbling Solutions for Relativistic Abelian Chern-Simons Model on a Torus, Commun. Math. Phys. 297 (2010), 733-758.
[14] J. Moser, A sharp form of an inequality by N.Trudinger, Indiana Univ. Math. Jour., 20 (1971), 1077-1092.
[15] N. Megrez, K. Sreenadh, B. Khaldi, Multiplicity of positive solutions for a gradient system with an exponential nonlinearity, EJDE, 236 (2012), 1-16.
[16] O. H. Miyagaki and R. S. Rodrigues, On positive solutions for a class of singular quasilinear elliptic systems, J. Math. Anal. Appl., 334 (2007), 818-833.
[17] M. de Souza, J. M. do Ó, On a singular and nonhomogeneous N-Laplacian equation involving critical growth, J. Math. Anal. Appl. 280 (2011), 241-263.
[18] N.S. Trudinger, On embedding into Orlicz spaces and some applications, Journal of Math. Mech., 17 (1967), 473-484.
[19] Y.T. Tang, J.F. Liao, C.L. Tang, Two positive solutions for Kirchhoff type problems with Hardy-Sobolev critical exponent and singular nonlinearities, Taiwanese Journal of Mathematics 23 (2019), 231-253.

Mebarka Sattaf Department of mathematics, Faculty of Exact Sciences, Djillali Liabes University, O. Box 89 Sidi Bel Abbes 22000, Algeria

E-mail: sattafsattaf@gmail.com

Brahim Khaldi Department of Mathematics and Informatic, University Center of Naama, O. Box 66, Naama 45000, Algeria

E-mail: khaldi@cuniv-naama.dz

