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On a class of Kirchhoff type problems with

singular exponential nonlinearity

Mebarka Sattaf and Brahim Khaldi

Abstract. We study the following singular Kirchhoff type problem

(P )


−m

∫
Ω

|∇u|2 dx

∆u = h (u) e
αu2

|x|β in Ω,

u = 0 on ∂Ω

where Ω ⊂ R2 is a bounded domain with smooth boundary and 0 ∈ Ω, β ∈ [0, 2) ,
α > 0 and m is a continuous function on R+. Here, h is a suitable preturbation of
eαu

2

as u → ∞. In this paper, we prove the existence of solutions of (P ). Our
tools are Trudinger-Moser inequality with a singular weight and the mountain pass
theorem.

Keywords. Trudinger-Moser inequality, exponential critical growth, mountain pass theo-
rem

1 Introduction

Let Ω be a smooth bounded domain in R2 containing the origin. In this article, we study the
existence of solutions to the following singular Kirchhoff problems with exponential nonlinearities

−m

∫
Ω

|∇u|2 dx

∆u = h (u) e
αu2

|x|β in Ω,

u = 0 on ∂Ω,

(1.1)

where β ∈ [0, 2), α > 0 and m : R+ → R+, is a continuous function that satisfies some conditions
which will be stated later on, and h satisfies the following conditions:

(H1) h ∈ C (R) , h (t) ≥ 0 for all t ∈ R, h (t) = 0 if t < 0;

(H2) lim
t→0+

h(t)
t = 0 and lim

t→+∞
h (t) = 0.
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(H3) The map t 7→ h(t)eαt2

t3 is increasing for t > 0.

(H4) There exists γ > (2−β)2
2αd2−βm( 4πα (1− β

2 )) such that 0 < γ = lim inf
t→+∞

th (t) <∞,

where d is the radius of the largest open ball contained in Ω. As examples of a function satisfying
the above assumptions, we have
Example 1. For α ≥ 1;

h(t) =

{
γt3

1+t4 if t ≥ 0,

0 if t < 0.

Example 2. For 0 < α < 1;

h(t) =


γt3

1+t4 if t ≥
√

2
α ,

γα2

α2+4 t
3 if 0 ≤ t <

√
2
α ,

0 if t < 0.

The hypotheses on the function m : R+ → R+ are the following.

(M1) There exist real numbers m0, m1,m2 > 0 such that for some κ ∈ R

m0 ≤ m (t) ≤ m1t
κ +m2, for all t ≥ 0

(M2) M (s) +M (t) ≤M (s+ t) ∀s, t ≥ 0 where M (t) =
t∫
0

m (x) dx

(M3)
m(t)
t is noninreasing for t > 0.

A typical example of a function satisfying the conditions (M1) − (M3) is given by m(t) =
m0 + bt with b > 0 and for all t ≥ 0. As a consequence of (M3), a straightforward computation
shows that 1

2M (t)− 1
4m (t) t is nondecreasing for t ≥ 0, which implies that

1

2
M (t)− 1

4
m (t) t ≥ 0. (1.2)

Problem (1.1) is related to the stationary version of a model established by Kirchhoff [10].
More precisely, Kirchhoff proposed the following model

ρ
∂2u

∂t2
−

P0

h
+

E

2L

L∫
0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

 ∂2u

∂x2
= 0

which extends D’Alembert’s wave equation with free vibrations of elastic strings, where ρ denotes
the mass density, P0 denotes the initial tension, h denotes the area of the cross section, E denotes
the Young modulus of the material, and L denotes the length of the string.

Many interesting results for the problem of Kirchhoff type were obtained, see for example
[5], [6], [9], [16], [8] and the references therein. The authors have used the variational method and
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the topological method to get the existence of solutions. In [8], by a direct variational approach,
the authors establish the existence of a positive ground state solution for a nonlocal Kirchhoff of
the type 

−m

∫
Ω

|∇u|2 dx

∆u = f(x, u) in Ω,

u = 0 on ∂Ω.

where Ω ⊂ R2 and f : Ω × R → R is a continuous function that satisfies some appropriate
conditions. Our paper is closely related to the works of de Figueiredo et al. [8]. Indeed, we
extend the results in [8] from β = 0 to β ∈ [0, 2). This limitation on β is due to Lemma 2.1.

Now, we are ready to state our main result

Theorem 1.1. Under assumptions (M1)− (M3) and (H1)− (H4) , problem (1.1) admits a non-
tirivial solution u ∈ H1

0 (Ω).

This work is organised as follows: In Section 2, we present the variational setting in which
our problem will be treated , and some preliminary results. Section 3 is devoted to show that
the energy functional has the mountain pass geometry and in section 4 we obtain an estimate for
the minimax level associated to our functional. Finally, we prove our main result in section 5.

2 Preliminary results

It is natural to find solution of our problem by looking for critical points of the corresponding
functional of problem (1.1) which we define next.

Let g (u) = h (u) eαu
2

and G (u) =

u∫
0

g (s) ds, the functional associated to (1.1) is given by

I (u) =
1

2
M
(
∥u∥2

)
−
∫
Ω

G (u)

|x|β
dx,

where ∥u∥ =
( ∫

Ω
|∇u|2 dx

) 1
2 . Under our assumptions this functional is well defined on H1

0 (Ω).

Moreover, by standard arguments, I ∈ C1
(
H1

0 (Ω) ,R
)
with

⟨I ′ (u) , φ⟩ = m
(
∥u∥2

)∫
Ω

∇u∇φdx−
∫
Ω

g (u)

|x|β
φdx, for all φ ∈ H1

0 (Ω) .

Let consider the following eigenvalue problem:{ −∆u = λ u
|x|β in Ω,

u = 0 on ∂Ω.
(2.1)

From classical theory of Hilbert Spaces we get the next classical result (see [7] )

Proposition 2.1. There exists an eigenvalue sequence {λk (β)} ⊂ R+, with λk (β) → ∞ as
k → ∞ for which problem (2.1) has nontrivial solution. Furthermore, the first eigenvalue λ1 (β)
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is simple and isolated and the corresponding eigenfunctions don’t change sign in Ω. The first
eigenvalue is variationally characterized as

λ1 (β) = inf
u∈H1

0 (Ω)⧹{0}

∫
Ω
|∇u|2 dx∫
Ω

u2

|x|β dx
. (2.2)

The exponential nature of the nonlinearity g (u) is motivated by the following version of
Trudinger-Moser inequality with a singular weight due to Adimurthi-Sandeep [3].

Lemma 2.1. Let Ω be a bounded domain in R2 containing 0 and u ∈ H1
0 (Ω). Then for every

α > 0 and β ∈ [0, 2) ∫
Ω

eαu
2

|x|β
dx <∞

Moreover,

sup
∥u∥≤1

∫
Ω

eαu
2

|x|β
dx <∞ (2.3)

if and only if α
4π + β

2 ≤ 1.

We end this section with a singular version of the following theorem of P. L. Lions [3]

Lemma 2.2. Let (un) be a sequence in H1
0 (Ω) such that ∥un∥ = 1, for all n ∈ N∗ and un ⇀ u

in H1
0 (Ω) for some u ̸= 0. Then, for p < 4π

(
1− β

2

)(
1− ∥u∥2

)−1

,

sup
n≥1

∫
Ω

epu
2
n

|x|β
dx <∞.

3 The Mountain Pass Geometry

In the sequel, we prove that the functional I has the Mountain Pass Geometry. This fact is proved
in the next lemmas:

Lemma 3.1. Assume (M1), (H1) and (H2), then there exist positive constants τ and ρ such that

I(u) ≥ τ > 0, ∀u ∈ H1
0 (Ω) : ∥u∥ = ρ.

Proof. It follows from (H2) that, for each ε > 0, there exists a positive constant C such that

|G(u)| ≤ εu2 + Cu3eαu
2

,

Let 2 < q < 4
β . By (2.2) and generalized Hölder’s inequality, we have

∫
Ω

|G(u)|
|x|β

dx = ε

∫
Ω

|u|2

|x|β
dx+ C

∫
Ω

|u|3eαu2

|x|β
dx

≤ ε

λ1 (β)

∫
Ω

|∇u|2 dx+ C

∫
Ω

|u|3 1

|x|
β
2

eαu
2

|x|
β
2

dx
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≤ ε

λ1 (β)
∥u∥2 + C

(∫
Ω

|u|3pdx+
) 1

p

(∫
Ω

1

|x|
qβ
2

dx

) 1
q
(∫

Ω

e2αu
2

|x|β
dx

) 1
2

,

where 1
p +

1
q = 1

2 . So, Using the Sobolev embedding theorem, there is a positive constant C such
that ∫

Ω

|G(u)|
|x|β

dx ≤ ε

λ1 (β)
∥u∥2 + C∥u∥3

(∫
Ω

1

|x|
qβ
2

dx

) 1
q
(∫

Ω

e2αu
2

|x|β
dx

) 1
2

≤ ε

λ1 (β)
∥u∥2 + C∥u∥3

(∫
Ω

1

|x|
qβ
2

dx

) 1
q
(∫

Ω

e2αρ
2( u

∥u∥ )
2

|x|β
dx

) 1
2

.

The first integral on the right-hand side is finite since qβ < 4. If ρ ≤
√

2π(1− β
2 )

α , the second
integral is bounded by lemma 2.1. Thus, using the condition (M1) one has

I (u) ≥
(
m0

2
− ε

λ1 (β)

)
∥u∥2 − C1∥u∥3.

Consequently

I (u) ≥
(
m0

2
− ε

λ1 (β)

)
ρ2 − C1ρ

3.

Now, we may fix ε > 0 such that m0

2 − ε
λ1(β)

> 0. Thus, for ρ > 0 sufficiently small there exists

τ :=
(
m0

2 − ε
λ1(β)

)
ρ2 − C1ρ

3 > 0 such that

I(u) ≥ τ > 0, ∀u ∈ H1
0 (Ω) with ∥u∥ = ρ

The proof of Lemma is complete.

Lemma 3.2. Assume that conditions (M1) , (H1) and (H4) hold. Then, there exists e1 ∈ H1
0 (Ω)

with ∥e1∥ > ρ such that I(e1) < 0.

Proof. First, by assumption (M1) , we obtain

M (t) ≤ m1

κ+ 1
tκ+1 +m2t. (3.1)

On the other hand, fix ε > 0 and by (H4) , we get

th (t) eαt
2

≥ (γ − ε) eαt
2

, for t > Aε with Aε > 0.

Since eαt
2 ≥ 1

θ!α
θt2θ for all t and θ ∈ N, then there exists a constant Cε > 0 such that

th (t) eαt
2

≥ 1

θ!
(γ − ε)αθt2θ − Cεt, for t > 0

and consequently

G (u) ≥ 1

2θθ!
(γ − ε)αθt2θ − Cεt for t > 0. (3.2)
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Let u0 ∈ H1
0 (Ω) with u0 > 0 in Ω and ∥u0∥ = 1. Thus, from (3.1) and (3.2), we obtain

I(tu0) ≤
m2

2
t2 +

m1

2κ+ 2
t2(κ+1) − 1

2θθ!
(γ − ε)αθt2θ

∫
Ω

u0
2θ

|x|β
dx− Cεt

∫
Ω

u0

|x|β
dx

for all t > 0, which yields I(tu0) → −∞ as t→ +∞, provided that θ > max {2, 2κ+ 2} . Setting
e1 = tu0 with t > 0 large enough, the proof is complete.

4 On the mini-max level

In view of Lemmas 3.1 and 3.2, we may apply a version of the Mountain Pass theorem without
Palais-Smale condition to obtain a sequence un ∈ H1

0 (Ω) such that

I(un) → c∗ and I ′(un) → 0,

where
c∗ = inf

γ∈Γ
max
t∈[0,1]

I (γ (t)) (4.1)

with
Γ =

{
γ ∈ C

(
[0, 1] , H1

0 (Ω)
)
: γ (0) = 0, γ (1) < 0

}
.

Let Bd(x0) ⊂ Ω be an open ball where d was given in (H4) . We may assume that x0 = 0.
In order to get more information about the minimax level, it was crucial in our argument to
consider the following concentrating functions ψn(x) = ψ̃n(

x
d ), n ∈ N where

ψ̃n(x) =


1√
2π

(log n)1/2 for 0 ≤ |x| ≤ 1
n ,

1√
2π

log 1
|x|

(logn)1/2
for 1

n ≤ |x| ≤ 1,

0 for |x| ≥ 1.

Then, ψn has support in Bd(0) and ∥ψn∥ = 1 ∀n ∈ N.

To show that the desired estimate for the level c∗, we will use the following inequality

Lemma 4.1. The following inequality holds:

lim inf
n→+∞

∫
Bd(0)

exp
(
4π(1− β

2 )ψ
2
n

)
|x|β

dx ≥ 6πd(2−β)

(2− β)
.

Proof. Using the definition of ψ̃n and by change of variable, we have

∫
Bd(0)

exp
(
4π(1− β

2 )ψ
2
n

)
|x|β

dx = d(2−β)
∫
B 1

n
(0)

exp
(
4π(1− β

2 )ψ̃
2
n

)
|x|β

dx

+ d(2−β)
∫

1
n≤|x|≤1

exp
(
4π(1− β

2 )ψ̃
2
n

)
|x|β

dx

=
2πd(2−β)

(2− β)
+ 2πd(2−β)

∫ 1

1
n

r1−βexp

(
(2− β)

(
log( 1r )

)2
log(n)

)
dr.
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Next, by using the change of variable t =
log( 1

r )

log(n) , we obtain

∫
Bd(0)

exp
(
4π(1− β

2 )ψ
2
n

)
|x|β

dx =
2πd(2−β)

(2− β)
+ 2πd(2−β)log(n)

∫ 1

0

n(2−β)(t
2−t)dt.

On the other hand, since {
t2 − t ≥ −t for t ∈

[
0, 12

]
,

t2 − t ≥ t− 1 for t ∈
[
1
2 , 1
]
,

we get

∫
Bd(0)

exp
(
4π(1− β

2 )ψ
2
n

)
|x|β

dx ≥ 2πd(2−β)

(2− β)
+ 2πd(2−β) log(n)

∫ 1
2

0

n−(2−β)tdt

+ 2πd(2−β) log(n)

∫ 1

1
2

n(2−β)(t−1)dt

≥ 2πd(2−β)

(2− β)
+

2πd(2−β)

(2− β)

(
2− 2

n
2−β
2

)
.

(4.2)

Passing to limit in (4.2), then the proof of lemma 4.1 is complete.

We can now prove the following upper bounded for c∗.

Lemma 4.2. With c∗ defined as in (4.1), we have c∗ <
1
2M

(
4π
α

(
1− β

2

))
.

Proof. Since ψn ≥ 0 and ∥ψn∥ = 1, we can deduce that I(tψn) → −∞ as t → +∞. From (4.1),
we have

c∗ ≤ max
t>0

I(tψn), ∀n ∈ N.

For the sake of contraduction, Suppose that for all ∀n ∈ N, we have

max
t>0

I(tψn) ≥
1

2
M

(
4π

α
(1− β

2
)

)
.

Since I possesses the mountain pass geometry, for each n, maxt>0 I(tψn) is attained at some
tn > 0, that is I(tnψn) = maxt>0 I(tψn). Thus,

I(tnψn) =
1

2
M(t2n)−

∫
Ω

G(tnψn)

|x|β
dx.

Using G(t) ≥ 0 for all ∀t ∈ R, one can deduce that

1

2
M(t2n) ≥

1

2
M

(
4π

α
(1− β

2
)

)
.

Since M : [0,+∞) → [0,+∞) is a nondecreasing bijection function by (M1) so

t2n ≥ 4π

α
(1− β

2
).
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On the other hand, by using d
dtI(tnψn) |t=tn= 0, we reach

m(t2n)t
2
n =

∫
Ω

tnψnh(tnψn)
eαt

2
nψ

2
n

|x|β
dx

≥
∫
Bd(0)

tnψnh(tnψn)
eαt

2
nψ

2
n

|x|β
dx

≥
∫
B d

n
(0)

tnψnh(tnψn)
et

2
nψ

2
n

|x|β
dx,

(4.3)

From (H4) , we get

tnψnh(tnψn)
et

2
nψ

2
n

|x|β
≥ (γ − ε)

eαt
2
n logn/2π

|x|β
, (4.4)

and ∫
B d

n
(0)

eαt
2
n logn/2π

|x|β
dx =

2πd2−β

2− β
e

αt2n log n

2π −(2−β) logn ≥ 2πd2−β

2− β
e
2 logn

(
αt2n
4π −(1− β

2 )
)
,

Hence

m(t2n)t
2
n ≥ 2πd2−β

2− β
(γ − ε)e

2 logn

(
αt2n
4π −(1− β

2 )
)
. (4.5)

Note that, by (M1), we can see that

m(t2n)t
2
n

e
2 logn

(
αt2n
4π −(1− β

2 )
) → 0 if tn → +∞.

It follows from this and (4.5), we infer that

t2n → 4π

α
(1− β

2
). (4.6)

Now, we are going to estimate (4.3) more exactly. For 0 < ε < γ and n ∈ N we set

Un,ε = {x ∈ Bd(0) : tnψn > Aε} and Vn,ε = Bd(0) \ Un,ε.

So, by using (4.3) and (4.4) we obtain

m(t2n)t
2
n ≥ (γ − ε)

∫
Bd(0)

eαt
2
nψ

2
n

|x|β
dx− (γ − ε)

∫
Vn,ε

eαt
2
nψ

2
n

|x|β
dx

+

∫
Vn,ε

tnψnh(tnψn)
eαt

2
nψ

2
n

|x|β
dx.

(4.7)

Since th(t)eαt
2 ≥ −Cεt for all t ≥ 0 and ψn → 0 almost everywhere in Bd(0) , by using the

Lebesgue dominated convergence theorem, we have∫
Vn,ε

tnψnh(tnψn)
eαt

2
nψ

2
n

|x|β
dx ≥ −Cεtn

∫
Vn,ε

ψn

|x|β
dx→ 0 as n→ +∞
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∫
Vn,ε

eαt
2
nψ

2
n

|x|β
dx→

∫
|x|≤d

1

|x|β
dx =

2πd2−β

(2− β)
.

Then, from (4.6) and lemma4.1, passing to the limit in (4.7) we reach

m

(
4π

α
(1− β

2
)

)
4π

α
(1− β

2
) ≥ (γ − ε) lim inf

n→+∞

∫
Bd(0)

exp(4π(1− β
2 )ψ

2
n)

|x|β
dx− (γ − ε)

2πd2−β

(2− β)
,

and taking ε→ 0 we get (2−β)2
2αd2−βm( 4πα (1− β

2 )) ≥ γ , which contradicts (H4). Thus, the lemma is
proved.

Now, we consider the Nehari manifold associated to the functional I, namely

N =
{
u ∈ H1

0 (Ω) : ⟨I ′(u), u⟩ = 0 and u ̸= 0
}

and let b = inf
u∈N

I(u). From the fact that g(t)
t3 increasing, we deduce the following result (see [8])

Lemma 4.3. If condition (H3) holds, then for each x ∈ Ω, sg (s)−4G (s) is increasing for s > 0.
In particular

sg (s)− 4G (s) ≥ 0. for all s ∈ [0,+∞) .

The next result gives a comparison between the minimax level c∗ and b.

Lemma 4.4. Assume that (M3) and (H3) are satisfied. Then c∗ ≤ b.

Proof. Given u ∈ N , let us define h (t) := I(tu) with t ∈ (0,+∞) . The function h is differentiable
and

h′ (t) = ⟨I ′(tu), u⟩ = m
(
t2 ∥u∥2

)
t ∥u∥2 −

∫
Ω

g(tu)udx, ∀t > 0.

Since ⟨I ′(u), u⟩ = 0, for all u ∈ N , we get

h′ (t) = t3 ∥u∥4
m

(
t2 ∥u∥21,2

)
t2 ∥u∥2

−
m
(
∥u∥2

)
∥u∥2

+ t3
∫
Ω

(
g (u)

|x|β u3
− g(tu)

|x|β (tu)3

)
u4dx.

Then h′ (1) = 0 and from (M3) and (H3) , we conclude that h
′ (t) ≥ 0 for 0 < t < 1 and h′ (t) ≤ 0

for t > 1. Hence

I(u) = max
t≥0

I(tu).

Now, defining γ : [0, 1] → H1
0 (Ω), γ (t) = tt0u we have γ ∈ Γ and therfore

c∗ ≤ max
t∈[0,1]

I(γ (t)) ≤ max
t≥0

I(tu) = I(u),

which implies c∗ ≤ b.
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5 Proof of main result

In this section we will give the proof of theorem 1.1. Thus we assume that the conditions
(M1)− (M3) and (H1)− (H4) hold. First, we prove that I satisfies Palais-Smale condition. For
this purpose, we will use the following convergence result due to M. de Souza and J. Marcos do
Ò [17].

Lemma 5.1. Let Ω ⊂ R2 be a bounded domain, a ∈ [0, 2) and f : Ω × R → R be a continuous
function. Then for any sequence (un) in L

1 (Ω) such that

un → u in L1 (Ω) ,
f (x, un)

|x|a
∈ L1 (Ω) and

∫
Ω

|f (x, un)un|
|x|a

dx ≤ C

up to a subsequence we have

f (x, un)

|x|a
→ f (x, u)

|x|a
in L1 (Ω) .

Proposition 5.1. Assume that α > 0 and 0 ≤ β < 2 satisfy α
4π + β

2 ≤ 1. Then the functional E
satisfies Palais-Smale condition for all c∗ <

1
2M

(
4π
α

)
.

Proof. Let (un) ⊂ H1
0 (Ω) be a sequence such that I(un) → c∗ and I ′(un) → 0, that is, for any

φ ∈ H1
0 (Ω)

1

2
M
(
∥un∥2

)
−
∫
Ω

G (un)

|x|β
dx = c∗ + o(1), (5.1)

m
(
∥un∥2

)∫
Ω

∇un∇φdx−
∫
Ω

h (un)
eαu

2
n

|x|β
φdx = o(∥φ∥). (5.2)

It follows from (M1) and (1.2), we obtian

C + ∥un∥ ≥ 8I(un)− ⟨I ′(un), un⟩

≥ m0∥un∥2 +
∫
Ω

(
unh (un) e

αu2
n − 8G (un)

) 1

|x|β
dx.

(5.3)

So it suffices to prove that th (t) eαt
2 − 8G (t) is bounded from below. Here let us consider

0 < ε ≤ γ
9 . From (H4) , for some constants Cε > 0 and for all t > 0 we get

th (t) eαt
2

≥ (γ − ε) eαt
2

− Cε,

and
G (t) ≤ εeαt

2

+ Cε. (5.4)

Then, there exists a constant Cε (Ω) such that∫
Ω

(
unh (un) e

αu2
n − 8G (un)

) 1

|x|β
≥ −Cε (Ω) .

and therfore using (5.3), we obtain

C + ∥un∥ ≥ m0∥un∥2 − Cε (Ω) . (5.5)
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Hence (un) is bounded in H1
0 (Ω). Now we take a subsequence denoted again by un such that,

for some u ∈ H1
0 (Ω), we have

un ⇀ u weakly in H1
0 (Ω),

un → u strongly in Lq(Ω) for 1 ≤ q < +∞,

un(x) → u(x) for almost every x ∈ Ω.

In particular, un → u in L1 (Ω) and by (5.2) , (H2) and the Trudinger−Moser inequality, it also

follows that
∫
Ω
unh(un)e

αu2
n

|x|β dx is bounded and h(u)eαu2

|x|β ∈ L1(Ω). Then, we can apply Lemma 5.1

to conclude that ∫
Ω

h (un) e
αu2

n

|x|β
dx→

∫
Ω

h (u) eαu
2

|x|β
dx ∈ L1(Ω).

It follows from (5.4) and (2.3), using the generalized Lebesgue dominated convergence, that∫
Ω

G (un)

|x|β
dx→

∫
Ω

G (u)

|x|β
dx, (5.6)

which implies
1

2
M
(
∥un∥2

)
→ c∗ +

∫
Ω

G (u)

|x|β
dx. (5.7)

Next, we will make some assertions

Assertion 1. m
(
∥u∥2

)
∥u∥2 ≥

∫
Ω
g(u)u

|x|β dx

Proof : Suppose by contradiction m
(
∥u∥2

)
∥u∥2 <

∫
Ω
g(u)u

|x|β dx, so ⟨I ′(u), u⟩ < 0. Using (H2)

and (2.2), we can see that ⟨I ′(tu), u⟩ > 0 for t sufficiently small. Thus, there exists σ ∈ (0, 1)
such that ⟨I ′(σu), u⟩ = 0. That is, σu ∈ N .
Thus, according to lemma 4.3

c∗ ≤ b ≤ I(σu) = I(σu)− 1

4
⟨I ′(σu), u⟩

≤ 1

2
M
(
∥σu∥2

)
− 1

4
m
(
∥σu∥2

)
∥σu∥2 + 1

4

∫
Ω

g (σu)σu− 4G (σu)

|x|β
dx

<
1

2
M
(
∥u∥2

)
− 1

4
m
(
∥u∥2

)
∥u∥2 + 1

4

∫
Ω

g (u)u− 4G (u)

|x|β
dx.

By semicontinuity of norm and Fatou Lemma, we obtain

c∗ < lim inf
n→∞

(1
2
M
(
∥u∥2

)
− 1

4
m
(
∥u∥2

)
∥u∥2

)
+ lim inf

1

4

∫
Ω

g (u)u− 4G (u)

|x|β
dx.

n→∞

≤ lim
n→∞

(
I(un)−

1

4
I ′ ⟨un, un⟩

)
= c∗,

which is a contradiction and the assertion is proved.

Assertion 2. I(u) ≥ 0.
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Proof : By Assertion 1, we have I(u) ≥ I(u)− 1
4 ⟨I

′(u), u⟩ which implies that

I(u) ≥ 1

2
M
(
∥u∥2

)
− 1

4
m
(
∥u∥2

)
∥u∥2 + 1

4

∫
Ω

g (u)u− 4G (u)

|x|β
dx.

Hence, using (1.2) and Lemma 4.3, we obtain

I(u) ≥ 0.

Now we separate the proof into three cases.

Case 1. c∗ = 0. If this is the case, we use (5.6) and (5.7)

0 ≤ I(u) ≤ lim inf
n→+∞

I(un) =

∫
Ω

G (u)

|x|β
dx−

∫
Ω

G (u)

|x|β
dx = 0.

So M
(
∥un∥2

)
→M

(
∥u∥2

)
and then ∥un∥ → ∥u∥ which implies that un → u in H1

0 (Ω).

Case 2. c∗ ̸= 0, u = 0. We show that this cannot hapen for a Palais-Smale sequence. First
we claim that ∫

Ω

∣∣∣unh(un)eαu2
n

∣∣∣
|x|β

dx→ 0 as n→ ∞.

Since u = 0, we have
∫
Ω
G(un)

|x|β dx → 0 and so

1

2
M
(
∥un∥2

)
→ c∗ <

1

2
M

(
4π

α0

(
1− β

2

))
.

Let M−1 (2ρ0) < η < 4π
α0

(
1− β

2

)
. Then, ∥un∥ <

√
η for all n ≥ n0 and for some n0 ∈ N. Now,

choose q = 4π
ηα

(
1− β

2

)
> 1 and 1

1− 1
q

< r < 2

β(1− 1
q )
. By the Hölder inequality,

∫
Ω

∣∣∣unh(un)eαu2
n

∣∣∣
|x|β

dx ≤
(∫

Ω

|unh(un)|p dx
) 1

p

(∫
Ω

eqαu
2
n

|x|β
dx

) 1
q
(∫

Ω

1

|x|βr(1−
1
q )
dx

) 1
r

,

where 1
p + 1

q + 1
r = 1. Since the function th(t) is bounded and u = 0, the first integral on the

right-hand side converges to zero , the second integral is bounded for n ≥ n0 by lemma 2.1 since

qαu2n = 4π
(
1− β

2

)
U2
n, where Un = un√

η satisfies ∥Un∥ ≤ 1, and the last integral is finite because

βr
(
1− 1

q

)
< 2. So ∫

Ω

∣∣∣unh(un)eαu2
n

∣∣∣
|x|β

dx→ 0.

Thenm
(
∥un∥2

)
∥un∥2 → 0 by(5.2) and consequently by (M1), ∥un∥ → 0. This contradicts (5.7) ,

which says in this case that ∥un∥2 → 2c∗ ̸= 0.

Case 3. c∗ ̸= 0, u ̸= 0. In this case we claim that
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I(u) = c∗. (5.8)

As un is bounded, up to a subsequence, ∥un∥ → r > 0. By using (5.6) and semicontinuity of norm,
we have I(u) ≤ c∗. So it remains to prove (5.8), we assume by contradiction that I(u) < c∗.
Then,

∥u∥ < r.

Next, defining wn = un

∥un∥ and w = u
r , we have

wn ⇀ w in H1
0 (Ω) and ∥w∥ < 1.

Thus, by lemma 2.2

sup
n∈N

∫
Ω

epw
2
n

|x|β
dx <∞, ∀p <

4π
(
1− β

2

)
1− ∥w∥2

. (5.9)

On the other hand,

2c∗ − 2I(u) =M
(
r2
)
−M

(
∥u∥2

)
. (5.10)

Using this equality, lemma 4.2 and the fact that I(u) ≥ 0, we get

M
(
r2
)
< M

(
4π

α

(
1− β

2

))
+M

(
∥u∥2

)
.

From (M1) and (M2) , it follows that

r2 < M−1

(
M

(
4π

α

(
1− β

2

))
+M

(
∥u∥2

))
≤ 4π

α

(
1− β

2

)
+ ∥u∥2 . (5.11)

Now, we observe that

r2 =
r2 − ∥u∥2

1− ∥w∥2
,

and from (5.11), it follows that

r2 <

4π
α

(
1− β

2

)
1− ∥w∥2

.

Then, there exists ρ > 0 such that α∥(un∥2 < ρ <
4π(1− β

2 )
1−∥w∥2 for n sufficiently large. Now, taking

q > 1 close to 1 such that

qα∥un∥2 < ρ <
4π
(
1− β

2

)
1− ∥w∥2

, for n large enough

and invoking (5.9), for some C > 0, we conclude that∫
Ω

eqαu
2
n

|x|β
dx ≤

∫
Ω

eρw
2
n

|x|β
dx ≤ C.

Hence, using (H2) and Hölder inequality, for some p > 1, we reach∣∣∣∣∣∣
∫
Ω

h(un)e
αu2

n (un − u)

|x|β
dx dx

∣∣∣∣∣∣ ≤ C1

∫
Ω

eαu
2
n |un − u|
|x|β

dx
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≤ C2 ∥un − u∥Lp(Ω) → 0 as n→ ∞,

Since ⟨I(un), (un − u)⟩ = o (1) , we get

m
(
∥un∥2

)∫
Ω

∇un (∇un −∇u) dx→ 0.

On the other hand,

m
(
∥un∥2

)∫
Ω

∇un (∇un −∇u0) dx = m
(
∥un∥2

)
∥un∥2 −m

(
∥un∥2

)∫
Ω

∇un∇u dx

→ m
(
r2
)
r2 −m

(
r2
)
∥u∥2 .

which implies that ∥u∥ = r and so un → u in H1
0 (Ω) . In view of the continuity of I, we must

have I(u) = c∗ that is an absurde. Thus, the proof of Proposition 1 is complete.

Proof of Theorem 1.1. It follows the assumptions that the functiona I satisfies the Plais-Smale

condition at any level c∗ <
1
2M

(
4π
α0

(
1− β

2

))
, see Proposition 5.1. To finish the proof of theorem

1.1, we use Lemma 3.1 and 3.2 and apply the mountain Pass Theorem.
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