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LACK OF SYMMETRY IN LINEAR DETERMINACY

DUE TO CONVECTIVE EFFECTS

IN REACTION-DIFFUSION-CONVECTION PROBLEMS

A. AL-KIFFAI AND E. C. M. CROOKS

Abstract. This paper is concerned with linear determinacy in monostable reaction-

diffusion-convection equations and co-operative systems. We present sufficient condi-

tions for minimal travelling-wave speeds (equivalent to spreading speeds) to equal values

obtained from linearisations of the travelling-wave problem about the unstable equilib-

rium. These conditions involve both reaction and convection terms. We present sep-

arate conditions for non-increasing and non-decreasing travelling waves, called ‘right’

and ‘left’ conditions respectively, because of the asymmetry in propagation caused by

the convection terms. We also give a necessary condition on the reaction term for the

existence of convection terms such that both the right and left conditions can be satis-

fied simultaneously. Examples show that our sufficient conditions for linear determinacy

are not necessary and compare these conditions in the scalar case with alternative con-

ditions observed in Malaguti-Marcelli [15] and Benguria-Depassier-Mendez [3]. We also

illustrate, for both an equation and a system, the existence of reaction and (non-trivial)

convection terms for which the right and left linear determinacy conditions are simulta-

neously satisfied. An example is given of an equation which is right but not left linearly

determinate.

1. Introduction

The reaction-diffusion equation ut = duxx + f (u) is well-known as a simple model of

phenomena in, for instance, population growth, chemical reaction, flame propagation, etc.

For the classical Fisher case [6], f (u) = r u(1−u), Kolmogorov, Petrowskii and Piscounov [10]

showed that there exist non-increasing travelling fronts, joining the equilibria 1 and 0, for all

speeds c ≥ 2
p

dr . In many applications, however, there is convective motion in addition to

diffusion and reaction, which can have a major impact on the behaviour of solutions. An

example of such convection terms arises in a simple one-dimensional model of the motion
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of chemotactic cells, based on a model of Keller and Segel [9]. This model is presented in

Benguria, Depassier and Mendez [2], where ρ denotes the density of bacteria chemotactic to

a single chemical element of concentration s, the density evolves according to ρt = [Dρx −
ρχsx ]x + f (ρ), D is a diffusion constant and χ is the chemotactic sensitivity. For travelling

front solutions, s = s(x−ct ),ρ = ρ(x−ct ), we have st =−csx , sx = Kρ/c , and the problem then

reduces to a single differential equation for ρ, namely

ρt = Dρxx −
χK

c
(ρ)2

x + f (ρ).

Motivated by such models, we first consider a reaction-diffusion-convection equation of form

ut +h
′
(u)ux = uxx + f (u) (1.1)

with a monostable reaction term f (u) in which 0 is an unstable equilibrium, there is a stable

equilibrium β> 0, and there are no equilibria of f between 0 and β. When h
′
(u) ≡ 0, Hadeler

and Rothe [8] showed that there exist non-increasing travelling fronts u(x, t )= w (x −ct ) with

w (−∞) =β, w (+∞)= 0, 0 ≤ w ≤β for (1.1) of all speeds c ≥ c0, and gave a variational formula

for the minimal travelling wave speed c0. Here we begin by presenting a straightforward gen-

eralisation of this formula to the reaction-diffusion-convection equation (1.1). This minimal

speed c0 is bounded below by a critical parameter c̄ ∈R, which we refer to as the ‘linear value’.

This linear value is obtained from the linearisation of the travelling-wave equation for (1.1)

about the unstable equilibria 0. We present a sufficient condition to guarantee that the min-

imal wave speed c0 equals the linear value c̄ = h
′
(0)+2

√

f
′
(0), extending [8, Corollary 9] to

now involve both the functions f and h. This condition is

h
′
(u)+

f (u)

u
√

f
′
(0)

≤ h
′
(0)+

√

f
′
(0) for all u ∈ (0,1), (1.2)

which generalises the classical Hadeler-Rothe condition,

f (u)≤ u f
′
(0) for all u ∈ (0,1), (1.3)

that applies when h
′
(u) ≡ 0. Example 2.4 shows that (1.2) is sufficient but not necessary for

linear determinacy. Benguria, Depassier and Mendez [3] give an alternative condition to en-

sure that c0 = c̄ which again involves both functions f and h and is based on an alternative

variational expression from which the minimal travelling wave speed can be estimated. We

give examples to show that for a given reaction function f , it is possible for the condition in

[3] to be satisfied when our condition (1.2) is not satisfied, and vice versa, that (1.2) can be

satisfied when the condition in [3] is not. Note here that Gilding and Kersner [7] also dis-

cuss extension of the ideas of Hadeler and Rothe [8] to (1.1) in their detailed and substantial
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discussion of an integral equation framework for travelling fronts. Moreover, Malaguti and

Marcelli [15] also observe a condition which, in particular, guarantees that c0 = c̄ if the func-

tion f satisfies (1.3) and sup0<u<1h
′
(u) = h

′
(0) (see also the discussion following Proposition

2.1 in Section 2 below). Example 2.6 illustrates that our condition (1.2) can be satisfied by

reaction and convection terms f and h when the function f does not satisfy the classical

Hadeler-Rothe condition (1.3). We also show that for this function f , our condition (1.2) can

be satisfied when the conditions of Benguria-Depassier-Mendez and Malaguti-Marcelli are

not. We mention also that Weinberger [20] recently followed and extended the approach of

Hadeler and Rothe [8] to introduce a new condition in the case h
′
(u)≡ 0 that involves replac-

ing u in the right hand side of (1.3) by a suitable choice of function K (u), and briefly discussed

such generalised conditions in the presence of h
′
(u), but we do not pursue this approach fur-

ther here.

Note that for (1.1) with h
′
(u) ≡ 0, there is, of course, reflection symmetry, and hence cor-

responding to a non-increasing travelling-front solution w (x − ct ), there is a non-decreasing

travelling front ŵ(x + ct ) with ŵ(+∞) = β, ŵ(−∞) = 0, 0 ≤ ŵ ≤ β and w (ξ) = ŵ(−ξ). On the

other hand, it is clear that the presence of the term h
′
(u)ux will affect propagation speeds and,

in particular, will break this symmetry between non-increasing and non-decreasing fronts

that exists when h
′
(u)≡ 0.

For (1.1), if we have c0 = c̄ , then we say that the problem is right linearly determinate.

In the following, we will write c0
r , c̄r in place of c0, c̄ , so that (1.1) is right linearly determi-

nate if c0
r = c̄r . Correspondingly, we say that (1.1) is left linearly determinate when the crit-

ical travelling wave speed for non-decreasing travelling fronts c0
l

equals the speed c̄l ob-

tained from the linearisation of the travelling wave equation (1.1) about the unstable state,

this time with the leading edge tending to the equilibrium at −∞ instead of +∞, in which case

c̄l = h
′
(0)−2

√

f
′
(0). In general, for given functions f and h, it is of course possible that (1.2)

is satisfied but the corresponding condition for left linear determinacy is not, and indeed, a

problem may be right but not left linearly determinate, or vice versa - see Examples 2.7 and

3.15 below. Linear determinacy for propagation into an unstable state means that the spread

rate in the full nonlinear model equals the spread rate in the corresponding travelling-wave

problem linearised about the unstable state, which is the speed associated with the leading

edge of the wave. It is useful to determine conditions that ensure (right and/or left) linear de-

terminacy because it is easier to calculate a minimal wave speed if it equals the corresponding

linear value. Moreover, the minimal wave speed, being equal to a spreading speed, is impor-

tant for applications to, for example, predicting the speed of spread of biological invasions.

For further background and results on linear determinacy, that focusses mainly on problems

without convection, see, for instance, [8], [21], and also [4], [12], [13].
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We then turn to study a co-operative system of two equations of the form

ui ,t +h
′

i (ui )ui ,x = di ui ,xx + fi (u), i = 1,2, (1.4)

with a reaction term f (u) that satisfies
∂ fi

∂u j
≥ 0 for all i 6= j . For precise assumptions on the

equilibria f , see hypotheses s2 and s6 in section 3. We consider a non-increasing travelling

wave solution w (x, t )= w (x−ct ) that connects equilibria of f and converges to a co-existence

equilibrium β, with both components positive, at −∞, and to either the equilibrium 0, or an

equilibrium other than 0, at +∞. Note that the diagonal form h
′

i
(ui )ui ,x of our convection

term, together with the co-operative assumption
∂ fi

∂u j
≥ 0, i 6= j , ensures that a comparison

principle holds for the system (1.4). We focus here mainly on reaction terms f for which f
′
(0)

has the reducible form

(

α 0

̺ σ

)

where α,̺ > 0 and α > σ, motivated by models of interaction

of distinct species (see [21]). We extend the above theory for the scalar equation (1.1) on the

existence of a minimum travelling wave speed c0
r to such a system (1.4) by modifying a result

of Li, Weinberger and Lewis [11]. This value c0
r can be characterised as a slowest spreading

speed, in the sense of slowest spreading speed defined in [11, (2.4)]. Hence arguments which

extend those in Weinberger, Lewis and Li [21, Theorem 4.2] then yield a sufficient condition

that ensures that the minimal speed c0
r equals the linear value c̄ in this case. Our condition,

which generalises (1.2) in the scalar case, is that for all positive ρ and i = 1,2,

fi (ρζr (µ̄r )) ≤ ρµ̄r

[

h
′

i (0)−h
′

i (ρζr
i (µ̄r ))

]

ζr
i (µ̄r )+ρ ( f

′
(0)ζr (µ̄r ))i , (1.5)

where ζr (µ̄r ) is a certain strictly positive eigenvector of the coefficient matrix Cr (µ), defined

in (3.3) below, and µ̄r is the value of µ> 0 at which the infimum in definition (3.6) is attained.

This coefficient matrix Cr (µ) is obtained from the linearisation of the travelling-wave problem

for the system (1.4) about the unstable equilibria 0 at +∞. We refer to this condition as the

right combined condition since it involves a combination of the functions f and h. Clearly

(1.5) extends [21, (4.9)] and reduces to it when h
′
(u) ≡ 0. There is a corresponding condition

for non-decreasing travelling-front solutions of (1.4), called the left combined condition, that

ensures the system (1.4) is left linearly determinate, namely that for all positive ρ and i = 1,2,

fi (ρζl (µ̄l )) ≤ ρµ̄l

[

h
′

i (ρζl
i (µ̄l ))−h

′

i (0)
]

ζl
i (µ̄l )+ρ( f

′
(0)ζl (µ̄l ))i , (1.6)

where ζl (µ̄l ) is a certain strictly positive eigenvector of the coefficient matrix Cl (µ), defined in

(3.5) below, which is obtained from the linearisation of the travelling wave problem for (1.4)

about 0 at −∞, and µ̄l is the value of µ> 0 at which the infimum in definition (3.7) is attained,

see Theorems 3.8, 3.9. Finally, we present a sufficient and necessary condition on f for the

existence of a continuously differentiable function h such that (1.5) and (1.6) can be satisfied.
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We conclude by presenting examples to illustrate that for certain given functions f : R→ R

and f : R2 → R
2, we can find functions h so that both the right and left combined conditions

(1.5) and (1.6) are satisfied.

2. A formula for the minimal travelling wave speed of a reaction-diffusion-convection

equation

Consider a reaction-diffusion-convection equation

ut +h
′
(u)ux = uxx + f (u), x ∈R, t ∈ (0,∞), (2.1)

where u :R× [0,∞) →R and the functions f and h satisfy the hypotheses

e1: f ∈C 1[0,1] and h ∈C 2[0,1];

e2: f (0) = f (1) = 0 , f (u) > 0 for u ∈ (0,1);

e3: f
′
(0) > 0, f

′
(1) < 0.

A travelling front is a solution u of (2.1) such that u(x, t ) = w (x − ct ), where w is here

taken to be a non-increasing function such that

w (−∞) = 1, w (∞)= 0, 0 ≤ w ≤ 1, (2.2)

and the speed c ∈R is a constant. Clearly w and c satisfy the ordinary differential equation

−w
′′
= cw

′
−h

′
(w )w

′
+ f (w ).

It is shown in Hadeler and Rothe [8] that when h
′ ≡ 0 a travelling front satisfying (2.2) exists if

and only if c ≥ c0
r , with

c0
r = inf

ψ∈Λ
sup

0<w<1

{

ψ
′
(w )+

f (w )

ψ(w )

}

where the set Λ is defined by

Λ :=
{

ψ : [0,1] → [0,∞) :ψ is continuously differentiable, ψ(0) = 0, ψ
′
(0) > 0,

and ψ(w )> 0 for w ∈ (0,1)
}

.
(2.3)

The following proposition generalises this result to the equation (2.1). Since the proof is sim-

ilar to that in [8, Theorem 5], we omit it here. This extension of [8] is also observed by Gilding

and Kersner [7, Theorem 8.2], and additionally follows from the special case of [5, Lemmas

2.1, 2.2] when there is only one equation.
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Proposition 2.1. There exists a decreasing travelling-front solution of (2.1) that satisfies prop-

erties (2.2) for all speeds c ≥ c0
r , where c0

r is characterised by

c0
r = inf

ψ∈Λ
sup

0<w<1

{

ψ
′
(w )+h

′
(w )+

f (w )

ψ(w )

}

, (2.4)

and Λ is as defined in (2.3).

The variational formula (2.4) clearly yields upper bounds for c0
r using specific choices of

test functions ψ ∈Λ. In particular, if we define

L = sup
0<w<1

{

f (w )

w

}

, J = sup
0<w<1

{

h
′
(w )

}

,

then as in the proof of [8, Corollary 9], and noted also by Malaguti and Marcelli [15], min-

imising the expression sup
0<w<1

{

ψ
′

k
(w )+h

′
(w )+ f (w)

ψk (w)

}

with respect to k > 0, where ψk ∈ Λ is

defined by ψk (w )= k w , gives that

c0
r ≤ 2

p
L + J . (2.5)

Moreover, the value of the minimal speed c0
r is bounded below by a critical parameter c̄r ∈ R

known as the “linear value", which can be defined by the property that the travelling-wave

problem linearised about the unstable equilibrium 0 has a real negative eigenvalue if and

only if c ≥ c̄r . Such an eigenvalue λ satisfies the equation λ2 +λ(c −h
′
(0))+ f

′
(0) = 0, so that

such λ exists if c−h
′
(0) ≥ 2

√

f
′
(0). Since c̄r is the smallest speed for which such an eigenvalue

exists, we have

c̄r = 2

√

f
′
(0)+h

′
(0) ≤ c0

r , (2.6)

and thus

c̄r ≤ c0
r ≤ 2

p
L+ J .

This estimate clearly yields a set of sufficient conditions, generalising [8, Corollary 9] to the

case of (2.1) with h 6= 0, that guarantee that the linear value c̄r equals the minimal wave speed

c0
r , namely if

2
p

L + J ≤ 2

√

f
′
(0)+h

′
(0), (2.7)

then c0
r = c̄r . In particular, c̄r = c0

r if

sup
0<w<1

f (w )

w
= f

′
(0) and sup

0<w<1
h

′
(w )=h

′
(0). (2.8)

The following proposition gives an alternative sufficient condition (2.9) that again ensures

c̄r = c0
r . Note that if (2.8) holds then (2.9) is satisfied, whereas we will show in Example 2.6 that

(2.9) can hold when even (2.7) does not hold.
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Proposition 2.2. A sufficient condition to guarantee that the linear value c̄r = 2
√

f
′
(0)+h

′
(0)

for problem (2.1) is equal to the minimal speed c0
r is that

h
′
(u)+

f (u)
√

f
′
(0)u

≤ h
′
(0)+

√

f
′
(0) for all u ∈ (0,1). (2.9)

Proof. Define a continuous function y : [0,1] →R by

y(u)=







√

f
′
(0)+h

′
(u)+ f (u)p

f
′
(0)u

for all u ∈ (0,1]

2
√

f
′
(0)+h

′
(0) if u = 0.

Then Proposition 2.1, using the function ψ(w ) :=
√

f
′
(0)w in (2.4), and (2.9) together imply

that

c0
r ≤ sup

0<w<1

{

y(w )
}

≤ y(0), (2.10)

and hence c0
r ≤ 2

√

f
′
(0)+h

′
(0) = c̄r , so that c0

r = c̄r , by (2.6). ���

Note that for each k > 0, we can consider the continuous function yk (u) : [0,1] →R,

yk(u) =
{

k +h
′
(u)+ f (u)

ku
for all u ∈ (0,1],

k +h
′
(0)+ f

′
(0)
k if u = 0.

Imposing a condition h
′
(u)+ f (u)

ku
≤ h

′
(0)+ f

′
(0)
k

, u ∈ (0,1) clearly yields an analogue of (2.10)

with y replaced by yk . Therefore, in some sense, the best estimate of this type will be obtained

by minimising k +h
′
(0)+ f

′
(0)
k with respect to k , and this minimum is attained at k =

√

f
′
(0).

In fact, when k =
√

f ′(0), the value yk (0) is exactly the linear value, whereas if k 6=
√

f ′(0), the

estimate c0
r ≤ yk (0) does not imply linear determinacy.

In particular, (2.9) holds if the condition (2.11) in the following lemma is satisfied, since this

ensures that the function u 7→ h
′
(u)+

f (u)
√

f
′
(0)u

is non-increasing on (0,1).

Lemma 2.3. A sufficient condition to guarantee that the linear value c̄r = 2
√

f
′
(0) + h

′
(0)

equals the minimal speed c0
r is

h
′′
(u)+

1
√

f
′
(0)

{

f ′(u)

u
−

f (u)

u2

}

≤ 0, for all u ∈ (0,1). (2.11)
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The following example, which is a generalisation of [8, Theorem 11] to include convective

effects, illustrates that there exist functions f and h for which the sufficient condition (2.9) is

not satisfied, but the minimal travelling speed is nevertheless linearly determinate. So (2.9) is

sufficient, but not necessary, for linear determinacy.

Example 2.4. Consider the equation

ut =uxx −βuux +γu(1−u)(1+2γu), (2.12)

where β = 2(
p
γ−γ) and 0 < γ < 1. Then h′(u) = βu and f (u) = γu(1−u)(1+2γu), so e1 − e3

are clearly satisfied. Then c̄r = 2
p
γ, and condition (2.9) says that for all u ∈ (0,1),

h′(u)+
f (u)
p
γu

≤p
γ ⇔ (1−p

γ)u +γu(1−u)≤ 0, (2.13)

which fails to hold even for some u ∈ (0,1), since γ ∈ (0,1). But u(x, t ) := w (x−ct ) with w (ξ) :=
(

1+exp(
p
γξ)

)−1
and c = 2

p
γ is easily checked to be an explicit travelling-wave solution of

(2.12) that satisfies (2.2). So

2
p
γ= c̄r ≤ c0

r ≤ 2
p
γ,

and hence c̄r = c0
r .

An alternative condition that ensures c0
r = c̄r is given by Benguria, Depassier and Mendez

in [3], namely

f
′′
(u)

√

f
′
(0)

+h
′′
(u)< 0, for all u ∈ (0,1). (2.14)

This condition is derived using a different variational characterisation of c0
r , for which we re-

fer to [3] for details. Note that our convection term h′(u) is replaced in [3] by µφ(u), where φ is

a C 1-function such that, for simplicity, it is assumed that φ(0) = 0, but this restriction on φ(0)

clearly only affects the numerical value of c̄r , not the condition (2.14), and can be removed.

Note that, in fact, another proof of Proposition 2.2 can be obtained using the variational

characterisation in [3]; see the discussion below inequality (14) in [3], taking α = 1/
√

f
′
(0),

h
′
(u) =µφ(u) and h

′
(0) = 0.

The following examples compare our condition (2.9) with (2.14), (2.7) and (2.8), and in

particular, illustrate that functions f and h can be found satisfying (2.14) but not (2.9), and,

vice versa, that there exist functions which satisfy (2.9) but not (2.14).

Example 2.5. Choose f (u)= u(1−u) and h(u)=
(

δ

2

)

u2, δ ∈R. Then f satisfies the properties

e1 −e3, and for this function f , condition (2.11) says that

h
′′
(u) ≤ 1 for all u ∈ (0,1),
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which holds if and only if δ ≤ 1. On the other hand, condition (2.14) is satisfied whenever

δ = h
′′
(u) < 2 for all u ∈ (0,1). Hence if δ ∈ (1,2), then (2.14) is satisfied but (2.11) is not, and

moreover, it is easy to check that our weaker condition (2.9) is also not satisfied for such δ.

The next example shows that f and h can be found which satisfy condition (2.9) but not

(2.14).

Example 2.6. Choose f (u) = u(1−u)(δ+u), where δ > 0. Then f satisfies the properties

e1 −e3, and for this function f , condition (2.11) says that

h
′′
(u)≤−

1
p
δ

{

δ+2u −2δu −3u2

u
−

u(1−u)(δ+u)

u2

}

=
1
p
δ

{δ−1+2u} for all u ∈ (0,1),

whereas condition (2.14) will be satisfied if

h
′′
(u)<−

f
′′
(u)

√

f
′
(0)

=
1
p
δ

{2δ−2+6u} for all u ∈ (0,1).

Thus for condition (2.11) to be satisfied but (2.14) is not, we need that for some u ∈ (0,1),

2δ−2+6u < δ−1+2u ⇔
1−δ

4
> u. (2.15)

So in particular, if we choose δ= 1
2

, then (2.15) holds for u ∈ (0, 1
8

), and (2.11) holds if

h
′′
(u)≤

1
p
δ

{δ−1+2u} =
p

2

(

2u −
1

2

)

for all u ∈ (0,1), (2.16)

whereas (2.14) does not hold if

p
2(6u −1) =

1
p
δ

{2δ−2+6u} < h
′′
(u) for some u ∈ (0,1). (2.17)

For instance, (2.16) and (2.17) are clearly both satisfied if h
′′
(u)≡

p
2

(

2u −
1

2

)

, and thus

h(u)=
p

2

3
u3 −

1

2
p

2
u2 + Au +B , A,B ∈R.

Hence for these functions f and h, our condition (2.9) holds but condition (2.14) does not.

Note that the Malaguti-Marcelli alternative condition (2.7) also does not hold for this choice

of f and h, and whenever δ< 1, the function f does not satisfy the classical condition (1.3).

Our final example in this section illustrates that, for certain reaction and convection

terms f and h, the equation (1.1) is right linearly determinate but not left linearly-determinate;

that is, c0
r = c̄r , but c0

l
6= c̄l . This phenomenon can clearly only occur in the presence of convec-

tion, since if h′(u)≡ 0, symmetry implies that right and left linear determinacy are equivalent.
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Example 2.7. When a > 2, the convection-less equation

ut = uxx +u(1−u)(1+au) (2.18)

is not linearly determinate [8, Theorem 11]. However, if f (u)= u(1−u)(1+au), condition (2.9)

holds if the convection term is h
′
(u) =u(1−a). Thus

ut =uxx −h
′
(u)ux +u(1−u)(1+au) (2.19)

is right linearly determinate. Now note that for a non-decreasing non-negative initial condi-

tion u0 of (2.18), the solution u of (2.18) is non-negative and satisfies ux ≥ 0 (see, for instance,

[1, Lemma 5.1]). Then since h
′
(u) ≤ 0 for u ≥ 0, and ux ≥ 0, we have

ut = uxx +u(1−u)(1+au) ≤uxx −h
′
(u)ux +u(1−u)(1+au), (2.20)

so u is a sub-solution of (2.19). Thus by Comparison Principle 3.1, the solution u∗ of (2.19)

with a non-decreasing non-negative initial condition u0 is greater than or equal to the solu-

tion u of (2.18) with the same initial condition u0. Therefore the left spreading speed c∗
l

of

(2.19) will be less than or equal the left spreading speed cl of (2.18), which is strictly less that

c̄l =−2

√

f
′
(0) =−2 because (2.18) is not linearly determinate. That is,

c∗l ≤ cl <−2

√

f
′
(0). (2.21)

But since h
′
(0) = 0, we have cl < h

′
(0)−2

√

f
′
(0) = −2

√

f
′
(0), and hence (2.19) is not left lin-

early determinate because

c∗l < cl < h
′
(0)−2

√

f
′
(0).

3. Sufficient conditions for linear determinacy for reaction-diffusion-convection systems

Consider a system of reaction-diffusion-convection equations of the form

u1,t +h
′

1(u1)u1,x = u1,xx + f1(u1,u2),
(3.1)

u2,t +h
′

2(u2)u2,x = d2u2,xx + f2(u1,u2),

where d2 > 0, the reaction term f = ( f1(u1,u2), f2(u1,u2)) satisfies the co-operative assump-

tion
∂ fi

∂u j
(u) ≥ 0, i 6= j , the convection function h has the ‘diagonal’ form h = (h1(u1),h2(u2)),

and u = (u1,u2) ∈ R2. For T > 0, denote ΓT =
{

u :R× [0,T ] →R
2 : u is bounded, continuous,

ut ,ux ,uxx exist and are continuous on R× (0,T ]}, and for (x, t )∈R× (0,T ] and u ∈ΓT , define

N (u)(x, t ) :=−ut (x, t )+ Auxx (x, t )−h′(u)ux (x, t )+ f (u)(x, t )
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where f :R2 →R
2, A = diag(1,d2), and h′(u)= diag(h′

1(u1),h′
2(u2)).

The following theorem is a useful tool for system (3.1). Note that, of course, a reaction-

diffusion-convection system does not, in general, possess a comparison principle, but the

diagonal structure of h′(u) and the co-operative assumption on f together ensure that such a

principle does hold here.

Theorem 3.1 (Comparison principle). Let the function f satisfy
∂ fi

∂u j
(u) ≥ 0, i 6= j , and u, ū ∈

ΓT be such that u, ū are continuous onR×[0,T ], ux , ūx are bounded and uniformly continuous

onR×(0,T ], N (ū)(x, t ) ≤ 0, and N (u)(x, t ) ≥ 0 for (x, t ) ∈R×(0,T ). Suppose that ū(x,0) ≥ u(x,0)

for all x ∈R. Then ū(x, t )≥ u(x, t ), for all (x, t )∈R× [0,T ].

Proof. This follows from an application of [19, Theorem 5.3], as also noted in [5]. ���

Recall that a matrix is said to be reducible if it can be put into lower block triangular form

by reordering the coordinates and, if this cannot be done, the matrix is said to be irreducible.

If all the diagonal blocks in the lower block triangular form of a reducible matrix are irre-

ducible, this is said to be in Frobenius form. The statement of Perron-Frobenius theorem is

the following.

Theorem 3.2 (Perron-Frobenius [17]). Any non-zero irreducible matrix with non-negative en-

tries has a unique positive eigenvalue, called the principal eigenvalue, which has a correspond-

ing strictly positive principal eigenvector. In addition, the absolute values of all the other eigen-

values are less than the principal eigenvalue.

The following is a useful corollary for an irreducible matrix with non-negative off-diagonal

entries.

Corollary 3.3. Given any irreducible matrix with off-diagonal entries non-negative, there ex-

ists a unique real eigenvalue, called the principal eigenvalue, with a corresponding strictly pos-

itive principal eigenvector. In addition, the real parts of all other eigenvalues are strictly less

than the principal eigenvalue.

Proof. Let M be an irreducible matrix with non-negative off-diagonal entries. Then there

exists ε > 0 such that M +εI is a non-zero irreducible matrix with non-negative entries. By

Theorem 3.2, there exists a positive eigenvalue λ with positive eigenvector q such that (M +
εI )q = λq . Then M q = (λ−ε)q , so M has a real eigenvalue λ−ε with positive eigenvector q .

Moreover, if µ is an eigenvalue of M +εI other than λ, then |µ| < λ, so if ν is an eigenvalue of

the matrix M other than λ−ε, then |ν+ε| <λ, which implies that Re(ν) <λ−ε. ���

For a,b ∈ Rn , we say a < b (respectively a ≤ b) to mean that ak < bk (resp. ak ≤ bk ) for

each k ∈ {1,2, . . . ,n}, and for a vector ν ∈ Rn , we say that ν ∈ [a,b] if ak ≤ νk ≤ bk for all k . For
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ease of exposition, we discuss a system of two equations here, and note that similar results

hold for a system of n equations, as will be discussed in [1].

We assume in the following that the functions f :R2 →R
2 and h : R2 →R

2 in system (3.1)

satisfy the hypotheses

s1:
∂ fi

∂u j
≥ 0 for i 6= j ;

s2: f (0) = 0, there exists β> 0 such that f (β) = 0, and there is no ν> 0 other than β such that

f (ν)= 0 and 0 < ν≤β;

s3: Neither f nor h depends explicitly on either x or t , and d2 > 0 is constant;

s4: h=(h1(u1),h2(u2));

s5: The functions f and h are continuously differentiable at ν for each 0≤ ν≤β;

s6: The Jacobian matrix f
′
(0) is in Frobenius form and such that the principal eigenvalue of

the upper left diagonal block of f
′
(0) is positive and, if there are two blocks, is strictly

larger than the principal eigenvalue of the other diagonal block, and the entry to the left

of the second diagonal block is strictly positive.

Remark 3.4.

(i) Property s1 says that the system is co-operative, and is thus order-preserving, by the

comparison principle Theorem 3.1.

(ii) Property s6 implies that f
′
(0) has one of two forms. In the first case, f

′
(0) =

(

α δ

̺ σ

)

where

δ,̺ > 0, and then Corollary 3.3 implies that the principal eigenvalue is strictly positive

and has a strictly positive principal eigenvector. The second case is when f
′
(0) =

(

α 0

̺ σ

)

where α,̺ > 0 and α > σ, in which case it is easy to show that the eigenvector of f ′(0)

corresponding to the principal eigenvalue α of the first block is strictly positive. In-

deed, suppose the eigenvector of f ′(0) corresponding to the principal eigenvalue α is

z =
(

x, y
)T

. Then ̺x +σy = αy ⇔ ̺x = (α−σ)y . Since α>σ and ̺> 0 it follows that x

and y have the same sign, and thus can be chosen so that z =
(

x, y
)T

is strictly positive.

Note that in all of our examples below, we focus on this second case, which is motivated

by models of interaction of separate species and for which calculations are relatively

tractable.

(iii) We present s6 in a form that clearly extends to the case when the system (3.1) is replaced

by a similar system of n equations that satisfy Hypotheses s1 − s5, when there might be

more than two diagonal blocks in f ′(0). See, for example, [21], [1]. In this general case,

[18, Theorem 2.1] ensures that the eigenvector of f ′(0) corresponding to the principal

eigenvalue of the first block is strictly positive.
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The linearisation of the system (3.1) at 0 gives

ui ,t +h
′

i (0)ui ,x = di ui ,xx + ( f
′
(0)u)i , i = 1,2. (3.2)

Applying the method of separation of variables then shows that the solution of the system

(3.2) with initial condition e−µxα, where µ ∈R and α ∈R2 are constant, has the form e−µxη(t ),

where the vector-valued function η is a solution of the system ηt =Cr (µ)ηwith η(0) =α, where

the coefficient matrix Cr (µ) is

Cr (µ) =µ2 diag(1,d2)+µdiag(h
′

1(0),h
′

2(0))+ f
′
(0), (3.3)

which has non-negative off-diagonal entries, by property s1.

In order to consider non-decreasing travelling fronts as well as non-increasing travelling

fronts, it is useful to remark next that if we define û(x, t ) = u(−x, t ) where u is a solution of

system (3.1), then û is a solution of the system

u1,t −h
′

1(u1)u1,x = u1,xx + f1(u1,u2)

u2,t −h
′

2(u2)u2,x = d2u2,xx + f2(u1,u2) (3.4)

for which the related coefficient matrix is

Cl (µ) =µ2 diag(1,d2)−µdiag(h
′

1(0),h
′

2(0))+ f
′
(0). (3.5)

Clearly system (3.4) is obtained from system (3.1) simply by replacing h by ĥ :=−h, and f and

ĥ satisfy hypotheses s1 − s6 if and only if these hypotheses hold for f and h. So results for

non-decreasing travelling-front solutions of (3.1) can be deduced immediately from results

on non-increasing front solutions of (3.4).

Now let γr
σ denote the principal eigenvalue of the σth block for the matrix Cr (µ). Follow-

ing [21], we define

c̄r := inf
µ>0

{

γr
1(µ)

µ

}

. (3.6)

Note that we again use the notation c̄r here because in the case when f ′(0) is actually irre-

ducible (so has only one irreducible block in the Frobenius form), it is easy to see that this

definition of c̄r coincides with the natural extension to the system (3.1) of the definition of

c̄r in the scalar case discussed in section 2. Note also that the travelling-wave problem lin-

earised about the unstable equilibrium 0 has a real negative eigenvalue corresponding to a

strictly positive eigenvector if and only if c ≥ c̄r , and in fact, (3.6) yields an alternative charac-

terisation of c̄r in the scalar case also.
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The following lemma gives a sufficient condition for µ̄r , defined to be the value of µ > 0

at which the infimum in the definition of c̄r is attained, to equal µ̄l , the value at which the

infimum in the definition of

c̄l :=− inf
µ>0

{

γl
1(µ)

µ

}

(3.7)

is attained, where γl
σ is the principal eigenvalue of the σth block of Cl (µ). Here and in the

following, we denote by ζr (µ̄r ) an eigenvector of Cr (µ) corresponding to the eigenvalue γr
1(µ̄r )

and by ζl (µ̄l ) an eigenvector of Cl (µ) corresponding to the eigenvalue γl
1(µ̄l ).

Lemma 3.5. If f and h satisfy hypotheses s1 − s6, and f
′
(0) is as in the second case in Remark

3.4 (ii), then (i) µ̄r = µ̄l , and (ii) the eigenvector ζr (µ̄r ) of Cr (µ) corresponding to γr
1(µ̄r ) can

be chosen equal to the eigenvector ζl (µ̄l ) of Cl (µ) corresponding to γl
1(µ̄l ) if and only if h

′

1(0) =
h

′

2(0).

Proof. Part (i) is immediate from the definitions of c̄r and c̄l . For (ii), let h
′
(0) = diag(h

′

1(0),h
′

2(0))

and ζr (µ̄r ) =
(

1 α2

)T
. Then corresponding to the eigenvalue γr

1(µ̄r ) = µ̄2
r + µ̄r h

′

1(0)+α, we

have

α2 =−̺/
(p

α(h
′

2(0)−h
′

1(0))+α(d2 −2)+σ
)

,

whereas for the eigenvector ζl (µ̄l ) =
(

1 α̂2

)T
corresponding to the eigenvalue γl

1(µ̄l ), we have

α̂2 =−̺/
(p

α(h
′

1(0)−h
′

2(0))+α(d2 −2)+σ
)

.

It is then clear that ζr (µ̄r ) = ζl (µ̄l ) if and only if h
′

1(0) = h
′

2(0). ���

In the previous section we have a single equation, and have only two equilibria 0 and

β, whereas in this section, we have a system with two equations and, by hypothesis s2, may

have equilibria in addition to 0 and β if they have at least one component zero. For a system

with only two equilibria 0, β with β> 0 and f
′
(0) an irreducible matrix, Lui [14] gave sufficient

conditions for spreading speeds to equal linear values. These results were generalised by [21]

to systems where the Frobenius form may have multiple diagonal blocks and there may be

more equilibria other than 0 and β in [0,β] provided any additional equilibrium ν has νk = 0

for at least one k ∈ {1,2, . . . ,n}.

The following theorem concerns the existence of a value c0
r ∈ R which can be charac-

terised as a minimum travelling wave speed of system (3.1) in a certain sense. This result,

which generalises Proposition 2.2 about the equation (1.1) to the system (3.1), follows easily

by adapting the proof of [11, Theorem 4.2].



LACK OF SYMMETRY IN LINEAR DETERMINACY DUE TO CONVECTIVE EFFECTS 65

Theorem 3.6. If the system (3.1) satisfies hypotheses s1−s6, then there exists c0
r ∈R such that for

every c ≥ c0
r this system has a non-increasing travelling wave solution w (x−ct ) of speed c with

w (−∞) = β and w (∞) a zero of f other than β. If there is a travelling wave solution w (x − ct )

with w (−∞)=β such that for at least one component i , lim inf
x→∞

wi (x) = 0, then c ≥ c0
r .

In fact, it can be shown, similarly to [11], that c0
r is actually the slowest spreading speed for

the system (3.1) with non-increasing initial data u(0, x) = u0(x) such that u0(−∞) =β,u0(+∞) =
0, in the sense of slowest spreading speed defined in [11, (2.4)]. This characterisation of the

minimal wave speed c0
r as the slowest spreading speed enables proof of the following result

using a straightforward modification of the ideas in [21, Theorem 4.2].

Theorem 3.7. Suppose that the functions f and h in system (3.1) satisfy hypotheses s1 − s6.

Assume that µ̄r is finite,

γr
1(µ̄r ) > γr

2(µ̄r ), (3.8)

and

fi (ρζr (µ̄r )) ≤ ρµ̄r

[

h
′

i (0)−h
′

i (ρζr
i (µ̄r ))

]

ζr
i (µ̄r ) + ρ( f

′
(0)ζr (µ̄r ))i for all ρ > 0, i = 1,2. (3.9)

Then c0
r = c̄r , where c0

r is the minimum travelling wave speed in Theorem 3.6 and c̄r is the

linear value defined in (3.6).

Note that when f ′(0) is irreducible, condition (3.8) is simply considered to be satisfied

trivially.

For non-decreasing travelling-front solutions of system (3.1), the analogues of Theorems

3.6 and 3.7 are the following.

Theorem 3.8. If the system (3.1) satisfies hypotheses s1−s6, then there exists c0
l
∈R such that for

every c ≤ c0
l

the system (3.1) has a non-decreasing travelling wave solution w (x − ct ) of speed

c with w (∞) = β and w (−∞) a zero of f other than β. If there is a travelling wave solution

w (x −ct ) with w (∞)=β such that for at least one component i , lim inf
x→−∞

wi (x) = 0, then c ≤ c0
l

.

Theorem 3.9. Suppose that the functions f and h satisfy hypotheses s1 − s6. Assume that µ̄l is

finite,

γl
1(µ̄l ) > γl

2(µ̄l ), (3.10)

and

fi (ρζl (µ̄l )) ≤ ρµ̄l

[

h
′

i (ρζl
i (µ̄l ))−h

′

i (0)
]

ζl
i (µ̄l ) + ρ( f

′
(0)ζl (µ̄l ))i for all ρ > 0, i = 1,2. (3.11)

Then the maximum travelling wave speed c0
l

equals the linear value c̄l defined in (3.7).
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The following lemma gives a sufficient condition to guarantee that (3.8) and (3.10) hold

for the matrices Cr (µ) and Cl (µ) respectively.

Lemma 3.10. Given matrices f
′
(0) and h

′
(0) as in Lemma 3.5, a sufficient condition to have

that (3.8) and (3.10) are satisfied for the matrices Cr (µ) and Cl (µ) respectively is that

σ−α(2−d2)
p
α

<h
′

1(0)−h
′

2(0) <
α(2−d2)−σ

p
α

. (3.12)

Then the eigenvectors ζr (µ̄r ),ζl (µ̄l ) corresponding to γr
1(µ̄r ),γl

1(µ̄l ) are strictly positive.

Proof. With µ̄r = µ̄l =
p
α, we have γr

1(µ̄r ) = 2α+h
′

1(0)
p
α and γr

2(µ̄r ) = αd2 +h
′

2(0)
p
α+

σ. So γr
1(µ̄r ) > γr

2(µ̄r ) if and only if h
′

1(0)−h
′

2(0) > (σ−α(2−d2))/
p
α. On the other hand,

γl
1(µ̄l ) = 2α−h

′

1(0)
p
α and γl

2(µ̄l ) = α(d2)−h
′

2(0)
p
α+σ, so that γl

1(µ̄l ) > γl
2(µ̄l ) if and only

if h
′

1(0)−h
′

2(0) < (α(2− d2)−σ)/
p
α. Then straightforward calculation shows that (3.12)

ensures the eigenvectors ζr (µ̄r ),ζ(µ̄l ) are strictly positive, since ̺ > 0 and (3.8), (3.10)

hold (note the analogous observation for eigenvectors of f ′(0) =Cr (0) already mentioned in

Remark 3.4 (ii)). ���

Remark 3.11. Clearly (3.9) in Theorem 3.7 reduces to the condition (2.9) for the scalar case in

Proposition 2.2, because µ̄r =
√

f
′
(0), ζr (µ̄r ) = 1. So setting ρ = ρζr (µ̄r ) =u in (2.9) gives

h
′
(ρ)+

f (ρ)

ρµ̄r
≤h

′
(0)+

f
′
(0)

µ̄r
, for all ρ ∈ (0,1),

which is precisely (3.9).

The next proposition gives a necessary condition for existence of a function h satisfying

both the ‘right’ and ‘left’ combined conditions,

fi (ρζr (µ̄r ))−ρ( f ′(0)ζr (µ̄r ))i ≤ ρµ̄r

[

h
′

i (0)−h
′

i (ρζr
i (µ̄r ))

]

ζr
i (µ̄r ), i = 1,2, (3.13)

and,

fi (ρζl (µ̄l ))−ρ( f ′(0)ζl (µ̄l ))i ≤ ρµ̄l

[

h
′

i (ρζl
i (µ̄l ))−h

′

i (0)
]

ζl
i (µ̄l ), i = 1,2. (3.14)

Proposition 3.12. Suppose that the functions f and h are such that µ̄r = µ̄l , ζr (µ̄r ) = ζl (µ̄l ),

and ζr (µ̄r ),ζl (µ̄l ) are strictly positive. Then a necessary condition for both the right combined

condition (3.13) and the left combined condition (3.14) to be satisfied is that the function f

satisfies

fi (ρζr (µ̄r )) ≤ ρ( f
′
(0)ζr (µ̄r ))i for all ρ > 0, i = 1,2. (3.15)
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Proof. Introduce the notation

Λi (ρ) := γi (ρ)= ρ( f
′
(0)ζr (µ̄r ))i − fi (ρζr (µ̄r )), ρ > 0, i = 1,2, (3.16)

and note that both (3.13) and (3.14) are satisfied if and only if

−Λi (ρ) ≤ ρµ̄r

[

h
′

i (0)−h
′

i (ρζr (µ̄r ))
]

ζr
i (µ̄r ) ≤ Λi (ρ), for all ρ > 0, i = 1,2. (3.17)

The result is then immediate from the fact that (3.17) can only hold if Λi (ρ) ≥ 0 for all ρ > 0,

i = 1,2, which is equivalent to (3.15). ���

Remark 3.13. Lemma 3.5 shows that µ̄r = µ̄l if the function f is as in the second case in

Remark 3.4 (ii), and ζr (µ̄r ) = ζl (µ̄l ) if we also have that h
′

1(0) = h
′

2(0), and Lemma 3.10 gives

conditions that ensure ζr (µ̄r ),ζl (µ̄l ) are strictly positive. Note also that the scalar analogue of

(3.15) is clearly equivalent to the classical condition (1.3) and an analogue of Proposition 3.12

holds in the scalar case.

The following example illustrates Proposition 3.12.

Example 3.14. Again choose f : R→R such that f (u) = u(1−u)(u +δ), where δ> 0 (see also

Example 2.6 above). If δ ≥ 1, this function f satisfies properties e1 − e3 and (1.3). Then with

µ̄r =
p
δ,ζr (µ̄r ) = 1, (3.17) becomes

−Λ(ρ)≤ ρ
p
δ

[

h
′
(0)−h

′
(ρ)

]

≤Λ(ρ), ρ > 0, (3.18)

where Λ(ρ) = ρ f ′(0)− f (ρ) = ρ3 + (δ−1)ρ2 > 0. An example of a function h satisfying (3.18)

can be constructed by, for instance, taking ρ
p
δ

[

h
′
(0)−h

′
(ρ)

]

≡ Λ(ρ), in which case h
′
(ρ) =

A+
ρ(1−ρ−δ)

p
δ

, where A := h′(0), and hence a function h that satisfies (3.18) is

h(ρ)=
(1−δ)ρ2

2
p
δ

−
ρ3

3
p
δ
+ Aρ+B , A,B ∈R.

On the other hand, if 0 < δ < 1, the function f does not satisfy condition (1.3), and thus by

Proposition 3.12, it is impossible to find a function h which satisfy both the right and left

combined conditions (3.13) and (3.14).

Our final example for this section employs a function f : R2 → R
2, also used in [21, Ex-

ample 4.1], that falls into the second category in Remark 3.4 (ii) and so has two blocks in

the Frobenius form of f ′(0). This reaction function f is obtained from a competition non-

linearity using a well-known change of variables that converts competition systems to co-

operative systems; see [21]. Here we derive conditions on the diffusion coefficient d2 and

h
′

1(0),h
′

2(0) which are sufficient to allow the construction of a function h = (h1(u1),h2(u2))

such that h′(0) = diag(h
′

1(0),h
′

2(0)) and both (3.13) and (3.14) will be satisfied. Two separate

cases are treated: first, when h′
1(0) = h′

2(0), in which case the eigenvectors ζr (µ̄r ),ζl (µ̄l ) are

equal, and second, when h
′

1(0) 6= h
′

2(0), in which case ζr (µ̄r ) 6= ζl (µ̄l ).
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Example 3.15. Let d1 = 1 and choose

f (u1,u2) =
(

3u1 −4u2
1 +u1u2

5u2
2 −u2 +8u1 −4u3

2 −8u1u2

)

,

so that

f ′(u1,u2) =
(

3−8u1 +u2 u1

8−8u2 10u2 −1−12u2
2 −8u1

)

, f
′
(0) =

(

3 0

8 −1

)

,

and denote h
′
(0) = diag(a,b), where a,b ∈ R with possibly a 6= b. There are four solutions of

f (u1,u2) = 0 with u1,u2 ≥ 0, namely the four equilibria (0,0), (0, 1
4 ), (0,1) and (1,1). Taking β=

(1,1), hypotheses s1 − s6 are clearly satisfied with the minor modification that hypothesis s1

holds for all (u, v)∈ [(0,0), (1,1)] rather than for all (u1,u2), which is easily seen to be sufficient

for the above theory to apply because all solutions (u1,u2) of (3.1) considered here lie between

the equilibria (0,0) and β= (1,1).

Then µ̄r = µ̄l =
p

3, and eigenvectors ζr (µ̄r ), ζl (µ̄l ) for γ1(µ̄r ) = 6+
p

3a, γ1(µ̄l ) = 6−
p

3a

are

ζr (µ̄r ) =
(

1

8/(7+
p

3(a −b)−3d2)

)

=
(

1

α2

)

, ζl (µ̄l ) =
(

1

8/(7−
p

3(a −b)−3d2)

)

=
(

1

α̂2

)

.

Provided d2 < 7/3, it follows from Lemma 3.10 (and by inspection) that if a,b satisfy

−(7−3d2)
p

3
< a −b <

(7−3d2)
p

3
,

then the eigenvectors ζr (µ̄r ),ζl (µ̄l ) are strictly positive and (3.8), (3.10) are satisfied.

Now define η := a − b and consider the cases η = 0 and η 6= 0. Suppose η = 0. Then

the eigenvectors ζr (µ̄r ), ζl (µ̄l ) are equal (cf. Lemma 3.5). Moreover, provided d2 satisfies

the stricter restriction that d2 ≤ 2/3, the function f satisfies the necessary condition (3.15) of

Proposition 3.12, in which case it is clearly possible to construct functions h1, h2 for which

both (3.13), (3.14) hold by using a similar method to that in our explicit construction of h in

Example 3.14.

For η 6= 0, to have that both conditions (3.13), (3.14) are satisfied for a given h1, we require

h
′

1(ρ) ≤ a −
(

ρ(−4+α2)
p

3

)

, h
′

1(ρ) ≥ a +
(

ρ(−4+ α̂2)
p

3

)

, ρ > 0,

thus we need
t
p

3
(α̂2 −4) ≤ h

′

1(t )−a ≤
t
p

3
(−α2 +4), t > 0,

which can be satisfied if α̂2 −4 ≤−α2 +4, that is equivalent to requiring

9d 2
2 −36d2 +35−3η2 ≥ 0. (3.19)
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Since (3.19) holds if d2 ≤ (6−
√

1+3η2)/3 , a function h1 satisfying the first inequality in each

of (3.13), (3.14) can be constructed for such d2,η. Note that the larger values of d2 that satisfy

(3.19) violate the additional requirement that d2 < 7/3, and that it is clearly necessary to have

η2 < 35/3 to be able to construct h1 for some d2 > 0.

Then for the existence of a function h2 such that both (3.13), (3.14) are satisfied, we need

h
′

2(ρα2) ≤ b −
(

5(ρα2)−4(ρα2)2 −8ρ
p

3

)

, h
′

2(ρα̂2) ≥ b +
(

5(ρα̂2)−4(ρα̂2)2 −8ρ
p

3

)

, ρ > 0.

Thus we require that

5t −4t 2 −8t /α̂2p
3

≤ h
′

2(t )−b ≤−
(

5t −4t 2 −8t /α2p
3

)

, t > 0,

which can hold if −2t (2+4t −3d2) ≤ 0 for all t > 0, and if d2 ≤ (2+4t )/3 for all t > 0. Hence

a function h2 satisfying (3.13), (3.14) can always be constructed, regardless of the value of η,

provided d2 ≤ 2/3.

Thus we have shown that for this choice of f : R2 → R
2, if 0 ≤ |a −b| ≤

p
5, a sufficient

condition to be able to find a function h = (h1,h2) so that both combined conditions (3.13),

(3.14) are satisfied and h′(0) = diag(a,b) is d2 ≤ 2/3, whereas if
p

5 ≤ |a −b| <
p

35/3, a func-

tion h = (h1,h2) for which (3.13), (3.14) both hold and h′(0) = diag(a,b) can be constructed

provided

d2 ≤
6−

√

1+3(a −b)2

3
.

We conclude by noting that Example 3.15 illustrates a possible interplay between the dif-

fusion coefficient d2 and the linearisation of the convective term h′(0) = diag(h
′

1(0),h
′

2(0)) in

determining whether a system can be right and/or left linearly determinate. It would be in-

teresting to explore a more general theory of such interplay between the rôles diffusion and

convection.
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