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Mathematical modeling and optimal control of a

deterministic SHATR model of HIV/AIDS with

possibility of rehabilitation: a dynamic analysis
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Abstract. In the present work, we developed a deterministic SHATR (Susceptible -

HIV infected -AIDS infected - Antiretroviral Treatment - Recovered) compartment

model for HIV/AIDS. This model considers the disease outbreak due to a lack of

awareness and treatment. The steady states of the proposed model system are ob-

tained and analyzed by using the nonlinear stability theory of differential equations.

The basic reproduction number is derived and explored to determine the stability

and sensitivity index of some important relative parameters. Further, to know the

global behavior of the model one parameter bifurcation study is discussed. More-

over, the optimal control theory has been applied to identify the optimal strategy

by taking treatment and awareness for safe intercourse as control parameters. The

control problem is solved analytically by using Pontryagin’s maximum principle. Fi-

nally, the model is simulated to describe the optimality under various assumptions

and the stability of equilibrium points.

Keywords. Antiretroviral therapy (ART), basic reproduction number, lyapunov, optimal
control, Pontryagin’s maximum principle

1 Introduction

Nowadays, infectious epidemic diseases are the leading cause of death in modern society and
continue to spread worldwide despite the huge number of investments made in Fighting against
them. AIDS (acquired immunodeficiency syndrome) is one of them caused by infection with HIV
(Human Immunodeficiency Virus). The present spread of HIV infection influences increasing the
occurrence of other diseases such as TB globally [1].
HIV is a virus that affects our body by weakening the immune system and leaving it vulnerable
to other disease-causing organisms. HIV viral transmission may happen due to contaminated
blood products, syringes, unsafe intercourse, and mother-to-child during birth or through breast-
feeding [2]. The human immune system, preferably Cytotoxic T Lymphocytes (CTLs), has a
vital role in defending against HIV infection by suppressing the viral replication process and
increasing the CD4 cell count. Therefore, CTL cells play an important role in determining the
viral load. Although modern therapies are more advanced, they have failed to eliminate the
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disease. Current Antiretroviral Therapy (ART) comprises two or more antiviral drugs chosen
from two classes: Reverse Transcriptase Inhibitors (RTIs) and Protease Inhibitors (PIs). Reverse
Transcriptase Inhibitors block the new infection while Protease Inhibitors block the production
of new infectious viruses [3]. Hence, the immune response of an individual after viral infection
is necessary to control disease transmission. It was estimated that 38 million people were living
with HIV globally in 2019, but only 25.4 million people were accessing ART [4]. So, we need more
efforts to control the epidemic disease. The reasons for fewer individuals undergoing ART can
be due to their being unaware of their infection or due to fear of wastage of money because, even
after investing a large amount in ART, the patient’s immunity is temporary. Although there is
a decrement in the incidence of HIV patients every year since the introduction of ARTs, it only
helps to increase the life span of patients for some more years by suppressing the viral load and
making them free from HIV symptoms.
Mathematical models have always been very useful in public health planning and policy-making
as they can help in determining the outcome of an epidemic by estimating mortality, explain-
ing the re-emergence of diseases, etc. Therefore, mathematical and computational modeling of
HIV/AIDS plays a vital role in defining the disease dynamics and preventing it from spreading
among people by reducing the risk factors. The controlling mechanisms of the disease can be
investigated through the concept of optimal control theory. The theory has some valuable prin-
ciples that justify, how the disease can be controlled using given biological controls.
In the last decade, various mathematical models have been developed in the field of epidemiology
to understand the dynamics of HIV disease with control or without control. Such as Aldila et
al. [5] proposed a model that includes the vertical transmission from infected parents to their
newborn babies. They found that vertical transmission of HIV from infected parents is essential
to control HIV. Dubey et al. [6] established a model for HIV/AIDS to study the role of immune
response and ART. They observed that the combination of therapy reduces viral load and en-
hances the lifespan of HIV-infected patients. Some researchers, such as Kaymakamzade et al.
[7], Kaur et al. [8], and Ghosh et al. [9], formulated the models by taking the effects of media
awareness, psychological fear, etc. Their study suggested that awareness programs through media
campaigns and the strength of psychological fear will surely decrease the epidemic potential in
any society. Further, Yusuf et al. [10] introduced a strategy for finding the optimal combination
of two control measures that will minimize the cost of the control efforts as well as the incidence
of the disease. Rana, and Sharma [11] defined a simple compartmental SI model for HIV/AIDS,
analyzed the stability, and concluded that giving early Anti-Retroviral Therapy to AIDS pa-
tients can prolong their lives by giving them a quality life. Similarly, Jana et al. [12] developed
the SIR compartment model by taking the treatment function in saturated form and discussed
the global dynamics, bifurcation, and optimal control of the system. They further stated that
optimal control would be a good technique to minimize the infection and total treatment cost.
Mastroberardino et al. [13] presented a mathematical model to study the HIV dynamics in Cuba
and suggested that their national prevention program had an enormous impact on the exception-
ally low prevalence rate with respect to other countries in the Caribbean. Similarly, Ayele et al.
[1], did a case study of Ethiopia and showed that the combination of preventive and screening
strategies are the best cost-effective strategies to reduce the disease burden. Many researchers
did case studies of other countries too [14], [15]. Further, Ali et al. [16] developed a fractional
order model for HIV/AIDS and obtained that the smaller values of fractional order have better
performance than larger values.
As per the literature, until now no one proposed and analyzed the HIV/AIDS model with recovery
and treatment compartments, assuming that even after ART treatment, patients can either trans-
fer into the AIDS class or the HIV class. This model considers that the recovered compartment
includes those susceptible individuals who modified their sexual habits by taking safety mea-
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sures for intercourse throughout their entire life. Hence, they are gaining permanent immunity
from HIV infection through sexual contact. The treatment compartment includes those infected
individuals (HIV or AIDS), who are undergoing Antiretroviral therapy (ART). The model was
solved and the stability of equilibrium points is discussed analytically. Furthermore, the control
problem is formulated that minimizes the number of HIV/AIDS-infected individuals, the cost of
treatment, and the cost of awareness about safe intercourse by implementing an optimal theory.
The graphical results of the model have been presented to discuss the proposed strategies with
control and without control. The numerical result suggested that more efforts should be given to
make individuals aware of safe sexual intercourse.

2 Mathematical Model of HIV/AIDS Disease

Deterministic mathematical models for epidemics are fundamental to understanding the dis-
ease, which further helps to plan effective control strategies. We considered a region with a
homogenously mixed population, which is split up into five distinct sub-classes or compartments;
Susceptible compartment (S), HIV positive compartment (H), AIDS-infected compartment (A),
ART treatment compartment (T ), and Recovered compartment (contains individuals who took
safety measures for safe intercourse for the rest of their lives) (R). So, they are unaffected of HIV
infection by sexual contact. Thus, the total population at any time (T ) is denoted by N(t) and
defined as N(t) = S(t) +H(t) +A(t) + T (t) +R(t).

The population is recruited into susceptible class (involving birth and immigration) at λ1

rate. The susceptible class contains healthy individuals that can come in close contact with
HIV-positive individuals at β rate and become HIV infected. The model considers the standard
incidence rate of infection that is mostly applicable to sexually transmitted diseases [17]. The
shifting rate of individuals from HIV class to AIDS class is denoted by α. Similarly, the treatment
rates of individuals in HIV and AIDS classes are a1 and a2 respectively. While b1 and b2 are
the rate of treated individuals returning to H(T ) and A(T ) classes respectively. This represents
that everyone is not completing the ART course, some are dropping out in the middle due to
a financial crisis or some other issues. Further, d is an additional death rate induced by AIDS
infected A(T ), and under-treatment individuals T (t). The symbol µ1 defines the proportion rate
of susceptible that recovered from the illness due to changes in their sexual habits. The natural
death rate is denoted by µ and assumed to be identical for all the compartments. The schematic
flow diagram for the proposed mathematical model (2.1) is depicted in figure 1.

The model system is governed by the following differential equations

dS

dt
= λ1 − β

SH

N
− (µ+ µ1)S

dH

dt
= β

SH

N
− (a1 + µ+ α)H + b1T

dA

dt
= αH − (a2 + µ+ d)A+ b2T

dT

dt
= a1H + a2A− (b1 + b2 + µ+ d)T

dR

dt
= µ1S − µR

(2.1)

with initial conditions S0 > 0, H0 > 0, A0 > 0, T0 > 0 and R0 > 0.
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Figure 1: Transmission Flow Dynamics of a deterministic SHATR model for HIV/AIDS.

3 Positivity and Boundedness of Solutions

Lemma 3.1. Let initially S0 ≥ 0, H0 ≥ 0, A0 ≥ 0, T0 ≥ 0, R0 ≥ 0 then the solutions of model
system Eq. (2.1) are positive for all t > 0.

Proof. Let t1 = sup{t > 0 : t ∈ [ 0, t] and S0 ≥ 0, H0 ≥ 0, A0 ≥ 0, T0 ≥ 0, R0 ≥ 0 }.
Let λ(t) = βH

N , then now taking the first equation of system Eq. (2.1)

dS

dt
= λ1 − λ(t)S − µS − µ1S

=⇒ dS

dt
+ λ(t)S + µS + µ1S = λ1

d

dt
[S(t)exp{

∫ t

0
λ(t) dτ+ (µ+ µ1)t}] = λ1exp{

∫ t

0
λ(t) dτ+ µt+ µ1t}

(3.1)

So, now solving this we have,

S(t1) exp{
∫ t1
0

λ(t) dτ+ (µ+ µ1)t} − S0 =
∫ t1
0

λ1 exp{
∫ x

0
λ(ν) dν+ (µ+ µ1)x} dx

S(t1) = S0 exp{-
∫ t1
0

λ(t) dτ -(µ+ µ1)t}+ exp{-
∫ t1
0

λ(t) dτ -(µ+ µ1)t}

×
∫ t1
0

λ1 exp{
∫ x

0
λ(ν) dν+ (µ+ µ1)x} dx

(3.2)

which implies S(t1) > 0. Similarly, it can be shown that H(t) ≥ 0, A(t) ≥ 0, T (t) ≥ 0, R(t) ≥ 0
for all t > 0. Thus the solutions (S,H,A, T,R) of the system remain positive forever. This proves
that the model variables are biologically meaningful.

Lemma 3.2. The system (2.1) is eventually bounded in the region R5
+.
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Proof. Now using the non-negativity of state variables. The rate of total population can be
obtained by adding all the equations of Eq. (2.1). Hence,

dN

dt
=

dS

dt
+

dH

dt
+

dA

dt
+

dT

dt
+

dR

dt

=⇒ dN

dt
= λ1 − µN − (A+ T )d ≤ λ1 − µN

=⇒ dN

dt
≤ λ1 − µN

(3.3)

By comparison principle, we get that,

lim
t→∞

Sup(N(t)) ≤ λ1

µ
(3.4)

Thus, every solution of system (2.1) is eventually bounded in R5
+.

4 Equilibrium and Stability Analysis

We studied the model in R5
+ (described in Lemma 3.2), which is a positive and compact attracting

set for our model system (2.1). Hence, it attracts all solutions initiated in it. We will discuss
the qualitative behavior of the system through an equilibrium solution that does not change
with time. Further, for the full characterization of a model, the stability of equilibrium points is
discussed through Lyapunov and La Salle invariance principle [18]. The results on the stability
of equilibrium points are stated in the following subsections. The model Eq. (2.1) has two
equilibrium points namely disease-free equilibrium (DFE) and endemic equilibrium (EE). The
DFE is obtained, when there is no disease i.e., H = 0, which gives the following point;

E0 = (S0, H0, A0, T0, R0) =
( λ1

(µ+ µ1)
, 0, 0, 0,

λ1µ1

µ(µ+ µ1)

)
. (4.1)

4.1 The Basic Reproduction Number

The Basic Reproduction Number is the threshold parameter that gives a borderline between
disease persistence and eradication. To compute the basic reproduction number, the next gener-
ation matrix method is utilized. Let Eq.(2.1) can be written as ẋ = F (x) − V (x), where F (x)
corresponds to new infection terms while V (x) corresponds to the remaining transfer terms. Now
writing the system in sequence x =(H,A, T, S,R)T , we have

F (x) =


β SH

N
0
0
0
0

 , V (x) =


(a1 + µ+ α)H − b1T

(a2 + µ+ d)A− αH − b2T
(b1 + b2 + µ+ d)T − a1H − a2A

−λ1 + β SH
N + µs

µR− µ1S

 (4.2)

As the infected compartments are only H, A and T so, at DFE, F3×3 and V3×3 are as follows:

F (x) =

β µ
(µ+µ1)

0 0

0 0 0
0 0 0

 andV (x) =

(a1 + µ+ α) 0 −b1
−α (a2 + µ+ d) −b2
−a1 −a2 (b1 + b2 + µ+ d)

 (4.3)
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At DFE point E0 finding the eigenvalues of FV −1, the basic reproduction number R0 for
the model can be given as;

R0 = ρ(FV −1)

=
βµ{(a2 + µ+ d)(b1 + b2 + µ+ d)− a2b2}

(µ+ µ1)[(a1 + µ+ α){(a2 + µ+ d)(b1 + b2 + µ+ d)− a2b2} − b1{αa2 + a1(a2 + µ+ d)}]

Now, simplifying the numerator term gives

{(a2 + µ+ d)(b1 + b2 + µ+ d)− a2b2} = {(b1 + µ+ d)(a2 + µ+ d) + (µ+ d)b2)} (4.5)

R0 =
βµ{(b1 + µ+ d)(a2 + µ+ d) + (µ+ d)b2)}

(µ+ µ1)[(a1 + µ+ α){(a2 + µ+ d)(b1 + µ+ d) + (µ+ d)b2} − b1{αa2 + a1(a2 + µ+ d)}]

=⇒ R0 =
βµ

(µ+ µ1)[(a1 + µ+ α)− b1{αa2+a1(a2+µ+d)}
{(b1+µ+d)(a2+µ+d)+(µ+d)b2)} ]

(4.6)

4.2 Stability of Disease-Free Equilibrium Point

Theorem 4.1. The disease-free equilibrium point is globally asymptotically stable whenever R0 ≤
1 and unstable if R0 > 1.

Proof. Now to prove the global stability of DFE, we introduced a Lyapunov function V such that
V = H +mA+ nT . Taking the time derivative of V , V̇ = Ḣ +mȦ+ nṪ .
Now substituting the values of Ḣ, Ȧ, and Ṫ from our model system (2.1), in the above expression

V̇ = β
SH

N
−(a1+µ+α)H+b1T+m[αH+b2T−(a2+µ+d)A]+n[a1H+a2A−(b1+b2+µ+d)T ].

(4.7)
At DFE point, from equation (4.1)

S0 =
λ1

(µ+ µ1)
, R0 =

λ1µ1

µ(µ+ µ1)
(4.8)

V̇ ≤ H[
βλ1

N(µ+ µ1)
−(a1+µ+α)+mα+na1]+A[−m(a2+µ+d)+na2]+T [b1+mb2−n(b1+b2+µ+d)].

(4.9)
Choosing

m =
a2b1

(b1 + µ+ d)(a2 + µ+ d) + (µ+ d)b2
, n =

b1(a2 + µ+ d)

(b1 + µ+ d)(a2 + µ+ d) + (µ+ d)b2
(4.10)

We get

V̇ ≤ H[
βµ

(µ+ µ1)
− (a1 + µ+ α) +

b1{αa2 + a1(a2 + µ+ d)}
(b1 + µ+ d)(a2 + µ+ d) + (µ+ d)b2

]

=⇒ V̇ ≤ H[
βµ

(µ+ µ1)
− {(a1 + µ+ α)− b1{αa2 + a1(a2 + µ+ d)}

(b1 + µ+ d)(a2 + µ+ d) + (µ+ d)b2
}]

(4.11)

from equation (4.6)

R0 =
βµ

(µ+ µ1)[(a1 + µ+ α)− b1{αa2+a1(a2+µ+d)}
{(b1+µ+d)(a2+µ+d)+(µ+d)b2)} ]

(4.12)
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So, we have that

V̇ ≤ {(a1 + µ+ α)− b1{αa2 + a1(a2 + µ+ d)}
(b1 + µ+ d)(a2 + µ+ d) + (µ+ d)b2

} × {R0 − 1}H

V̇ ≤ (a1 + µ+ α)[(b1 + µ+ d)(a2 + µ+ d) + (µ+ d)b2]− b1{αa2 + a1(a2 + µ+ d)}
(b1 + µ+ d)(a2 + µ+ d) + (µ+ d)b2

× {R0 − 1}H

(4.13)

Implies V̇ ≤ 0 whenever R0 ≤ 1 with V̇ = 0 only if H = T = A = 0 for R0 < 1, while for
R0 = 1, V̇ = 0 if and only if H = 0 or S = S0, R = R0. Now substitute H = T = A = 0 in
the model system (2.1), and we have S → λ1

µ+µ1
and R → λ1µ1

µ{µ+µ1} as t → ∞. Hence, the largest

compact invariant set in {(S,H,A, T,R) ∈ Ω: V̇ = 0} is single {E0}. Therefore, applying LaSalle
invariance principle [18], every solution of model system (2.1) approaches to E0 as t → ∞ when
R0 ≤ 1. Hence disease-free equilibrium is GAS R0 ≤ 1 while unstable for R0 > 1.

4.3 Stability of Endemic Equilibrium Point

Now, the condition for the existence of endemic equilibrium point of the model is that the disease
should be present in the population i.e H∗ ̸= 0, A∗ ̸= 0. Hence, the endemic equilibrium point
E∗(S∗, H∗, A∗, T ∗, R∗) is obtained below as:

S∗ =
N

β
[(a1 + µ+ α)− b1

T ∗

H∗ ], H∗ =
(a2 + µ+ d)A∗ − b2T

∗

α

A∗ =
(λ1 − µN)[α(b1 + b2 + µ+ d) + a1b2]

d[(a2 + µ+ d)a1 + a2α+ α(b1 + b2 + µ+ d) + a1b2]

T ∗ =
(λ1 − µN)

d
−A∗, R∗ =

µ1

µ
S∗

(4.14)

Theorem 4.2. The endemic equilibrium state is globally asymptotically stable in R5
+ whenever

R0 > 1.

Proof. To prove the global stability of the endemic point we considered only four equations of the
system (2.1) because R doesn’t appear in the first four equations. Let us consider the Lyapunov
function V as

V = S − S∗ lnS +B(H −H∗ lnH) + C(A−A∗ lnA) +D(T − T ∗ lnT ) (4.15)

Differentiating

V̇ = Ṡ(1− S∗

S
) +BḢ(1− H∗

H
) + CȦ(1− A∗

A
) +DṪ (1− T ∗

T
)

=⇒ V̇ = (1− S∗

S
)(λ1 − β

SH

N
− (µ+ µ1)S) +B(1− H∗

H
)(β

SH

N
− (a1 + µ+ α)H + b1T )

+C(1− A∗

A
)(αH + b2T − (a2 + µ+ d)A) +D(1− T ∗

T
)(a1H + a2A− (b1 + b2 + µ+ d)T )

(4.16)

Since, E∗ satisfies the following equations

λ1 − β
S∗H∗

N
− (µ+ µ1)S

∗ = 0, β
S∗H∗

N
− (a1 + µ+ α)H∗ + b1T

∗ = 0

αH∗ + b2T
∗ − (a2 + µ+ d)A∗ = 0, a1H

∗ + a2A
∗ − (b1 + b2 + µ+ d)T ∗ = 0

(4.17)
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let’s take, S
S∗ = x, H

H∗ = y, A
A∗ = z, T

T∗ = w, then

V̇ = − (1− x)2

x
(µ+ µ1)S

∗ + β
S∗H∗

N
(1− xy − 1

x
+ y) +Bβ

S∗H∗

N
(1 + xy − x− y)

+Bb1T
∗(w − y − w

y
+ 1) + CαH∗(y − z − y

z
+ 1) + Cb2T

∗(w − z − w

z
+ 1)

+Da1H
∗(y − w − y

w
+ 1) +Da2A

∗(z − w − z

w
+ 1).

(4.18)

Now, by equating the coefficients of xy, y, w and z to zero we have,

B − 1 = 0, (1−B)β
S∗H∗

N
−Bb1T

∗ + CαH∗ +Da1H
∗ = 0,

Da2A
∗ − CαH∗ − Cb2T

∗ = 0, Bb1T
∗ + Cb2T

∗ −Da1H
∗ −Da2A

∗ = 0.
(4.19)

Solving, these linear equations in B,C, and D, we obtained

B = 1, C =
b1a2T

∗A∗

αa2H∗A∗ + (αH∗ + b2T ∗)a1H∗ , D =
(αH∗ + b2T

∗)b1T
∗

αa2H∗A∗ + (αH∗ + b2T ∗)a1H∗ (4.20)

Now substituting the values of B,C, and D, in Eq. (4.18)

V̇ = − (1− x)2

x
(µ+ µ1)S

∗ + β
S∗H∗

N
(2− x− 1

x
) + CαH∗(1− y

z
) + Cb2T

∗(1− w

z
)

+Da1H
∗(1− y

w
) +Da2A

∗(1− z

w
) + b1T

∗(1− w

y
)

=⇒ V̇ = − (1− x)2

x
(µ+ µ1)S

∗ + β
S∗H∗

N
(2− x− 1

x
) + f̂(S,H,A, T,R)

=⇒ V̇ = U + f̂(S,H,A, T,R)

(4.21)

Now, applying the property that the Algebraic mean is always greater and equal to the Geometric
mean (A.M. ≥ G.M.), we have 2−x− 1

x ≤ 0 , implies U ≤ 0. Now following the approach defined

in [11, 23, 24], f̂(S,H,A, T,R) is non–positive for all S,H,A, T,R ≥ 0. Hence, we found that
V̇ ≤ 0, and V̇ = 0, whenever x = 1(S = S∗), H = H∗, A = A∗, T = T ∗, R = R∗. Thus, the EE
point {E∗} is the only singleton for which V̇ = 0. Applying the La Salle invariance principle, it
can be verified that {E∗} is globally asymptotically stable whenever R0 > 1.

5 Sensitivity Analysis

Sensitivity analysis of the model allows us to identify the behavior of a system variable relative
to the most influential parameters. Following [19], the normalized forward sensitivity index of a
variable that depends differentially on a parameter h is defined as γR0

h = h
R0

× ∂R0

∂h . Taking the
parameter values from Table 2, the sensitivity indices of some important parameters are listed in
Table 1, and portrayed in the Figure 2. It was detected that N is the least sensitive parameter,
whereas β and λ1 are equally the most sensitive parameters.

γR0
a1

= − a1(µ+ d)(a2 + b2 + µ+ d)

[(a1 + µ+ α){(b1 + µ+ d)(a2 + µ+ d) + (µ+ d)b2} − b1{αa2 + a1(a2 + µ+ d)}]
,

γR0
α = − α(µ+ d)(a2 + b1 + b2 + µ+ d)

[(a1 + µ+ α){(b1 + µ+ d)(a2 + µ+ d) + (µ+ d)b2} − b1{αa2 + a1(a2 + µ+ d)}]
,

γR0
µ1

= − µ1

(µ+ µ1)
(5.1)
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Here, it was observed that β and λ1 have the same sensitivity indices with a positive sign, which
means 10% increment (or decrement) in β and λ1 makes 10% increment (or decrement) in R0.
The sensitivity index of N is a negative sign, which implies 10% expansion (decrement) in N
results in 10% decrement (or expansion) in R0. Similarly, a 10% decrease (expansion) in α
produces 2.8903% expansion (decrement) in R0.

6 Change in Equilibrium Curve through One-parameter
Bifurcation

From the sensitivity analysis of the model, the parameters β, λ1 and a1, and are identified as the
three most sensitive parameters (see Table 1). For these parameters, the qualitative behavior for
the range of parameters is investigated through one-parameter bifurcation diagrams in Figures
3, 4 and 5. The variations in the equilibrium curve for the range of parameters a1 ∈ [0, 1],
β ∈ [0, 5], and λ1 ∈ [0, 3.5] are clearly depicted in those Figures. The sharp decline in HIV-
infected and AIDS-infected populations is evident with respect to parameter a1 ∈ [0, 1] whereas
a sharp increase is evident with respect to parameter λ1 ∈ [0, 3.5]. Consequently, the recovered
populations increase with respect to parameters a1 ∈ [0, 1] but decreases with parameter β ∈
[0, 5]. All compartment populations H,A, T, and R increase with parameter λ1 ∈ [0, 3.5] as it
is associated with the growth of the S compartment. The deviation in variables for a range of
parameters is clearly depicted in Figures 3, 4 and 5.

Figure 2: Diagram showing sensitivity of R0.

7 Optimal Control Model

When the disease becomes out of control, we need to control the spread of the disease, then
optimal control theory produces an effective way to procure the optimum strategy. It helps to
identify the best intervention strategy to eradicate the disease in the specified time. Therefore,
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Figure 3: One-parameter bifurcation diagram with respect to parameter for the range
(0, 1).

Figure 4: One-parameter bifurcation diagram with respect to parameter for the range
(0, 5).
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Serial No Parameter Sensitivity Index

1 a1 -0.67286
2 β 1
3 λ1 1
4 µ1 -0.60484
5 α -0.28903
6 N -1

Table 1: Sensitivity Indices of Parameters

Figure 5: One-parameter bifurcation diagram with respect to parameter for the range
(0, 3.5).

we formulated a control problem and solved it to obtain the optimum strategy that reduces the
number of infected individuals with the minimum cost.

7.1 Formulation of Optimum Control Problem:

Now, to find the optimum strategy, we incorporate two control parameters; treatment control
and sexual habit awareness control. Following [20], we look forward to minimizing the following
constructed objective function;

J(µ1, a1, a2) =

∫ t1

0

(BH +
1

2
(B1µ

2
1 +B2a

2
1 +B3a

2
2) dt. (7.1)

Where, B is the constant associated with HIV infection defined as per capita loss due to the
presence of HIV-infected individuals while B1, B2 and B3 are the weights for the control efforts
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of µ1, a1 and a2 respectively. The cost of giving awareness about safe sexual intercourse to sus-
ceptible is given by 1

2 (B1µ
2
1). On the other hand, 1

2 (B2a
2
1) and

1
2 (B3a

2
2) are presented as the costs

for the treatment of HIV-infected and AIDS-infected individuals respectively. All the controls
are defined in the finite time horizon [0, t1]. We aim to find an optimum control (µ∗

1, a
∗
1, a

∗
2) such

that the total loss due to the occurrence of HIV infection and the total cost of the treatment and
awareness of safe intercourse can be minimized.

J(µ∗
1, a

∗
1, a

∗
2) = min(µ1,a1,a2)∈θJ(µ1, a1, a2), (7.2)

where, θ = {(µ1, a1, a2) : 0 ≤ µ1(t), a1(t), a2(t) ≤ 1, for t ∈ [0, 1]} is the control set for the
problem. Here, the control parameters can attempt the highest value 1, when everyone getting
treatment and awareness of safe sexual control while assuming the value 0 when no one is getting
treatment and none are aware of sexual control too. Otherwise, we can take a value between 0
and 1.

Now, to solve the objective functional the Lagrangian can be given as

L(H,µ1, a1, a2) = BH +
1

2
(B1µ

2
1 +B2a

2
1 +B3a

2
2). (7.3)

By using Pontryagin’s maximum principle [21], The Hamiltonian H1 for the problem is

H1 = BH +
1

2
(B1µ

2
1 +B2a

2
1 +B3a

2
2) + λ1

dS

dt
+ λ2

dH

dt
+ λ3

dT

dt
+ λ4

dA

dt
+ λ5

dR

dt

H1 = BH +
1

2
(B1µ

2
1 +B2a

2
1 +B3a

2
2) + λ1{λ− β

SH

N
− (µ+ µ1)S}+ λ2{β

SH

N
− (a1 + µ+ α)H

+ b1T}+ λ3{a1H − (b1 + b2 + µ+ d)T + a2A}+ λ4{αH − (a2 + µ+ d)A+ b2T}+ λ5{µ1S − µR}.
(7.4)

Where λ
′

is are the costate variables or adjoint variables corresponding to S,H, T,A,R determined
by solving the following differential equations.

λ̇1(t) = −∂H1

∂S
= λ1{β

H

N
+ (µ+ µ1)} − λ2(β

H

N
)− λ5(µ1)

λ̇2(t) = −∂H1

∂H
= −B + λ1β

S

N
− λ2{β

S

N
− (a1 + µ+ α)} − λ3a1 − λ4α

λ̇3(t) = −∂H1

∂T
= −λ2b1 + λ3(b1 + b2 + µ+ d)− λ4b2

λ̇4(t) = −∂H1

∂A
= −λ3a2 + λ4(a2 + µ+ d)

λ̇5(t) = −∂H1

∂R
= λ5µ

(7.5)

Where the costate variables satisfy the transversality conditions at t1 i.e. λi(t1) = 0 for all i =
1, 2, 3, 4, 5 .

Next, we will show the existence of optimum control. For which we used the following
theorem that analyzes the sufficient condition for the existence of optimality.

Theorem 7.1. There exists an optimum control (µ∗
1, a

∗
1, a

∗
2) that minimizes our objective func-

tional J(µ1, a1, a2) over control set θ.
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Proof. Proof of this theorem is based on conditions listed below given by Fleming and Rischel
[22].
(1). The set of all solutions of system Eq. (2.1) with associated control functions in θ
is non-empty.
(2). The right-hand side of system Eq. (2.1) is bounded by linear function in state and control.
(3). L is convex in and closed in θ , with respect to control J(µ1, a1, a2), further there exist
L ≥ C1|(µ1, a1, a2)|k − C2 such that C1, C2 > 0 and k > 1.
Using similar arguments as Ishaku et al. (2020) conditions (1) and (2) hold. Also, L is convex

on θ, and L ≥ C1

(
(|µ1|2 + |a1|2 + |a2|2)k/2

)
−C2 means L is bounded below. Now using the

Pontryagin’s maximum principle we stated the following theorem.

Theorem 7.2. The optimum control (µ∗
1, a

∗
1, a

∗
2) that minimizes our objective functional J over

θ is given by µ∗
1 = max{0,min(µ1, 1)}, a∗1 = max 0,min(a1, 1)} and a∗2 = max{0,min(a2, 1)}

where (µ1) can be obtained by ∂H1

∂µ1
= 0 and a1, a2 by ∂H1

∂a1
= 0 and ∂H1

∂a2
= 0 respectively.

Proof. Now applying the optimality conditions, we have

∂H1

∂µ1
= B1µ1 − λ1S + λ5S = 0, =⇒ µ1 =

(λ1 − λ5)S

B1

Similarly ∂H1

∂a1
= B2a1 − λ2H + λ3H = 0, =⇒ a1 = (λ2−λ3)H

B2
and

∂H1

∂a2
= B3a2 − λ4A+ λ3A = 0, =⇒ a2 = (λ4−λ3)A

B3
.

All these controls are bounded below by 0 and bounded above by 1. Hence, we get the
optimum control as,

µ∗
1 = max

{
0,min

(
(λ1−λ5)S

B1
, 1
)}

a∗1 = max
{
0,min

(
(λ2−λ3)H

B2
, 1
)}

a∗2 = max
{
0,min

(
(λ4−λ3)A

B3
, 1
)}

8 Numerical Illustrations for Stability

This section includes the validation of obtained analytical findings on the stability of equilibrium
points through numerical simulation. Initial population strength in million has been taken as
S(0) = 0.5, H(0) = 0.3, A(0) = 0.2, T (0) = 0.1, R(0) = 0. Now, choosing b1 = b2 = 0.001 and
N = 0.7 then substituting all the values in the expression of R0 , we obtained R0 = 0.9243 < 1.
Hence, the existence of disease-free equilibrium E0 is confirmed. Now, in terms of stability,
Figure 6(a) clearly shows that individuals suffering from only HIV and only AIDS will eventually
decrease to zero. Hence, the disease-free equilibrium point is globally asymptotic stable for a
given set of parameter values.
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Parameter Explanation Estimated Value Source

λ1 Recruitment rate 0.55 pop/year [9]
β Transmission Coefficient 0.03/year [3]
µ Natural death rate 0.0196/year [9]
µ1 rate of Susceptible individual 0.03/year [3]
α Progression rate from H to A class 0.15/year Estimated
d AIDS-induced death rate 0.0667/year [9]
a1 Progression rate to T from H 0.35/year Estimated
b1 Proportion of Successful treatment 0.001/0.2 Assumed
a2 Progression rate to T from A 0.35/year Estimated
b2 Proportion of treatment failure 0.001 Assumed
N Population size 0.7/1 Assumed

Table 2: Description and data sources for the estimation of parameter values

(a) R0 < 1 (b) R0 > 1 (c) R0 = 1

Figure 6: Showing the stability of equilibrium points

Now, choose b1 = 0.2 and b2 = 0.001 and N = 1, gives R0 = 1.746 > 1. As a result, Figure
6(b) clearly shows that HIV and AIDS individuals initially decrease due to treatment therapy,
but after a period of time, both remain constant, implying that the disease will persist in the
population indefinitely. Therefore, we concluded that the endemic point is globally asymptotically
stable in the population. Similarly, it can be seen from Figure 6c that the disease could be
eradicated from the population in the near future.

9 Numerical illustrations for Optimal Control

We have discussed analytically, the optimal control to minimize the total cost. Here, we simulated
the optimality system using MATLAB software by choosing the same parameter values from
Table 2, and the Runge- Kutta fourth-order method to obtain the optimal control and treatment
strategies. The initial population size in millions was taken as S(0) = 0.5, H(0) = 0.3, A(0) =
0.2, T (0) = 0.1, R(0) = 0. For this purpose, the treatment control and awareness of sexual habits
are taken as control parameters and considered four different control strategies; (i) When both
control strategies are active ( a1, a2, and µ1 are all non-zero ), (ii) When neither control strategy
is active (all a1, a2, and µ1 are zero), (iii) When only the treatment control is used (a1, a2 are
non zero whereas µ1 is zero) (iv) When only safety control is used (a1, a2 are zero while µ1 is
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(a) (b) (c)

(d) (e)

Figure 7: Simulations of optimal control with strategy (i) and strategy (ii) .

non zero). Figure 7a -7e depicts various class solutions using strategies (i) and (ii). Figure 7a
depicts the behavior of susceptible in the presence of both controls and in the absence of control
strategies. Similarly, Figure 7b and 7c show that when both control strategies are used optimally,
the number of people infected with HIV and AIDS are significantly reduced. From, Figure 7d,
we can see that the treated population is increasing when both the control strategies have been
implemented. Furthermore, Figure 7e shows that the number of recovered individuals increases
when both control strategies are implemented, whereas the number of recovered individuals is
negligible when neither control strategy is implemented.

Similarly, Figures 8a - 8e show the same behavior of the compartments when at least one
strategy is employed (either treatment or awareness of sexual control). Figure 8a clarifies that
treatment control has more impact on susceptible individuals. Likewise, Figures 8b and 8c show
that HIV and AIDS infections are increasing in the absence of treatment control. Furthermore,
as shown in Figure 8d, when treatment control is used, the treated population grows. Figure
8e depicts that by taking awareness of sexual safety precautions more people can recover from
HIV/AIDS.

10 Conclusion

In the present work, we developed an HIV/AIDS compartment model that includes important
compartments such as HIV, AIDS, and Treatment. The analysis and complex behavior of the
presented model have been studied and some suitable strategies for controlling HIV/AIDS are
enumerated. The important properties of dynamical systems like positivity and boundedness of
solution are henceforth substantiated. The threshold parameter (R0) basic reproduction number
for the model is derived using the next-generation matrix approach and it is evidenced that if
R0 ≤ 1 then HIV disease can be abolished from the population, although for R0 > 1 infection
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(a) (b) (c)

(d) (e)

Figure 8: Simulations of optimal control with strategy (iii) and strategy (iv)

remains persistently in the population under certain conditions. Further, the normalized forward
sensitivity index of the basic reproduction number (R0) with respect to some important model
parameters has been evaluated and concluded that N is the least sensitive parameter while β
and λ1 are equally the most sensitive parameters of the model. In addition to the above, an
optimal control technique has been applied and the optimum objective function has been derived
to minimize the HIV-infected individuals as well as the total cost associated with treatment and
awareness of sexual activity. The simulation results support and enhance our analytical results
for stability and optimal control. Moreover, our results specify that a combination of optimal
control strategies helps to reduce the number of HIV and AIDS-infected individuals significantly.
It is observed that a combination of treatment control and awareness of safe intercourse control
can reduce the number of HIV/AIDS-infected patients more quickly. In fact, if an emergency
occurs, then the government should majorly focus on making aware of people about safe sexual
intercourse, rather than ART treatment.
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